
Verified Abstract Interpretation of Digital
Contracts

Fritz Henglein1,2, Christian Kjær Larsen1, Agata Murawska1,2

University of Copenhagen1and Deon Digital2

VPT 2021, 2021-03-28



Overview

Domain-specific languages

Contracts

Verification

Discussion

For more information, see Proc. Workshop on Trustworthy Smart
Contracts, 2020.

2



Domain-specific languages (DSLs)

DSL: Language for expressing specifications of data, processes and
properties within a limited domain of discourse

I “Little languages” (Jon Bentley, CACM programming pearls, 1986)

Domain adequacy: Reflects domain ontology (concepts, objects,
processes and their composition)

I . . . and nothing else.
I Facilitates use by domain experts (often 6= programmers)

Duality: Process+data
I Interpreted/used in multiple ways, not fixed at language design time.
I Facilitates analyzability (security, safety, synthesis, optimization,

simulation, abstract interpretation . . . )

Examples: text processing (regular expressions, Sed, awk, . . . ), query
processing (SQL), graph drawing (DOT, Neato, . . . ), hardware design
(VHDL, Verilog), business processes (BPEL, BPMN), financial and
commercial contracts (MLFi, CSL, DAML, . . . ), . . .

3



GPLs versus DSLs: Design duality

Does the syntax look familiar to a
programmer?

Is the syntax readable by a domain
expert?

Does the language have con-
structs and libraries for express-
ing efficient algorithms and data
structures?

Does the language have no
domain-irrelevant constructs?

Is the language expressive
enough?

Is the language too expressive?

Is the language design stable? Is the language evolvable?

4



GPLs versus DSLs

If programming is finding a needle (useful program) in a haystack (of
useless, incorrect, bad or outright dangerous programs), then:

GPL approach: Come up with a (necessarily big) single haystack that
contains all needles for all domains (higher needle cardinality).

DSL approach: Come up with small haystacks, each containing many
needles for a particular domain (higher needle density).

Expressiveness versus analyzability:

Programmer: I code algorithmic processes, let other people worry
about analyzing them. Give me more expressiveness!

Goethe: “In der Begrenzung zeigt sich der Meister.”

No analysis → little benefit of DSLs.
I Use frameworks/libraries.

5



Contract

Agreement between two or more parties

Specification of (future) obligations, permissions and prohibitions

Properties:
I Identifiable parties: Required by law (AML, KYC) and for recourse

(court action)
I Consideration: Not one-sided exchange of resources (money, goods,

assets, services)
I Confidentiality: By default not disclosed to other parties (unless

required by regulation)

Examples: Sales, services, lease, financial (loan, bond, derivative),
insurance, shareholder, mobility, transportation etc.

6



Contracts: Semantic model

Basic observation about a contract: Given a trace of events (actions
and observations), is it an acceptable, complete execution of the
given contract or not?

Extensional semantics: A contract denotes the set of acceptable,
complete executions.

I Any two specifications that denote the same set are equivalent.

Event e: A time-stamped, signed statement asserting that a real-world
event has happened, with attached verifiable evidence.
e ∈ E = {Transfer(Alice,Bob, 30 ·USD, 2019-06-20), . . .}.
(Evidence left out.)

Trace t: A sequence of events. t ∈ T = E ∗.

Contract c : (Description of) a trace language (set of traces).
c ∈ C = 2T .

7



Contracts

Example (Exchange contract)

phoneSale =

= (Transfer(Alice,Bob, 30 ·USD,T );Transfer(Bob,Alice, 1 · iPhone,T ′)) |
T ≤ Tuesday ∧ T ′ ≤ T + 1 · day

+ (Transfer(Bob,Alice, 1 · iPhone,T ′);Transfer(Alice,Bob, 30 ·USD,T )) |
T ′ ≤ Tuesday ∧ T ≤ T ′ + 8 · day

8



Residual contracts (language derivatives)

Definition

Let C ∈ 2E
∗
; ε denotes empty sequence.

C is terminated successfully if C = {ε}.
C is possibly terminated successfully if ε ∈ C .

C is satisfiable, if C 6= ∅.
e is valid for C if e\C is satisfiable.

Residual contract of C under e ∈ E is

e\C = {s | es ∈ C}.

e is acceptable for C if e\C is satisfiable.

Intuition: C expresses what remains to be done in a contract. e\C
expresses what remains to be done after e has happened.
In language theory residual is called (left) derivative.

9



Contract manager

Contract manager: Interpreter consistent with denotational
semantics.

I Not determined by it. Variations: logging, event validation, escrow
management, transaction management, incompleteness, . . .

I Component-oriented: identiy/authorization manager(s), resource
manager(s), information provider(s), time service, ledger system, . . .

10



Monitoring contract manager

Monitoring contract manager:
1 Receive contract C0 and launch new process.
2 C := C0;
3 Receive event e.

F Validate e. If e valid and e\C is satisfiable then C := e\C , return
“accepted” and inform contract parties; otherwise return “rejected”.

4 Receive query request.
F Return log of validated events (history); return C (future).

5 Receive terminate request.
F If C is possibly terminated successfully, return “success” and exit

process;
F otherwise, return “breach because of premature contract termination”

and exit process.

11



Transactional contract execution (static escrow)
Like monitoring execution, except resource transfers are delayed until
termination (static escrow).

1 Receive contract C0 and launch new process.
2 C := C0; t := 0.
3 Receive event e (not validated).

I If e\C is satisfiable then C := e\C and t := t + eff(e) and return
“accepted”; otherwise return “rejected”.

4 Receive query request.
I Return (C , t).

5 Receive terminate request.
I If C is possibly terminated successfully, then submit t to trusted

resource manager for validation and effecting.
F If validation/effecting succeeds, return “success” and exit process;
F otherwise, return “breach because of insufficient resources” (no

transfers are effected) and exit process.
I Otherwise, return “breach because of premature contract termination”

and exit process.
12



Contracts: Compositional specification
Idea: Put contracts together from subcontracts
What are the primitives and combinators?

I Primitives: resource transfers (who is required to give what to whom
by when?), success (nothing to do), fail, others (not included here)

I Subcontract combinators: one of them, all of them, one after the
other, repeatedly

Contract Specification Language (CSL):

Andersen, Elsborg, Henglein, Larsen, Simonsen, Compositional
Specification of Commercial Contracts (2006).

I Basis for Deon Digital CSL, financial instrument issuance, life-cycling
13



Contracts: Relational semantics

Idea: Specify inductively when a trace satisfies a CSL contract

14



Contract properties

Not all possible formal contracts are fair (“real”) contracts.
I Wrong participants, information providers, resource types (formulation

errors).
I Lack of consideration (fair exchange/fair value for all parties).

Idea: Check properties of general importance.

Given any contract:
I Who may be participating?
I Who may be obliged to do something? (Do we have their signature?)
I Are all executions fair? (Do they have consideration? Might one party

get unfair advantage?)

15



Static analysis by abstract interpretation
Idea:

I Analyze a contract by abstractly interpreting contracts in a suitable
abstract domain A = (L, . . .).

I Ensure that interpretation is sound wrt. semantics.
I Extract analysis result (superset of participants, upper bound on

unfairness, etc).

Define β : T → L for abstract interpretation of single trace.

Define abstract combinators +], . . . for concrete combinators +, . . .,
respectively, such that

β(s1) v A[[c1]] ⇒ β(s1) v A[[c1]] +] A[[c2]] = A[[c1 + c2]]

β(s2) v A[[c2]] ⇒ β(s2) v A[[c1]] +] A[[c2]] = A[[c1 + c2]]

and similarly for other combinators.
Challenge: Formalization and mechanization of abstract interpretation
of infinite unfolding of recursion.

I Employ Schmidt (1995): Coinductive interpretation of abstract
derivation trees. Prove and mechanize its soundness.

16



Soundness of abstract interpretation framework

Theorem

If certain properties for the abstract operators +], . . . in relation to β are
satisfied (see paper) then

∀s ∈ T , (δ `D s : c) ∧ δ ∼ m⇒ β(s) v A[[c]]m.

17



Mechanization

The following is mechanized in Coq:

Multiple semantics of CSL: denotational, relational, small-step
(online, monitoring); proofs of their equivalence

Static analysis framework based on abstract interpretation of
natural semantics

I Example analyses: participation, fairness (see paper)

Mechanization of semantics, equivalences, abstract interpretation
framework, its soundness, example analyses in Coq

Paper at http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_8.pdf

Coq source code at
ayertienna.github.io/csl_formalization_wtsc20.zip

18

http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_8.pdf
ayertienna.github.io/csl_formalization_wtsc20.zip


Discussion: Digital contracts versus smart contracts

Ethereum-style smart contract: contract, control and settlement
conflated as single-threaded program in GPL

Digital contract management:
“smart contract = contract + control + settlement”1

I Domain-specific/“small” language for contracts of their own
I Same contract, running on multiple platforms (Corda, Fabric,

Ethereum, etc)
I Multiple contracts, same contract manager (“generic” smart contract)
I Same contract, multiple contract managers:

F Same contract, multiple implementation techniques (centralized, TEEs,
zero-knowledge, etc.)

F Same contract, multiple instrumentations (with/without logging,
with/without escrow/collateral, etc)

I Prove properties about a contract without having to prove properties
about the implementation of its contract manager.

1Kowalski, Algorithm = Logic + Control, CACM 1979
19



Discussion: Digital contracts versus smart contracts

Digital contract versus smart contract analysis/verfication: DSL/little
language analysis versus GPL/big language analysis.

I analysis of digital contracts (CSL, MLFi, . . . ) excluding contract
manager (Haskell, Kotlin, OCaml, etc.; GPL/big language) vs.

I analysis of smart contract (Solidity/EVM, Kotlin, Go, etc.; GPL/big
language).

20



CSL semantics: Discussion
Three different inductive reasoning principles = three different static
analysis/abstract interpretation frameworks:

I Induction on proof of containment (∼= induction on the legal parses) of
event sequences (grammar view)

I Induction on abstract syntax of contracts (hierarchical view)
I Induction on length of traces (automata view)

F Basis for contract life-cycle management (run-time monitoring),
optimization and compilation

F Automatically makes any contract analysis based on denotational or
relational semantics applicable not only to original contracts, but to
residual (“running”) contracts in any state.

Semantics-driven language design: What do/should contracts denote?
In which domains? How are denotations combined? Can they be
freely (“orthogonally”) combined?

I Systematic derivation of automata-view (operational) semantics from
grammar-view/denotational semantics.

Reference semantics for correctness of contract managers, e.g. early
matching, routed matching, greedy matching, escrow management,
netting, etc.21



CSL semantics: Summary

CSL with denotational semantics: Compositional reasoning on syntax
of contracts (reasoning on sets of traces)

CSL with relational semantics: Inductive reasoning on containment
relation

CSL with monitoring semantics (computing residual contracts):
Inductive reasoning on length of trace

I Basis for contract life-cycle management (run-time monitoring),
optimization and compilation

I Automatically makes any contract analysis based on denotational or
relational semantics applicable not only to original contracts, but to
residual (“running”) contracts in any state.

22


