
Moa Johansson, Chalmers University of Technology

Conjecturing, Testing and
Reasoning about Programs
Workshop on Verification and Program Transformation
27 March 2021

 Theory Exploration

• Discover interesting properties
about programs.

• Build type-correct terms.
(start small, only non-redundant!)

• Test & evaluate on ground values.

• Assemble equations.
(send to prover if you want)

• Use as lemmas, rewrite rules,
equational specification…

Introduction:

Demo: Prove my homework
Or how to automate a CS undergraduate

Demo: Prove my homework
First attempt: call Sledgehammer

Example: Prove my homework
Or how to automate a CS undergraduate

Demo: Prove my homework
Six lemmas found and proved

lemma_a: sorted (ins x y) ⟹ sorted y

lemma_aa: sorted y ⟹ sorted (ins x y)

lemma_ab: ins y (ins x z) = ins x (ins y z)

lemma_ac: sorted (isort x)
(* Needs lemma_aa *)

lemma_ad: "isort (ins x y) = ins x (isort y)"

(* Needs lemma_ab *)

lemma_ae: "isort (isort x) = isort x”

(* Needs lemma_ad *)

Key lemma

Our homework
assignment

Architecture
QuickSpec

Hipster
(Isabelle/HOL) Other provers…

TIP + tools

datatypes,
functions,
constants

datatypes,
functions,
constants

conjectures

QuickCheck
(testing)

conjectures

Haskell program

Candidate specification

Theorem Discovery in Hipster

Easy ReasoningHard Reasoning
(here induction)

Isabelle Theory:
Datatypes, Functions,

Theorems

Conjectures

QuickSpec

Trivial
Fail

Proved

(Haskell)
QuickCheck

Middle layer

• Intermediate language based on
SMT-LIB

• Datatypes, recursive functions,
pattern matching

• Translation tools to various
formats, e.g. standard SMT-LIB.

• Libraries for writing pretty-
printers and parsers

TIP
QuickSpec

Hipster
(Isabelle/HOL)

TIP + tools

datatypes,
functions,
constants

datatypes,
functions,
constants

conjectures

conjectures

QuickSpec

Hipster
(Isabelle/HOL) …

TIP + tools

datatypes,
functions,
constants

datatypes,
functions,
constants

conjectures

QuickCheck
(testing)

conjectures

Haskell program

Candidate
specification

How QuickSpec works
(General idea at least)

1. Term generation (small —> large)
2. Testing and evaluation (create equivalence classes)
3. Extract equations. Prune redundant using rewriting.

xs
reverse (reverse xs)

sort xs
sort (reverse xs)

sort (xs++ys)

xs —> [2, 1]
ys —> []

How QuickSpec works
(General idea at least)

1. Term generation (small —> large)
2. Testing and evaluation (create equivalence classes)
3. Extract equations. Prune redundant using rewriting.

xs
reverse (reverse xs)

sort xs
sort (reverse xs)

sort (xs++ys)

[2, 1]
reverse (reverse [2, 1])
sort [2, 1]
sort (reverse [2, 1])
sort ([2, 1] ++ [])

xs —> [2, 1]
ys —> []

How QuickSpec works
(General idea at least)

1. Term generation (small —> large)
2. Testing and evaluation (create equivalence classes)
3. Extract equations. Prune redundant using rewriting.

xs
reverse (reverse xs)

sort xs
sort (reverse xs)

sort (xs++ys)

[2, 1]
reverse (reverse [2, 1])
sort [2, 1]
sort (reverse [2, 1])
sort ([2, 1] ++ [])

[2, 1]
[2, 1]
[1, 2]
[1, 2]
[1, 2]

xs —> [2, 1]
ys —> []

How QuickSpec works
(General idea at least)

1. Term generation (small —> large)
2. Testing and evaluation (create equivalence classes)
3. Extract equations. Prune redundant using rewriting.

xs
reverse (reverse xs)

sort xs
sort (reverse xs)

sort (xs++ys)

xs —> [2, 1, 3]
ys —> [3]

How QuickSpec works
(General idea at least)

1. Term generation (small —> large)
2. Testing and evaluation (create equivalence classes)
3. Extract equations. Prune redundant using rewriting.

xs
reverse (reverse xs)

sort xs
sort (reverse xs)

sort (xs++ys)

[2, 1, 3]
reverse (reverse [2, 1, 3])
sort [2, 1, 3]
sort (reverse [2, 1, 3])
sort ([2, 1, 3] ++ [3])

xs —> [2, 1, 3]
ys —> [3]

How QuickSpec works
(General idea at least)

1. Term generation (small —> large)
2. Testing and evaluation (create equivalence classes)
3. Extract equations. Prune redundant using rewriting.

xs
reverse (reverse xs)

sort xs
sort (reverse xs)

sort (xs++ys)

[2, 1, 3]
reverse (reverse [2, 1, 3])
sort [2, 1, 3]
sort (reverse [2, 1, 3])
sort ([2, 1, 3] ++ [3])

[2, 1, 3]
[2, 1, 3]
[1, 2, 3]
[1, 2, 3]

[1, 2, 3, 3]

xs —> [2, 1, 3]
ys —> [3]

How QuickSpec works
(General idea at least)

1. Term generation (small —> large)
2. Testing and evaluation (create equivalence classes)
3. Extract equations. Prune redundant using rewriting.

reverse (reverse xs) = xs
sort (reverse xs) = sort xs

reverse (reverse []) = []
reverse (reverse [xs++ys]) = [xs++ys]
sort (reverse (sort xs)) = sort (sort xs)

…

A stress test

• 30+ functions, large chunk of
Haskell’s list library.

• Would hit exponential growth of
search space…

• But:
• Few equations contain near 30

symbols.

• Interesting properties share

similar structure.

Scalability?

Scaling exploration

• Limitations: theories with 30+
functions, large terms.

• Use templates to skip directly to
interesting parts of search space.

• Search only small terms + instances
of templates.

• Next: Template mining, applications.

Template-based Theory Exploration: Discovering
Properties of Functional Programs by Testing.
Sólrún Halla Einarsdóttir, Nicholas Smallbone and
Moa Johansson, Proceedings of IFL, to appear 2021.

Current work

To conclude…

• Ongoing work — get in touch if you want to try it out!

• Hipster/QuickSpec are available for download.

Read more:

• Quick Specifications for the Busy Programmer. Nicholas Smallbone, Moa
Johansson, Koen Claesson and Maximilian Algehed. Journal of Functional
Programming, 2017.

• Automated Theory Exploration for Interactive Theorem Proving. Moa Johansson.
Conference on Interactive Theorem Proving (ITP), p. 1-11, 2017.

