Conjecturing, Testing and
Reasoning about Programs

Workshop on Verification and Program Transformation
27 March 2021

Moa Johansson, Chalmers University of Technology

Introduction:
Theory Exploration

* Discover interesting properties
about programs.

* Build type-correct terms.
(start small, only non-redundant!)

* Test & evaluate on ground values.

« Assemble equations.
(send to prover if you want)

e Use as lemmas, rewrite rules,
equational specification...

fun sorted :: "nat list = bool"
where "sorted [] = True”
| "sorted [x] = True”
| "sorted (x1#x2#xs) = ((x1 < x2) A sorted (x2#xs))"

fun 1ins :: "nat = nat list = nat list"
where "ins x [] = [x]"
I uins X (y#YS) = (if (XjS Y) then (X#y#ys) else y#(ins X ys))u

fun 1isort :: "nat list = nat list"
where "isort [] = []"
I "isort (X#XS) = 1NsS X (isort XS)"

theorem my homework: "sorted (isort x)"

theorem my_homework: "sorted (isort x)"
sledgehammer}j

Sledgehammering. ..
"cvcd": Timed out
"vamplre": Timed out

™ Sorted.thy (~/Desktop/)

5> |fun sorted :: "nat list = bool"

where "sorted [] = True"

| "sorted [x] = True"

L | "sorted (x1#x2#xs) = ((x1 < x2) A sorted (x2#xs))"

5> |fun 1ns :: "nat = nat list = nat list"
where "ins x [] = [x]"

> |theorem my homework: "sorted (isort x)"
i s1Sdgehammer

. @|end

Proof state v Auto update Update

Sledgehammering. ..
"cvcd4": Timed out
"vampire": Timed out

I | "ins x (y#ys) = (if (x < y) then (x#y#ys) else y#(ins x ys))"
5> |fun 1sort :: "nat list = nat list"

where "isort [] = []"
L | "1sort (x#xs) = 1ns x (isort xs)"

Search:

<

4

SLI03YL RIS NIDPPIS

lemma_a: sorted (ins X y) = sorted y

lemma_aa: sorted y — sorted (ins x y)

lemma_ab: insy (ins X z) =ins X (ins y 2)

lemma_ac: sorted (isort x)
(* Needs lemma_aa *)
| : . . Our homework
lemma_ad: "isort (ins X y) = ins X (isort y)" assignment
(* Needs lemma_ab *)

lemma_ae: "isort (isort x) = isort x”
(* Needs lemma_ad *)

Architecture

QuickCheck
(testing)

... TIP+too|s cecscccscescese

<

QuickSpec

datatypes,
functions,
constants

conjectures

datatypes,
functions,
constants

conjectures

Hipster
(Isabelle/HOL)

Theorem Discovery in Hipster

(Haskell)
QuickCheck

Isabelle Theory:

! Datatypes, Functions,
: / Theorems
(Proved)

Hard Reasoning
(here induction)

> Conjectures

TIP

Middle layer

* |ntermediate language based on
SMT-LIB

» Datatypes, recursive functions,
pattern matching

e Translation tools to various
formats, e.g. standard SMT-LIB.

» Libraries for writing pretty-
printers and parsers

QuickSpec

conjectures datatypes,

functions,
constants

TIP + tools

Qukaheok
(testmg)

conjectures datatypes,
functions,
constants

How QuickSpec works

(General idea at least)

XS
reverse (reverse Xxs)
sort xs
sort (reverse xs)
sort (xs++ys)

How QuickSpec works

(General idea at least)

XS
reverse (reverse Xxs) reverse (reverse
sort xs sort
sort (reverse xs) sort (reverse

sort (xs++ys) sort (++ 1)

How QuickSpec works

(General idea at least)

XS [25 1]

reverse (reverse xs) reverse (reverse) PRl S
C s e SmesRt e e e [1, 2
sort (reverse xs) sort (reverse [1, 2]

sort (xs++ys) sort (++ 1) [1, 2]

How QuickSpec works

(General idea at least)

XS
Gvainevergexa) . e s
Sl e e e
sort (reverse xs)

sort (xs++ys)

How QuickSpec works

(General idea at least)

XS
reverse (reverse xs) reverse (reverse e . -
sort xs sort
sort (reverse xs) sort (reverse

sort (xs++ys) sort (- [31

How QuickSpec works

(General idea at least)

XS 2, 1.3]

reverse (reverse xs) reverse (reverse) s L9 - .
C s e e e [1,2 S
sort (reverse xs) sort (reverse [1, 2 3]

sort (xs++ys) sort (- [31 11,2 3, 3]

How QuickSpec works

(General idea at least)

~ examples — -zsh — 107x45

jomoa@C2@EPLE examples % ./Lists

ain = quickSpec [

con "length" (length :: [A] -> Int),

con "sort" (sort :: [Int] -> [Int]),

con "scanr” (scanr :: (A -> B -> B) -> B -> [A] -> [B]),
con "succ" (succ :: Int -> Int),

con ">>=" ((G>=) :: [A] -> (A -> [B]) -> [B]),

con "snd” (snd :: (A, B) -> B),

con "reverse" (reverse :: [A] -> [A]),

con "0" (@ :: Int),

con "," ((,) :: A ->B -> (A, B)),

con ">=>" ((>=>) :: (A -> [B]) -> (B -> [C]) -> A -> [C]),
con ":" ((:) :: A -> [A] -> [AD]D),

con "break" (break :: (A -> Bool) -> [A] -> ([A], [A]D),
con "filter" (filter :: (A -> Bool) -> [A] -> [A]),

con "scanl" (scanl :: (B -> A -> B) -> B -> [A] -> [B]),
con "zipWith" (zipWith :: (A -> B ->) -> [A] -> [B] -> [C]),
con "concat"” (concat :: [[A]]l -> [A]),

con "zip" (zip :: [A] -> [B] -> [CA, B)]),

con "usort” (Cusort :: [Int] -> [Int]),

con "sum” (sum :: [Int] -> Int),

con "++" ((++) :: [A] -> [A] -> [AD),

con "map" (map :: (A -> B) -> [A] -> [B]),

con "foldl" (foldl :: (B -> A -> B) -> B -> [A] -> B),
con "takeWhile" (takeWhile :: (A -> Bool) -> [A] -> [A]),
con "foldr" (foldr :: (A -> B -> B) -> B -> [A] -> B),
con "drop"” (drop :: Int -> [A] -> [A]),

con "dropWhile" (dropWhile :: (A -> Bool) -> [A] -> [A]),
con "span" (span :: (A -> Bool) -> [A] -> ([A], [AD]D),
con "unzip" Cunzip :: [CA, B)] -> ([A], [B1D),

con "+" ((+) :: Int -> Int -> Int),

con "[]" C[J :: [AD),

con "partition” (partition :: (A -> Bool) -> [A] -> ([A], [A])),
con "fst" (fst :: (A, B) -> A),

con "take" (take :: Int -> [A] -> [A])

]

Current work N s S
Scaling exploration

e Limitations: theories with 30+
functions, large terms.

* Use templates to skip directly to
interesting parts of search space.

* Search only small terms + instances
of templates.

 Next: Template mining, applications.

Template-based Theory Exploration: Discovering
Properties of Functional Programs by Testing.
Solrun Halla Einarsdoéttir, Nicholas Smallbone and
Moa Johansson, Proceedings of IFL, to appear 2021.

To conclude...

 Ongoing work — get in touch if you want to try it out!

e Hipster/QuickSpec are available for download.

Read more:

 Quick Specifications for the Busy Programmer. Nicholas Smallbone, Moa
Johansson, Koen Claesson and Maximilian Algehed. Journal of Functional
Programming, 2017.

 Automated Theory Exploration for Interactive Theorem Proving. Moa Johansson.
Conference on Interactive Theorem Proving (ITP), p. 1-11, 2017.

