
Submitted to:
VPT 2021

c© E. Verbitskaia, D. Berezun & D. Boulytchev
This work is licensed under the
Creative Commons Attribution License.

An Empirical Study of Partial Deduction for MINIKANREN

Ekaterina Verbitskaia
JetBrains Research

Saint Petersburg, Russia
kajigor@gmail.com

Daniil Berezun
Saint Petersburg State University

JetBrains Research
Saint Petersburg, Russia

d.berezun@2009.spbu.ru

Dmitry Boulytchev
Saint Petersburg State University

JetBrains Research
Saint Petersburg, Russia

dboulytchev@math.spbu.ru

We study conjunctive partial deduction, an advanced specialization technique aimed at improving the
performance of logic programs, in the context of relational programming language MINIKANREN.
We identify a number of issues, caused by MINIKANREN peculiarities, and describe a novel approach
to specialization based on partial deduction and supercompilation. The results of the evaluation
demonstrate successful specialization of relational interpreters. Although the project is at the early
stages, we consider it as the first step towards an efficient optimization framework for MINIKANREN.

1 Introduction

A family of embedded domain-specific languages MINIKANREN1 implement relational programming —
a paradigm closely related to the pure logic programming. The minimal core of the language, also known
as MICROKANREN, can be implemented in as little as 39 lines of SCHEME [6]. An introduction to the
language and some of its extensions in a series of examples can be found in the book The Reasoned
Schemer [5]. The formal certified semantics for MINIKANREN is described in [21].

Relational programming is a paradigm based on the idea of describing programs as relations. The
core feature of relational programming is the ability to run a program in various directions by executing
goals with free variables. The distribution of free variable occurrences determines the direction of rela-
tional search. For example, having specified a relation for adding two numbers, one can also compute the
subtraction of two numbers or find all pairs of numbers which can be summed up to get the given one.
One of the most prominent applications of relational programming amounts to implementing interpreters
as relations. By running a relational interpreter for some language backwards one can do program syn-
thesis. In general, it is possible to create a solver from a recognizer by translating it into MINIKANREN

and running it in the appropriate direction [18].
The search employed in MINIKANREN is complete which means that every answer will be found, al-

though it may take a long time. The promise of MINIKANREN falls short when speaking of performance.
The execution time of a program in MINIKANREN is highly unpredictable and varies greatly for various
directions. What is even worse, it depends on the order of the relation calls within a program. One order
can be good for one direction, but slow down the computation dramatically in the other direction.

Partial evaluation [10] is a technique for specialization, i.e. improving the performance of a program
given some information about it beforehand. It may either be a known value of some argument, its
structure (i.e. the length of an input list) or, in case of a relational program, — the direction in which the
relation is intended to be run. An earlier paper [18] has shown that conjunctive partial deduction [4] can
sometimes improve the performance of MINIKANREN programs. Depending on the particular control
decisions, it may also not affect the execution time of a program or even make it slower.

1MINIKANREN language web site: http://minikanren.org. Access date: 28.02.2021

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
http://minikanren.org

2 An Empirical Study of Partial Deduction for MINIKANREN

T = X ∪{Cki
i (t1, . . . , tki) | t j ∈T } terms over the set of variables X

G = T ≡T unification
G ∧G conjunction
G ∨G disjunction
fresh X . G fresh variable introduction
Rki

i (t1, . . . , tki), t j ∈T relational symbol invocation
S = {Rki

i = λ xi
1 . . .x

i
ki
.gi;} g specification

Figure 1: The syntax of the source language

Control issues in partial deduction of logic programming language PROLOG have been studied be-
fore [16]. Unlike Prolog, where atoms in the right-hand side of a clause cannot be arbitrarily reordered
without changing the semantics of a program, in MINIKANREN the subgoals of conjunction/disjunction
can be freely switched. This opens yet another possibility for optimization, not taken into account by
approaches initially developed in the context of conventional logic programming.

In this paper, we study issues which conjunctive partial deduction faces being applied for MINIKAN-
REN. We also describe a novel approach to partial deduction for relational programming, conservative
partial deduction. We implemented this approach and compared it with the existing specialization sys-
tem (ECCE) for several programs. We report here the results of the comparison and discuss why some
MINIKANREN programs run slower after specialization.

2 Background

In this section we provide some background on relational programming and relational interpreters.

2.1 MINIKANREN

This paper considers the minimal relational core of the MINIKANREN language. The syntax of the lan-
guage is presented in Fig. 1. A specification of the MINIKANREN program consists of a set of relation
definitions accompanied by a top-level goal which plays a role of a query. Goal, being the central syntac-
tic category of the language, can take the form of either a term unification, conjunction or disjunction of
goals, a fresh syntactic variable introduction, or a relation call. We consider the alphabet of constructors
{Cki

i } and relational symbols {Rki
i } to be predefined and accompanied with their arities.

The formal semantics of the language is best described in [21]. Here we only briefly introduce
the semantics. A stream of substitutions for free variables within the query goal is computed during the
execution of a MINIKANREN program. Depending on the kind of the goal, one of the following situations
is possible.

1. Term unification t1 ≡ t2 computes the most-general unification in the context of the current substi-
tution. If succeeded, the unifier is added into the current substitution and then it is returned as a
singleton stream. Otherwise, an empty stream is returned.

2. Introduction of the fresh variable f resh x.g allocates a new semantic variable, substitutes it for all
fresh occurrences of x within g, then evaluates the goal.

3. An execution of a relational call Rki
i (t1, . . . , tki) is done by first substuting the terms t j for the

respective formal parameters and then running the resulting goal.

E. Verbitskaia, D. Berezun & D. Boulytchev 3

l e t rec addo x y z = conde [
(x ≡ zero ∧ y ≡ z) ;
(fresh (p) (x ≡ succ p ∧ addo p (succ y) z))]

l e t rec evalo fm res = conde [fresh (x y xr yr) (
(fm ≡ num res) ;
(evalo x xr ∧ evalo y yr ∧

conde [
(fm ≡ sum x y ∧ addo xr yr res) ;
(fm ≡ prod x y ∧ . . .) ;
. . .])

Listing 1: Evaluator of arithmetic expressions

4. When executing a conjunction g1∧g2, first the goal g1 is run in the context of the current substitu-
tion which results in the stream of substitutions, in each of which g2 is run. The resulting stream
of streams is then concatenated.

5. Disjunction g1∨g2 applies both goals to the current substitution and concatenates the results.

Consider the relation addo in Listing 1. It defines the relation between three Peano
numbers x, y and z, such that x + y = z, using the OCANREN language2. The key-
word conde provides syntactic sugar for a disjunction, while zero and succ are construc-
tors. The query fresh (z) (addo (succ zero) (succ zero) z) results in the only substitu-
tion [z 7→ succ (succ zero)] , while the query fresh (x y) (addo x y (succ (succ zero)))
executes to three valid substitutions: [x 7→ zero, y 7→ succ (succ zero)] , [x 7→ succ zero,
y 7→ succ zero], [x 7→ succ (succ zero), y 7→ zero].

The interleaving search [12] is at the core of MINIKANREN. It evaluates disjuncts incrementally,
passing control from one to the other. This search strategy is what makes the search in MINIKANREN

complete. It also allows for reordering of both disjuncts and conjuncts within a goal which may improve
the efficiency of a program. This reordering generally leads to the reordering of the answers computed by
a MINIKANREN program. The denotational semantics of MINIKANREN ignores the order of the answers
because the search is complete and thus all possible answers will be found eventually.

2.2 Relational Interpreters

The kind of relational programs most interesting to us is relational interpreters. They may be used to
solve complex problems such as generating quines [3] or to solve search problems by only implementing
programs which check that a solution is correct [18]. The latter application is the focus of our research
project thus we provide a brief description of it.

Search problems are notoriously complicated. In fact, they are much more complex than verifica-
tion — checking that some candidate solution is indeed a solution. The ability of MINIKANREN programs
to be evaluated in different directions along with the complete semantics of the language allows for au-
tomatic generation of a solver from a verifier using relational conversion [19]. Unfortunately, generated

2OCANREN: statically typed MINIKANREN embedding in OCAML. The repository of the project: https://github.com/
JetBrains-Research/OCanren. Access date: 28.02.2021

https://github.com/JetBrains-Research/OCanren
https://github.com/JetBrains-Research/OCanren

4 An Empirical Study of Partial Deduction for MINIKANREN

relational interpreters are often inefficient, since the conversion introduces a lot of extra unifications and
boilerplate. This kind of inefficiency is a prime candidate for specialization.

Consider the relational interpreter evalo fm res in Listing 1. It evaluates an arithmetic ex-
pression fm which can take the form of a number (num res) or a binary expression such as the
sum x y or prod x y. Running the interpreter backwards synthesizes expressions which evaluate to
the given number. For example one possible answer to the query evalo fm (succ (succ zero)) is
sum (num (succ zero)) (sum (num zero) (num (succ zero))) .

3 Related Work

Specialization is an attractive technique aimed to improve the performance of a program making use
of its static properties such as known arguments or its environment. Specialization is studied for func-
tional, imperative, and logic programing and comes in different forms: partial evaluation [10] and partial
deduction [17], supercompilation [22], distillation [8], and many others.

The heart of supercompilation-based techniques is driving — a symbolic execution of a program
through all possible execution paths. The result of driving is a possibly infinite process tree where
nodes correspond to configurations which represent computation state. For example, in the case of pure
functional programming languages, the computational state might be a term. Each path in the tree corre-
sponds to some concrete program execution. The two main sources for supercompilation optimizations
are aggressive information propagation about variables’ values, equalities and disequalities, and precom-
puting of deterministic semantic evaluation steps. The latter process, also known as deforestation [24],
means combining of consecutive process tree nodes with no branching. When the tree is constructed, the
resulting, or residual, program can be extracted from the process tree by the process called residualiza-
tion. Of course, the process tree can contain infinite branches. Whistles — heuristics to identify possibly
infinite branches — are used to ensure supercompilation termination. If a whistle signals during the
construction of some branch, then something should be done to ensure termination. The most common
approaches are either to stop driving the infinite branch completely (no specialization is done in this case
and the source code is blindly copied into the residual program) or to fold the process tree to a process
graph. The main instrument to perform such a folding is some form of generalization. Generalization,
abstracting away some computed data about the current term, makes folding possible. One source of
infinite branches is consecutive recursive calls to the same function with an accumulating parameter: by
unfolding such a call further one can only increase the term size which leads to nontermination. The
accumulating parameter can be removed by replacing the call with its generalization. There are several
ways to ensure process correctness and termination, most-specific generalization (anti-unification) and
homeomorphic embedding [9, 13] as a whistle being common.

While supercompilation generally improves the behaviour of input programs and distillation can even
provide superlinear speedup, there are no ways to predict the effect of specialization on a given program
in general. What is worse, the efficiency of a residual program from the target language evaluator point
of view is rarely considered in the literature. The main optimization source is computing in advance
all possible intermediate and statically-known semantics steps at program transformation-time. Other
criteria, like the size of the generated program or possible optimizations and execution cost of different
language constructions by the target language evaluator, are usually out of consideration [10]. It is
known that supercompilation may adversely affect GHC optimizations making standalone compilation
more powerful [1, 11] and cause code explosion [20]. Moreover, it may be hard to predict the real
speedup of any given program using concrete benchmarks even disregarding the problems above because

E. Verbitskaia, D. Berezun & D. Boulytchev 5

of the complexity of the transformation algorithm. The worst-case for partial evaluation is when all static
variables are used in a dynamic context, and there is some advice on how to implement a partial evaluator
as well as a target program so that specialization indeed improves its performance [10, 2]. There is a lack
of research in determining the classes of programs which transformers would definitely speed up.

Conjunctive partial deduction [4] makes an effort to provide reasonable control for the left-to-right
evaluation strategy of PROLOG. CPD constructs a tree which models goal evaluation and is similar to
an SLDNF tree, then a residual program is generated from the tree. Partial deduction itself resembles
driving in supercompilation [7]. The specialization is done in two levels of control: the local control
determines the shape of the residual programs, while the global control ensures that every relation which
can be called in the residual program is defined. The leaves of local control trees become nodes of the
global control tree. CPD analyses these nodes at the global level and runs local control for all those
which are new.

At the local level, CPD examines a conjunction of atoms by considering each atom one-by-one from
left to right. An atom is unfolded if it is deemed safe, i.e. a whistle based on homeomorphic embedding
does not signal for the atom. When an atom is unfolded, a clause whose head can be unified with the
atom is found, and a new node is added into the tree where the atom in the conjunction is replaced with
the body of that clause. If there is more than one suitable head, then several branches are added into
the tree which corresponds to the disjunction in the residualized program. An adaptation of CPD for the
MINIKANREN programming language is described in [18].

ECCE partial deduction system [15] is the most mature implementation of CPD for PROLOG. ECCE
provides various implementations of both local and global control as well as several degrees of post-
processing. Unfortunately there is no automatic procedure to choose what control setting is likely to
improve input programs the most. The choice of the proper control is left to the user.

An empirical study has shown that the most well-behaved strategy of local control in CPD for PRO-
LOG is deterministic unfolding [14]. An atom is unfolded only if precisely one suitable clause head
exists for it with the one exception: it is allowed to unfold an atom non-deterministically once for one
local control tree. This means that if a non-deterministic atom is the leftmost one within a conjunction,
it is most likely to be unfolded, introducing many new relation calls within the conjunction. We believe
this is the core problem of CPD which limits its power when applied to MINIKANREN. The strategy of
unfolding atoms from left to right is reasonable in the context of PROLOG because it mimics the way
programs in PROLOG execute. But in MINIKANREN it often leads to larger global control trees and, as
a result, bigger, less efficient programs. On the contrary, according to the denotational semantics, the
results of evaluation of a MINIKANREN program do not depend on the order of relation calls (atoms)
within conjunctions, thus we believe a better result can be achieved by selecting a relation call which can
restrict the number of branches in the tree. We describe our approach, which implements this idea, in the
next section.

4 Conservative Partial Deduction

In this section, we describe a novel approach to relational programs specialization. This approach draws
inspiration from both conjunctive partial deduction and supercompilation. The aim was to create a spe-
cialization algorithm which would be simpler than conjunctive partial deduction and use properties of
MINIKANREN to improve the performance of the input programs.

The algorithm pseudocode is shown in Fig. 2. For the sake of brevity and clarity, we provide func-
tions drive_disj and drive_conj which describe how to process disjunctions and conjunctions re-

6 An Empirical Study of Partial Deduction for MINIKANREN

1 conspd goal = r e s i d u a l i z e ◦ drive ◦ normalize (goal)
2 drive = drive_disj ∪ drive_conj
3
4 drive_disj : : Disjunction → Process_Tree
5 drive_disj (c1 , . . . , cn) =

∨n

i=1
ti ← drive_conj (ci)

6
7 drive_conj : : (Conjunction , Subst itut ion) → Process_Tree
8 drive_conj ((r1 , . . . , rn) , subst) =
9 C@(r1 , . . . , rn) ← propagate_substitution subst onto r1 , . . . , rn

10 case whist le (C) of
11 | instance (C’ , subst ’) ⇒ create_fold_node (C’ , subst ’)
12 | embedded_but_not_instance ⇒ create_stop_node (C , subst)
13 | otherwise ⇒
14 | | case heur i s t i ca l ly_se lect_a_cal l (r1 , . . . , rn) of
15 | | | Just r ⇒
16 | | | | t ← drive ◦ normalize ◦ unfold (r)
17 | | | | i f t r i v i a l ◦ l e a f s (t)
18 | | | | then
19 | | | | | C’ ← propagate_substitution (C \ r , extract_subst itut ion (t))
20 | | | | | dr ive C’ [r 7→ extract_cal l s (t)]
21 | | | | else
22 | | | | | t

∧
drive (C \ r , subst)

23 | | | Nothing ⇒
∧n

i=1
ti ← drive ◦ normalize ◦ unfold (ri)

Figure 2: Conservative partial deduction pseudo code

spectively. Driving itself is a trivial combination of the functions provided (line 2).
A driving process creates a process tree, from which a residual program is later created. The process

tree is meant to mimic the execution of the input program. The nodes of the process tree include a
configuration which describes the state of program evaluation at some point. In our case a configuration
is a conjunction of relation calls. The substitution computed at each step is also stored in the tree node,
although it is not included in the configuration.

Hereafter, we consider all goals and relation bodies to be in canonical normal form — a disjunction
of conjunctions of either calls or unifications. Moreover, we assume all fresh variables to be introduced
into the scope and all unifications to be computed at each step. Those disjuncts in which unifications
fail are removed. Each other disjunct takes the form of a possibly empty conjunction of relation calls
accompanied with a substitution computed from unifications. Any MINIKANREN term can be trivially
transformed into the described form. The function normalize in Fig. 2 is assumed to perform term
normalization. The code is omitted for brevity.

There are several core ideas behind this algorithm. The first is to select an arbitrary relation to
unfold, not necessarily the leftmost which is safe. The second idea is to use a heuristic which decides if
unfolding a relation call can lead to discovery of contradictions between conjuncts which in turn leads
to restriction of the answer set at specialization-time (line 14; heuristically_select_a_call stands
for heuristic combination, see section 4.2 for details). If those contradictions are found, then they are
exposed by considering the conjunction as a whole and replacing the selected relation call with the result
of its unfolding thus joining the conjunction back together instead of using split as in CPD (lines 15–22).
Joining instead of splitting is why we call our transformer conservative partial deduction. Finally, if the
heuristic fails to select a potentially good call, then the conjunction is split into individual calls which

E. Verbitskaia, D. Berezun & D. Boulytchev 7

are driven in isolation and are never joined (line 23).
When the heuristic selects a call to unfold (line 15), a process tree is constructed for the selected call

in isolation (line 16). The leaves of the computed tree are examined. If all leaves are either computed
substitutions or are instances of some relations accompanied with non-empty substitutions, then the
leaves are collected and each of them replaces the considered call in the root conjunction (lines 19–20).
If the selected call does not suit the criteria, the results of its unfolding are not propagated onto other
relation calls within the conjunction, instead, the next suitable call is selected (line 22). According to the
denotational semantics of MINIKANREN it is safe to compute individual conjuncts in any order, thus it is
okay to drive any call and then propagate its results onto the other calls.

This process creates branchings whenever a disjunction is examined (lines 4–5). At each step, we
make sure to not drive a conjunction which has been already examined. To do this, we check if the
current conjunction is a renaming of any other configuration in the tree (line 11). If it is, then we fold the
tree by creating a special node which then is residualized into a call to the corresponding relation.

In this approach, we do not generalize in the same fashion as CPD or supercompilation. Our con-
junctions are always split into individual calls and are joined back together only if it is meaningful,
for example, leads to contradictions. If the need for generalization arises, i.e. homeomorphic embed-
ding of conjunctions [4] is detected, then we immediately stop driving this conjunction (line 12). When
residualizing such a conjunction, we just generate a conjunction of calls to the input program before
specialization.

4.1 Unfolding

Unfolding in our case is done by substitution of some relation call by its body with simultaneous nor-
malization and computation of unifications. The unfolding itself is straightforward; however it is not
always clear what to unfold and when to stop unfolding. Unfolding in the context of specialization of
functional programming languages, as well as inlining in specialization of imperative languages, is usu-
ally considered to be safe from the residual program efficiency point of view. It may only lead to code
explosion or code duplication which is mostly left to a target program compiler optimization or even is
out of consideration at all if a specializer is considered as a standalone tool [10].

Unfortunately, this is not the case for the specialization of a relational programming language. Unlike
functional and imperative languages, in logic and relational programming languages unfolding may eas-
ily affect the target program’s efficiency [16]. Unfolding too much may create extra unifications, which
is by itself a costly operation, or even introduce duplicated computations by propagating the results of
unfolding onto neighbouring conjuncts.

There is a fine edge between too much unfolding and not enough unfolding. The former is maybe
even worse than the latter. We believe that the following heuristic provides a reasonable approach to
unfolding control.

4.2 Less Branching Heuristic

This heuristic is aimed at selecting a relation call within a conjunction which is both safe to unfold
and may lead to discovering contradictions within the conjunction. An unsafe unfolding leads to an
uncontrollable increase of the number of relation calls in a conjunction. It is best to first unfold those
relation calls which can be fully computed up to substitutions.

We deem every static (non-recursive) conjunct to be safe because they never lead to growth in the
number of conjunctions. Those calls which unfold deterministically, meaning there is only one disjunct

8 An Empirical Study of Partial Deduction for MINIKANREN

1 heur i s t i ca l ly_se lect_a_cal l : : Conjunction → Maybe Call
2 heur i s t i ca l ly_se lect_a_cal l C =
3 f ind i s S t a t i c C <|> f ind i sDetermin i s t i c C <|> f ind isLessBranching C

Figure 3: Heuristic selection pseudocode

in the unfolded relation, are also considered to be safe.
Those relation calls which are neither static nor deterministic are examined with what we call the

less-branching heuristic. It identifies the case when the unfolded relation contains fewer disjuncts than it
could possibly have. This means that we found some contradiction, some computations were gotten rid
of, and thus the answer set was restricted, which is desirable when unfolding. To compute this heuristic
we precompute the maximum possible number of disjuncts in each relation and compare this number
with the number of disjuncts when unfolding a concrete relation call. The maximum number of disjuncts
is computed by unfolding the body of the relation in which all relation calls were replaced by a unification
which always succeeds.

The pseudocode describing our heuristic is shown in Fig. 3. Selecting a good relation call can fail
(line 1). The implementation works such that we first select those relation calls which are static, and only
if there are none, we proceed to consider deterministic unfoldings and then we search for those which
are less branching. We believe this heuristic provides a good balance in unfolding.

5 Evaluation

We implemented3 the conservative partial deduction for MINIKANREN and compared it with the ECCE
partial deduction system. ECCE is designed for PROLOG programming language and cannot be directly
applied for programs, written in MINIKANREN. Nevertheless, the languages show resemblance, and it
is valuable to check if the existing methods for PROLOG can be used directly in the context of relational
programming. To be able to compare our approach with ECCE, we converted each input program first
to the pure subset of PROLOG, then specialized it with ECCE, and then we converted the result back
to MINIKANREN. The conversion to PROLOG is a simple syntactic conversion. In the conversion from
PROLOG to MINIKANREN, for each Horn clause a conjunction is generated in which unifications are
placed before any relation call. All programs are run as MINIKANREN programs in our experiments.

We chose two problems for our study: evaluation of a subset of propositional formulas and type-
checking for a simple language. The problems illustrate the approach of using relational interpreters to
solve search problems [18]. For both these problems we considered several possible implementations in
MINIKANREN which highlight different aspects relevant in specialization.

The evalo relation implements an evaluator of a subset of propositional formulas. We consider four
different implementations of this relation to explore how the way program is implemented can affect
the quality of specialization. Depending on the implementation, ECCE generates programs of varying
performance, while the execution times of the programs generated by our approach are similar.

The typechecko relation implements a typechecker for a tiny expression language. We consider
two different implementations of this relation: one written by hand and the other generated from the
functional program. We demonstrate how much these implementations differ in terms of performance
before and after specialization.

In this study we measured the execution time for the sample queries, averaging them over multiple

3The project repository: https://github.com/kajigor/uKanren_transformations/. Access date: 28.02.2021

https://github.com/kajigor/uKanren_transformations/

E. Verbitskaia, D. Berezun & D. Boulytchev 9

l e t rec evalo subst fm res = conde [fresh (x y z v w) (
(fm ≡ conj x y ∧ evalo st x v ∧ evalo st y w ∧ ando v w res) ;
(fm ≡ disj x y ∧ evalo st x v ∧ evalo st y w ∧ oro v w res) ;
(fm ≡ neg x ∧ evalo st x v ∧ noto v res)) ;
(fm ≡ var v ∧ elemo subst v res)]

Listing 2: Evaluator of formulas with boolean operation last

l e t rec evalo subst fm res = conde [fresh (x y z v w) (
(fm ≡ conj x y ∧ ando v w res ∧ evalo st x v ∧ evalo st y w) ;
(fm ≡ disj x y ∧ oro v w res ∧ evalo st x v ∧ evalo st y w) ;
(fm ≡ neg x ∧ noto v res ∧ evalo st x v) ;
(fm ≡ var v ∧ elemo subst v res))]

Listing 3: Evaluator of formulas with boolean operation second

runs. We also measured the number of unifications done in search of each individual answer. All exam-
ples of MINIKANREN relations in this paper are written in OCANREN. The queries were run on a laptop
running Ubuntu 18.04 with quad core Intel Core i5 2.30GHz CPU and 8 GB of RAM.

The tables and graphs use the following denotations. Original represents the execution time of a
program before any transformations were applied; ECCE — of the program specialized by ECCE with
default conjunctive control setting; ConsPD — of the program specialized by our approach.

5.1 Evaluator of Logic Formulas

The relation evalo describes an evaluation of a propositional formula under given variable assignments.
The relation has three arguments. The first argument is a list of boolean values which plays a role of
variable assignments. The i-th value of the substitution is the value of the i-th variable. The second
argument is a formula with the following abstract syntax. A formula is either a variable represented with
a Peano number, a negation of a formula, a conjunction of two formulas or a disjunction of two formulas.
The third argument is the value of the formula under the given assignment.

We specialize the evalo relation to synthesize formulas which evaluate to ↑ true . To do so, we
run the specializer for the goal with the last argument fixed to ↑ true , while the first two arguments
remain free variables. Depending on the way the evalo is implemented, different specializers generate
significantly different residual programs.

5.1.1 The Order of Relation Calls

One possible implementation of the evaluator is presented in Listing 2. Here the relation
elemo subst v res unifies res with the value of the variable v in the list subst. The relations ando,
oro, and noto encode corresponding boolean connectives.

Note, the calls to boolean relations ando, oro, and noto are placed last within each conjunction. This
poses a challenge for the CPD-based specializers such as ECCE. Conjunctive partial deduction unfolds
relation calls from left to right, so when specializing this relation for running backwards (i.e. considering
the goal evalo subst fm ↑ true), it fails to propagate the direction data onto recursive calls of evalo.
Knowing that res is ↑ true , we can conclude that in the call ando v w res variables v and w have to be

10 An Empirical Study of Partial Deduction for MINIKANREN

l e t noto x y = conde [
(x ≡ ↑true ∧ y ≡ ↑false ;
x ≡ ↑false ∧ y ≡ ↑true)]

Listing 4: Implementation of boolean noto as a table

l e t noto x y = nando x x y

l e t oro x y z = nando x x xx ∧ nando y y yy ∧ nando xx yy z

l e t ando x y z = nando x y xy ∧ nando xy xy z

l e t nando a b c = conde [
(a ≡ ↑false ∧ b ≡ ↑false ∧ c ≡ ↑true) ;
(a ≡ ↑false ∧ b ≡ ↑true ∧ c ≡ ↑true) ;
(a ≡ ↑true ∧ b ≡ ↑false ∧ c ≡ ↑true) ;
(a ≡ ↑true ∧ b ≡ ↑true ∧ c ≡ ↑false)]

Listing 5: Implementation of boolean operations via nando

↑ true as well. There are three possible options for these variables in the call oro v w res and one for
the call noto. These variables are used in recursive calls of evalo and thus restrict the result of driving.
CPD fails to recognize this, and thus unfolds recursive calls of evalo applied to fresh variables. It leads
to over-unfolding, large residual programs and poor performance.

The conservative partial deduction first unfolds those calls which are selected according to the heuris-
tic. Since exploring the implementations of boolean connectives makes more sense, they are unfolded
before recursive calls of evalo. The way conservative partial deduction treats this program is the same
as it treats the other implementation in which boolean connectives are moved to the left, as shown in
Listing 3. This program is easier for ECCE to specialize which demonstrates how unequal the behaviour
of CPD for similar programs is.

5.1.2 Unfolding of Complex Relations

Depending on the way a relation is implemented, it may take a different number of driving steps to
reach the point when any useful information is derived through its unfolding. Partial deduction tries to
unfold every relation call unless it is unsafe, but not all relation calls serve to restrict the search space
and thus should be unfolded. In the implementation of evalo boolean connectives can effectively restrict
variables within the conjunctions and should be unfolded until they do. But depending on the way they
are implemented, the different number of driving steps should be performed for that. The simplest way to
implement these relations is by mimicking a truth table as demonstrated by the implementation of noto

in Listing 4. It is enough to unfold such relation calls once to derive useful information about variables.
The other way to implement boolean connectives is to express them using a single basic boolean

relation such as nando which is, in turn, has a table-based implementation (see Listing 5). It will take
several sequential unfoldings to derive that variables v and w should be ↑ true when considering a call
ando v w ↑ true implemented via a basic relation. Conservative partial deduction drives the selected call
until it derives useful substitutions for the variables involved while CPD with deterministic unfolding
may fail to do so.

E. Verbitskaia, D. Berezun & D. Boulytchev 11

Original ECCE ConsPD
First-
Plain

1.59s 1.61s 0.92s

First-
Nando

1.43s 2.24s 0.96s

Last-
Plain

0.98s 1.43s 0.97s

Last-
Nando

1.09s 1.54s 0.91s
 0

 0.5

 1

 1.5

 2

 2.5

FirstPlain FirstNando LastPlain LastNando

Ti
m

e
 (

s)

Implementation

Original
ECCE

ConsPD

Figure 4: Execution time of evalo

5.1.3 Evaluation Results

In our study we considered 4 implementations of evalo summed up in the Table 1. They differ in the
way the boolean connectives are implemented (see column Implementation) and whether they are placed
before or after the recursive calls to evalo (see column Placement). These four implementations are
very different from the standpoint of ECCE.

Implementation Placement
FirstPlain table-based before
LastPlain table-based after

FirstNando via nando before
LastNando via nando after

Table 1: Different implementations of evalo

We measured the time necessary to generate 1000 formulas over two variables which evaluate to
↑ true (averaged over 10 runs). The results are presented in Fig. 4.

Conservative partial deduction generates programs with comparable performance for all four imple-
mentations, while the quality of ECCE specialization differs significantly. ECCE worsens performance
for every implementation as compared to the original program. ConsPD do not worsen performance for
any implementation. Its effect is most significant for the implementations in which the boolean connec-
tives are placed first within conjunctions.

5.1.4 The Order of Answers

It is important to note that different implementations of the same MINIKANREN relation produce an-
swers in different orders. Nevertheless, since MINIKANREN search is complete, all answers will be
found eventually. Unfortunately, it is not guaranteed that the first 1000 formulas generated with differ-
ent implementations of evalo will be the same. For example, 983 formulas are the same among the
first 1000 formulas generated by the Original FirstPlain relation and the same relation after the ConsPD
transformation. At the same time, only 405 formulas are the same between the Original and ECCE
LastNando relations.

12 An Empirical Study of Partial Deduction for MINIKANREN

The reason why implementations differ so much in the order of the answers stems from the canonical
search strategy employed in MINIKANREN. Most MINIKANREN implementations employ interleaving
search [12] which is left-biased. It means that the leftmost disjunct in a relation is being executed
longer than the disjunct on the right. This property is not local which makes it very hard to estimate the
performance of a given relation.

In practice it means that if a specializer reorders disjuncts, then the performance of relations after
specialization may be unpredictable. For example, by putting the disjuncts of the evalo relation in
the opposite order, one produces a relation which runs much faster than the original, but it generates
completely different formulas at the same time. Most of the first 1000 formulas in this case are multiple
negations of a variable, while the original relation produces more diverse set of answers. Computing
a negation of a formula only takes one recursive evalo call thus finding such answers is faster than
conjunctions and disjunctions. Meanwhile, the formulas generated by the reordered relation are less
diverse and may be of less interest.

Although neither ECCE nor ConsPD reorder disjuncts, they remove disjuncts which cannot succeed.
Thus they influence the order of answers and performance of relations. Both methods reduce the number
of unifications needed to compute each individual answer thus performing specialization. We believe
that, in general, it is not possible to guarantee the same order of answers after specialization. Exploring
how different specializations influence the execution order is a fascinating direction for future research.

5.2 Typechecker-Term Generator

This relation implements a typechecker for a tiny expression language. Being executed in the backward
direction it serves as a generator of terms of the given type. The abstract syntax of the language is
presented below. The variables are represented with de Bruijn indices, thus let-binding does not specify
which variable is being bound.

type term = BConst o f Bool | IConst o f Int | Var o f Int
| term+ term | term∗ term | term = term | term < term
| let term in term | i f term then term else term

The typing rules are straightforward and are presented in Fig. 5. Boolean and integer constants have
the corresponding types regardless of the environment. Only terms of type integer can be summed up,
multiplied or compared by less-than operator. Any terms of the same type can be checked for equality.
Addition and multiplication of two terms of suitable types have integer type, while comparisons have
boolean type. If-then-else expression typechecks only if its condition is of type boolean, while both
then- and else-branches have the same type. An environment Γ is an ordered list, in which the i-th
element is the type of the variable with the i-th de Bruijn index. To typecheck a let-binding, first, the
term being bound is typechecked and is added in the beginning of the environment Γ, and then the body
is typechecked in the context of the new environment. Typechecking a variable with the index i boils
down to getting an i-th element of the list.

We compared two implementations of these typing rules. The first one is obtained by unnesting of a
functional program as described in [18] (Generated). It is worth noting that the unnesting introduces a
lot of redundancy in the form of extra unifications and thus creates programs which are very inefficient.
Thus we contrast this implementation with the program hand-written in OCANREN (Hand-written). Each
implementation has been specialized with ConsPD and ECCE. We measured the time needed to generate
1000 closed terms of type integer (see Fig. 6).

E. Verbitskaia, D. Berezun & D. Boulytchev 13

Γ ` IConst i : Int Γ ` BConst b : Bool Γ `Var v : τ
Γ[v]≡ τ

Γ ` t : Int,Γ ` s : Int
Γ ` t + s : Int

Γ ` t : τ,Γ ` s : τ

Γ ` t = s : Bool
Γ ` v : τv, (τv :: Γ) ` b : τ

Γ ` let v b : τ

Γ ` t : Int,Γ ` s : Int
Γ ` t ∗ s : Int

Γ ` t : Int,Γ ` s : Int
Γ ` t < s : Bool

Γ ` c : Bool,Γ ` t : τ,Γ ` s : τ

Γ ` i f c then t else s : τ

Figure 5: Typing rules implemented in typechecko relation

Original ECCE ConsPD
Hand-written 0.92s 0.22s 0.34s

Generated 11.46s 0.38s 0.29s

10-1

100

101

102

Hand-written Generated

Ti
m

e
 (

s)

Original
ECCE

ConsPD

Figure 6: Execution time of generating 1000 closed terms of type Integer

As expected, the generated program is far slower than the hand-written. The principal difference be-
tween these two implementations is that the generated program contains a certain redundancy introduced
by unnesting. For example, typechecking of the sum of two terms in the hand-written implementation
consists of a single conjunction (see Listing 6) while the generated program is far more complicated and
also uses a special relation typeEqo to compare types (see Listing 7).

l e t rec typechecko gamma term res = conde [
. . .
fresh (x y) ((term ≡ x + y ∧

typechecko gamma x ↑(Some Integer) ∧
typechecko gamma y ↑(Some Integer) ∧
res ≡ ↑(Some Integer))) ;

. . .]

Listing 6: A fragment of hand-written typechecker

Most of the redundancy of the generated program is removed by specialization with respect to the
known type of the term. This is why both implementations have comparable speed after specialization.
ECCE shows bigger speedup for the hand-written program than ConsPD and vice versa for the generated
implementation. We believe that this difference can be explained by too much unfolding. ECCE per-
forms a lot of excessive unfolding for the generated program and only barely changes the hand-written
program. At the same time ConsPD specializes both implementations to comparable programs perform-
ing average amount of unfolding. This shows that the heuristic we presented gives more stable, although
not the best, results.

14 An Empirical Study of Partial Deduction for MINIKANREN

l e t rec typechecko gamma term res = conde [
. . .
fresh (x y t1 t2) ((term ≡ x + y ∧

conde [
typechecko gamma x ↑None ∧ res ≡ ↑None ;
typechecko gamma x ↑(Some t1) ∧
typechecko gamma y ↑None ∧ res ≡ ↑None ;

typechecko gamma x ↑(Some t1) ∧ typechecko gamma y ↑(Some t2) ∧
typeEqo t1 Integer ↑true ∧ typeEqo t2 Integer ↑true ∧
res ≡ ↑(Some Integer) ;

])
. . .]

Listing 7: A fragment of generated typechecker

6 Conclusion

In this paper we discussed some issues which arise in the area of partial deduction techniques for re-
lational programming language MINIKANREN. We presented a novel approach to partial deduction —
conservative partial deduction — which uses a heuristic to select a suitable relation call to unfold at each
step of driving. We compared this approach with the most sophisticated implementation of conjunctive
partial deduction — ECCE partial deduction system — on 6 relations which solve 2 different problems.

Our specializer improved the execution time of all queries. ECCE worsened the performance of all
4 implementations of the propositional evaluator relation, while improving the other queries. Conser-
vative partial deduction is more stable with regards to the order of relation calls than ECCE which is
demonstrated by the similar performance of all 4 implementations of the evaluator of logic formulas.

Some queries to the same relation were improved more by ConsPD, while others — by ECCE. We
conclude that there is still no one good technique which definitively speeds up every relational program.
More research is needed to develop models capable of predicting the performance of a relation which can
be used in specialization. Another direction for future research is exploring how specialization influences
the execution order of a MINIKANREN program.

References

[1] Maximilian C. Bolingbroke & Simon L. Peyton Jones (2010): Supercompilation by evaluation. In Jeremy
Gibbons, editor: Proceedings of the 3rd ACM SIGPLAN Symposium on Haskell, Haskell 2010, Baltimore,
MD, USA, 30 September 2010, ACM, pp. 135–146, doi:10.1145/1863523.1863540. Available at https:
//doi.org/10.1145/1863523.1863540.

[2] Mikhail A. Bulyonkov (1984): Polyvariant Mixed Computation for Analyzer Programs. Acta Inf. 21, pp.
473–484, doi:10.1007/BF00271642. Available at https://doi.org/10.1007/BF00271642.

[3] William E Byrd, Eric Holk & Daniel P Friedman (2012): miniKanren, live and untagged: Quine generation
via relational interpreters (programming pearl). In: Proceedings of the 2012 Annual Workshop on Scheme
and Functional Programming, pp. 8–29.

http://dx.doi.org/10.1145/1863523.1863540
https://doi.org/10.1145/1863523.1863540
https://doi.org/10.1145/1863523.1863540
http://dx.doi.org/10.1007/BF00271642
https://doi.org/10.1007/BF00271642

E. Verbitskaia, D. Berezun & D. Boulytchev 15

[4] Danny De Schreye, Robert Glück, Jesper Jørgensen, Michael Leuschel, Bern Martens & Morten Heine
Sørensen (1999): Conjunctive partial deduction: Foundations, control, algorithms, and experiments. The
Journal of Logic Programming 41(2-3), pp. 231–277.

[5] Daniel P. Friedman, William E. Byrd & Oleg Kiselyov (2005): The Reasoned Schemer. The MIT Press.
[6] Jason Hemann Daniel P Friedman: µKanren: A Minimal Functional Core for Relational Programming.
[7] Robert Glück & Morten Heine Sørensen (1994): Partial deduction and driving are equivalent. In: In-

ternational Symposium on Programming Language Implementation and Logic Programming, Springer, pp.
165–181.

[8] Geoff W Hamilton (2007): Distillation: extracting the essence of programs. In: Proceedings of the 2007
ACM SIGPLAN symposium on Partial evaluation and semantics-based program manipulation, pp. 61–70.

[9] G. Higman (1952): Ordering by divisibility in abstract algebras. In: Proceedings of the London Mathematical
Society, 2, pp. 326–336.

[10] Neil D. Jones, Carsten K. Gomard & Peter Sestoft (1993): Partial evaluation and automatic program gener-
ation. Prentice Hall international series in computer science, Prentice Hall.

[11] Peter A. Jonsson & Johan Nordlander (2011): Taming code explosion in supercompilation. In Siau-Cheng
Khoo & Jeremy G. Siek, editors: Proceedings of the 2011 ACM SIGPLAN Workshop on Partial Evalua-
tion and Program Manipulation, PEPM 2011, Austin, TX, USA, January 24-25, 2011, ACM, pp. 33–42,
doi:10.1145/1929501.1929507. Available at https://doi.org/10.1145/1929501.1929507.

[12] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman & Amr Sabry (2005): Backtracking, Interleav-
ing, and Terminating Monad Transformers: (Functional Pearl). SIGPLAN Not. 40(9), p. 192203,
doi:10.1145/1090189.1086390. Available at https://doi.org/10.1145/1090189.1086390.

[13] J. B. Kruskal (1960): Well-quasi ordering, the tree theorem, and Vazsonyi’s conjecture. 95, pp. 210–225.
[14] Michael Leuschel (1997): Advanced techniques for logic program specialisation.
[15] Michael Leuschel (1997): The ecce partial deduction system. In: Proceedings of the ILPS, 97, Citeseer.
[16] Michael Leuschel & Maurice Bruynooghe (2002): Logic program specialisation through partial deduction:

Control issues. Theory and Practice of Logic Programming 2(4-5), pp. 461–515.
[17] John W. Lloyd & John C Shepherdson (1991): Partial evaluation in logic programming. The Journal of

Logic Programming 11(3-4), pp. 217–242.
[18] Petr Lozov, Ekaterina Verbitskaia & Dmitry Boulytchev (2019): Relational Interpreters for Search Problems.

In: miniKanren and Relational Programming Workshop, p. 43.
[19] Petr Lozov, Andrei Vyatkin & Dmitry Boulytchev (2017): Typed relational conversion. In: International

Symposium on Trends in Functional Programming, Springer, pp. 39–58.
[20] Neil Mitchell & Colin Runciman (2007): A Supercompiler for Core Haskell. In Olaf Chitil, Zoltán

Horváth & Viktória Zsók, editors: Implementation and Application of Functional Languages, 19th Inter-
national Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers, Lecture
Notes in Computer Science 5083, Springer, pp. 147–164, doi:10.1007/978-3-540-85373-2 9. Available at
https://doi.org/10.1007/978-3-540-85373-2_9.

[21] Dmitry Rozplokhas, Andrey Vyatkin & Dmitry Boulytchev (2020): Certified Semantics for Relational Pro-
gramming. In: Asian Symposium on Programming Languages and Systems, Springer, pp. 167–185.

[22] Morten Heine Soerensen, Robert Glück & Neil D. Jones (1996): A positive supercompiler. Journal of func-
tional programming 6(6), pp. 811–838.

[23] Germán Vidal (2008): Predicting the effectiveness of partial evaluation. Technical Report, Citeseer.
[24] Philip Wadler (1990): Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput. Sci.

73(2), pp. 231–248, doi:10.1016/0304-3975(90)90147-A. Available at https://doi.org/10.1016/

0304-3975(90)90147-A.

http://dx.doi.org/10.1145/1929501.1929507
https://doi.org/10.1145/1929501.1929507
http://dx.doi.org/10.1145/1090189.1086390
https://doi.org/10.1145/1090189.1086390
http://dx.doi.org/10.1007/978-3-540-85373-2_9
https://doi.org/10.1007/978-3-540-85373-2_9
http://dx.doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1016/0304-3975(90)90147-A

	Introduction
	Background
	miniKanren
	Relational Interpreters

	Related Work
	Conservative Partial Deduction
	Unfolding
	Less Branching Heuristic

	Evaluation
	Evaluator of Logic Formulas
	The Order of Relation Calls
	Unfolding of Complex Relations
	Evaluation Results
	The Order of Answers

	Typechecker-Term Generator

	Conclusion

