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Example: Array Partition
a := 0; b := 0; c := 0;
while (a ≤ k ) do

if A[a] ≥ 0
then B[b] := A[a];b := b + 1;
else C[c] := A[a];c := c + 1;

a := a + 1;
end do

A : -1 -3 -1 -5 -8 -0 -2
a = 0

B : - * - * - * - * - * - * - *
b = 0

C : - * - * - * - * - * - * - *
c = 0
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Invariants with ∀ ∃
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Trace Logic for Loop Reasoning a := 0; b := 0; c := 0;
while (a ≤ k ) do

if A[a] ≥ 0
then B[b] := A[a];b := b + 1;
else C[c] := A[a];c := c + 1;

a := a + 1;
end do

1. Extend the language – Trace Logic:
I variables as functions of n:

v (i), i :: F with 0 ≤ i < n
I predicates as loop properties:

iter , updV (i , p), updV (i , p, x)

(∀i)(i ∈ iter ⇔ 0 ≤ i ∧ i < n)

updB(i , p)⇔ i ∈ iter ∧ p = b(i) ∧ A[a(i)] ≥ 0

updB(i , p, x)⇔ updB(i , p) ∧ x = A[a(i)]

a = b + c, a ≥ 0, b ≥ 0, c ≥ 0

(∀i ∈ iter)(a(i+1) > a(i))

(∀i ∈ iter)(b(i+1) = b(i) ∨ b(i+1) = b(i) + 1)

(∀i ∈ iter)(a(i) = a(0) + i)

(∀p)(b(0) ≤ p < b(n)⇒(∃i ∈ iter)(b(i) = p∧
A[a(i)] ≥ 0))

(∀i)¬updB(i , p)⇒ B(n)[p] = B(0)[p]

updB(i , p, x)∧(∀j > i)¬updB(j , p)⇒B(n)[p]=x

(∀i ∈ iter)(A[a(i)] ≥ 0⇒B(i+1)[b(i)] = A[a(i)]∧
b(i+1) = b(i) + 1∧
c(i+1) = c(i) )
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Loop Properties from Saturation Proofs

(∀i)(i ∈ iter ⇔ 0 ≤ i ∧ i < n)

updB(i , p)⇔ i ∈ iter ∧ p = b(i) ∧ A[a(i)] ≥ 0

updB(i , p, x)⇔ updB(i , p) ∧ x = A[a(i)]
a = b + c, a ≥ 0, b ≥ 0, c ≥ 0

(∀i ∈ iter)(a(i+1) > a(i))

(∀i ∈ iter)(b(i+1) = b(i) ∨ b(i+1) = b(i) + 1)

(∀i ∈ iter)(a(i) = a(0) + i)

(∀j , k ∈ iter)(k ≥ j ⇒ b(k) ≥ b(j))

(∀j , k ∈ iter)(k ≥ j ⇒ b(j) + k ≥ b(k) + j)

(∀p)(b(0) ≤ p < b(n)⇒(∃i ∈ iter)(b(i) = p∧
A[a(i)] ≥ 0))

(∀i)¬updB(i , p)⇒ B(n)[p] = B(0)[p]

updB(i , p, x) ∧ (∀j > i)¬updB(j , p)⇒B(n)[p]=x

(∀i ∈ iter)(A[a(i)] ≥ 0⇒B(i+1)[b(i)] = A[a(i)]∧
b(i+1) = b(i) + 1∧
c(i+1) = c(i) )

Saturation

Theorem Proving
I1, I2, I3, I4, I5, . . .
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Verifying Relational Properties using Trace Logic
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Abstract—We present a logical framework for the verification

of relational properties in imperative programs. Our frame-

work reduces verification of relational properties of imperative

programs to a validity problem in trace logic, an expressive

instance of first-order predicate logic. Trace logic draws its

expressiveness from its syntax, which allows expressing properties

over computation traces. Its axiomatization supports fine-grained

reasoning about intermediate steps in program execution, notably

loop iterations. We present an algorithm to encode the semantics

of programs as well as their relational properties in trace logic,

and then show how first-order theorem proving can be used

to reason about the resulting trace logic formulas. Our work

is implemented in the tool RAPID and evaluated with examples

coming from the security field.

I. INTRODUCTION

Program verification generally focuses on proving that all
executions of a program lie within a specified set of execu-
tions, that is, properties are seen as sets of traces. However, this
approach is not general enough to capture various fundamental
properties, such as non-interference [1] and robustness [2].
These notions are naturally modelled as relational properties,
that is as properties over sets of pairs of traces. Relational
properties are special instances of hyperproperties [3], which
are formally defined as sets of sets of traces.

Verification of relational properties can be achieved in
different ways. One approach is by reduction to program veri-
fication: given a program P and a hyperproperty �, construct a
program Q and a property  , such that: (i) Q verifies  and (ii)
Q verifies  implies P verifies �. The main advantage of this
approach is that (i) can be verified using standard verification
tools, whereas (ii) is proved generically for the method used
for constructing Q, for instance self-composition [4], [5]
and product programs [6], [7]. Another approach to verify
relational properties is to use relational Hoare logic [8] or
specialized logics that target specific properties [9]. While both
approaches have been applied successfully in several use cases,
they suffer from fundamental limitations: (i) they are typically
not efficient enough to scale to large programs and (ii) they
are only partly automated and tailored to specific properties.
Contributions.In this paper, we develop a new approach
based on reduction to first-order reasoning, with the intent
of reconciling expressiveness and automation.
(1) We introduce and formally characterize trace logic L, an
instance of many-sorted first-order logic with equality, which
allows expressing properties over program locations, loop
iterations, and computation traces (Section IV).

1 func main()
2 {
3 const Int[] a;
4 const Int alength;
5
6 Int i = 0;
7 Int hw = 0;
8
9 while (i < alength)

10 {
11 hw = hw + a[i];
12 i = i + 1;
13 }
14 }

Fig. 1: Motivating example.

(2) We encode the semantics of programs as well as relational
program properties in L (Section IV). Specifically, given
a program P and a relational property F , we construct a
first-order formula ⇠ in L such that validity of ⇠ entails
that P satisfies F . Note that this semantic characterization
stands in contrast with methods based on product programs,
Hoare logics, and relational Hoare logics, where verification
is syntax-directed.

(3) We show that relational properties, such as non-
interference, can naturally be encoded in trace logic
(Section V).

(4) We implemented our approach in the RAPID tool, which
relies on the first-order theorem prover Vampire [10]. We
conducted experiments on security-relevant hyperproperties,
such as non-interference and sensitivity. Our results show
that RAPID is more expressive than state-of-the-art non-
interference verification tools and that Vampire is better suited
to the verification of security-relevant hyperproperties than
state-of-the-art SMT-solvers like Z3 and CVC4.

II. MOTIVATING EXAMPLE

We motivate our work with the simple program of Figure 1.
This program iterates over an integer-valued array a and stores
in the variable hw the sum of array elements. If a is a bitstring,
then this program leaks the so-called Hamming weight of a in
the variable hw. Our aim is to prove the following relational
property over two arbitrary computation traces t1 and t2 of
Figure 1: if the elements of the array variable a in t1 are
component-wise equal to the elements of a in t2 except for

further extensions in Trace Logic: variable(trace, loop iteration)
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executions of a program lie within a specified set of execu-
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approach is not general enough to capture various fundamental
properties, such as non-interference [1] and robustness [2].
These notions are naturally modelled as relational properties,
that is as properties over sets of pairs of traces. Relational
properties are special instances of hyperproperties [3], which
are formally defined as sets of sets of traces.

Verification of relational properties can be achieved in
different ways. One approach is by reduction to program veri-
fication: given a program P and a hyperproperty �, construct a
program Q and a property  , such that: (i) Q verifies  and (ii)
Q verifies  implies P verifies �. The main advantage of this
approach is that (i) can be verified using standard verification
tools, whereas (ii) is proved generically for the method used
for constructing Q, for instance self-composition [4], [5]
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approaches have been applied successfully in several use cases,
they suffer from fundamental limitations: (i) they are typically
not efficient enough to scale to large programs and (ii) they
are only partly automated and tailored to specific properties.
Contributions.In this paper, we develop a new approach
based on reduction to first-order reasoning, with the intent
of reconciling expressiveness and automation.
(1) We introduce and formally characterize trace logic L, an
instance of many-sorted first-order logic with equality, which
allows expressing properties over program locations, loop
iterations, and computation traces (Section IV).
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(2) We encode the semantics of programs as well as relational
program properties in L (Section IV). Specifically, given
a program P and a relational property F , we construct a
first-order formula ⇠ in L such that validity of ⇠ entails
that P satisfies F . Note that this semantic characterization
stands in contrast with methods based on product programs,
Hoare logics, and relational Hoare logics, where verification
is syntax-directed.

(3) We show that relational properties, such as non-
interference, can naturally be encoded in trace logic
(Section V).

(4) We implemented our approach in the RAPID tool, which
relies on the first-order theorem prover Vampire [10]. We
conducted experiments on security-relevant hyperproperties,
such as non-interference and sensitivity. Our results show
that RAPID is more expressive than state-of-the-art non-
interference verification tools and that Vampire is better suited
to the verification of security-relevant hyperproperties than
state-of-the-art SMT-solvers like Z3 and CVC4.
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We motivate our work with the simple program of Figure 1.
This program iterates over an integer-valued array a and stores
in the variable hw the sum of array elements. If a is a bitstring,
then this program leaks the so-called Hamming weight of a in
the variable hw. Our aim is to prove the following relational
property over two arbitrary computation traces t1 and t2 of
Figure 1: if the elements of the array variable a in t1 are
component-wise equal to the elements of a in t2 except for

Trace Logic for Automating Loop Reasoning

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i]; 

i=i+1; 

end do

Input array a v w

w v

hw =             hw

We proved 11 unique 
problems from security and 

privacy.

Vampire



Chalmers

Chalmers

Laura Kovács

Trace Logic for Automating Loop Reasoning

Summary                                                               

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures 

• Induction



Chalmers

Chalmers

Laura Kovács

• Software semantics in (extensions) of first-order logic
in extensions of trace logic with algebraic and probabilistic features

• First-order theories of data structures 
reasoning with quantifiers  +  int/real, naturals/term algebras, arrays, …

• Induction
not a first-order property
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I. INTRODUCTION

Program verification generally focuses on proving that all
executions of a program lie within a specified set of execu-
tions, that is, properties are seen as sets of traces. However, this
approach is not general enough to capture various fundamental
properties, such as non-interference [1] and robustness [2].
These notions are naturally modelled as relational properties,
that is as properties over sets of pairs of traces. Relational
properties are special instances of hyperproperties [3], which
are formally defined as sets of sets of traces.

Verification of relational properties can be achieved in
different ways. One approach is by reduction to program veri-
fication: given a program P and a hyperproperty �, construct a
program Q and a property  , such that: (i) Q verifies  and (ii)
Q verifies  implies P verifies �. The main advantage of this
approach is that (i) can be verified using standard verification
tools, whereas (ii) is proved generically for the method used
for constructing Q, for instance self-composition [4], [5]
and product programs [6], [7]. Another approach to verify
relational properties is to use relational Hoare logic [8] or
specialized logics that target specific properties [9]. While both
approaches have been applied successfully in several use cases,
they suffer from fundamental limitations: (i) they are typically
not efficient enough to scale to large programs and (ii) they
are only partly automated and tailored to specific properties.
Contributions.In this paper, we develop a new approach
based on reduction to first-order reasoning, with the intent
of reconciling expressiveness and automation.
(1) We introduce and formally characterize trace logic L, an
instance of many-sorted first-order logic with equality, which
allows expressing properties over program locations, loop
iterations, and computation traces (Section IV).
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5
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8
9 while (i < alength)

10 {
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Fig. 1: Motivating example.

(2) We encode the semantics of programs as well as relational
program properties in L (Section IV). Specifically, given
a program P and a relational property F , we construct a
first-order formula ⇠ in L such that validity of ⇠ entails
that P satisfies F . Note that this semantic characterization
stands in contrast with methods based on product programs,
Hoare logics, and relational Hoare logics, where verification
is syntax-directed.

(3) We show that relational properties, such as non-
interference, can naturally be encoded in trace logic
(Section V).

(4) We implemented our approach in the RAPID tool, which
relies on the first-order theorem prover Vampire [10]. We
conducted experiments on security-relevant hyperproperties,
such as non-interference and sensitivity. Our results show
that RAPID is more expressive than state-of-the-art non-
interference verification tools and that Vampire is better suited
to the verification of security-relevant hyperproperties than
state-of-the-art SMT-solvers like Z3 and CVC4.

II. MOTIVATING EXAMPLE

We motivate our work with the simple program of Figure 1.
This program iterates over an integer-valued array a and stores
in the variable hw the sum of array elements. If a is a bitstring,
then this program leaks the so-called Hamming weight of a in
the variable hw. Our aim is to prove the following relational
property over two arbitrary computation traces t1 and t2 of
Figure 1: if the elements of the array variable a in t1 are
component-wise equal to the elements of a in t2 except for
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end do

- Array a: bit-wise representation of a secret key
- Hamming weight hw:  number of 1s in the key 

- Leaking hw ?
(e.g. measure of side-channel leakage)
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end do

- Array a: bit-wise representation of a secret key
- Hamming weight hw:  number of 1s in the key 

- Leaking hw ?

- No matter what permutation of a, 
the hw is the same
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