RSITY OF COPENHAGEN Department of Cormpute

Faculty of Science

Verified Abstract Interpretation of Digital
Contracts

Fritz Henglein®2, Christian Kjeer Larsen!, Agata Murawskal:?

University of Copenhagen'and Deon Digital?

VPT 2021, 2021-03-28

UNIVERSITY OF COPENHAGEN Department of Computer Science

Overview

@ Domain-specific languages
e Contracts

@ Verification

@ Discussion

For more information, see Proc. Workshop on Trustworthy Smart
Contracts, 2020.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Domain-specific languages (DSLs)

@ DSL: Language for expressing specifications of data, processes and
properties within a limited domain of discourse

» “Little languages” (Jon Bentley, CACM programming pearls, 1986)
e Domain adequacy: Reflects domain ontology (concepts, objects,
processes and their composition)
> ...and nothing else.
» Facilitates use by domain experts (often # programmers)
o Duality: Process+data
» Interpreted/used in multiple ways, not fixed at language design time.
» Facilitates analyzability (security, safety, synthesis, optimization,
simulation, abstract interpretation ...)

@ Examples: text processing (regular expressions, Sed, awk, ...), query
processing (SQL), graph drawing (DOT, Neato, ...), hardware design
(VHDL, Verilog), business processes (BPEL, BPMN), financial and
commercial contracts (MLFi, CSL, DAML, ...), ...

UNIVERSITY OF COPENHAGEN

Department of Computer Science

GPLs versus DSLs: Design duality

Does the syntax look familiar to a
programmer?

Is the syntax readable by a domain
expert?

Does the language have con-
structs and libraries for express-
ing efficient algorithms and data
structures?

Does the language have no
domain-irrelevant constructs?

Is the
enough?

language expressive

Is the language too expressive?

Is the language design stable?

Is the language evolvable?

UNIVERSITY OF COPENHAGEN Department of Computer Science

GPLs versus DSLs

If programming is finding a needle (useful program) in a haystack (of
useless, incorrect, bad or outright dangerous programs), then:

o GPL approach: Come up with a (necessarily big) single haystack that
contains all needles for all domains (higher needle cardinality).

o DSL approach: Come up with small haystacks, each containing many
needles for a particular domain (higher needle density).

Expressiveness versus analyzability:

@ Programmer: | code algorithmic processes, let other people worry
about analyzing them. Give me more expressiveness!

@ Goethe: “In der Begrenzung zeigt sich der Meister.”

@ No analysis — little benefit of DSLs.

» Use frameworks/libraries.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Contract
e
o Agreement between two or more parties
e Specification of (future) obligations, permissions and prohibitions
@ Properties:
» ldentifiable parties: Required by law (AML, KYC) and for recourse
(court action)
» Consideration: Not one-sided exchange of resources (money, goods,
assets, services)
» Confidentiality: By default not disclosed to other parties (unless
required by regulation)
@ Examples: Sales, services, lease, financial (loan, bond, derivative)

insurance, shareholder, mobility, transportation etc.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Contracts: Semantic model

@ Basic observation about a contract: Given a trace of events (actions
and observations), is it an acceptable, complete execution of the
given contract or not?

@ Extensional semantics: A contract denotes the set of acceptable,
complete executions.

» Any two specifications that denote the same set are equivalent.

Event e: A time-stamped, signed statement asserting that a real-world
event has happened, with attached verifiable evidence.
e € E = {Transfer(Alice, Bob, 30 - USD, 2019-06-20), . ..}
(Evidence left out.)

Trace t: A sequence of events. t € T = E*.

Contract c: (Description of) a trace language (set of traces).
cec=2T.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Contracts

Example (Exchange contract)

phoneSale =

= (Transfer(Alice, Bob, 30 - USD, T); Transfer(Bob, Alice, 1 - iPhone, T")) |
T < Tuesday A T' < T + 1 - day

+ (Transfer(Bob, Alice, 1 - iPhone, T'); Transfer(Alice, Bob, 30 - USD, T)) |
T' < Tuesday A T < T' + 8- day

UNIVERSITY OF COPENHAGEN Department of Computer Science

Residual contracts (language derivatives)

Let C € 2F"; € denotes empty sequence.

C is terminated successfully if C = {e}.

C is possibly terminated successfully if € € C.
C is satisfiable, if C # ().

e is valid for C if e\ C is satisfiable.

Residual contract of C under e € E is

e\C={s|ese C}.
@ e is acceptable for C if e\C is satisfiable.

Intuition: C expresses what remains to be done in a contract. e\C
expresses what remains to be done after e has happened.
In language theory residual is called (left) derivative.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Contract manager

o Contract manager: Interpreter consistent with denotational
semantics.
> Not determined by it. Variations: logging, event validation, escrow
management, transaction management, incompleteness, ...
» Component-oriented: identiy/authorization manager(s), resource
manager(s), information provider(s), time service, ledger system, ...

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

Monitoring contract manager

@ Monitoring contract manager.
@ Receive contract Gy and launch new process.
Q C:=0GC;
© Receive event e.

* Validate e. If e valid and e\ C is satisfiable then C := e\ C, return
“accepted” and inform contract parties; otherwise return “rejected”.

© Receive query request.
* Return log of validated events (history); return C (future).
© Receive terminate request.

* If C is possibly terminated successfully, return “success” and exit
process;

* otherwise, return “breach because of premature contract termination”
and exit process.

11

UNIVERSITY OF COPENHAGEN Department of Computer Science

Transactional contract execution (static escrow)
Like monitoring execution, except resource transfers are delayed until
termination (static escrow).
@ Receive contract Cy and launch new process.
Q@ C:=(C; t:=0.
© Receive event e (not validated).
» If e\C is satisfiable then C := e\ C and t := t + eff(e) and return
“accepted”; otherwise return “rejected”.
© Receive query request.
» Return (C,t).
© Receive terminate request.
> If C is possibly terminated successfully, then submit t to trusted
resource manager for validation and effecting.
* If validation/effecting succeeds, return “success” and exit process;

* otherwise, return “breach because of insufficient resources” (no
transfers are effected) and exit process.

» Otherwise, return “breach because of premature contract terminatiq
and exit process.

1 ®

UNIVERSITY OF COPENHAGEN Department of Computer Science

Contracts: Compositional specification

o ldea: Put contracts together from subcontracts
@ What are the primitives and combinators?
» Primitives: resource transfers (who is required to give what to whom
by when?), success (nothing to do), fail, others (not included here)
» Subcontract combinators: one of them, all of them, one after the
other, repeatedly

o Contract Specification Language (CSL):

¢ ::= Success | Failure | ¢; + ¢ | ¢1 || e2 | c15¢2 |
Transfer(A;, A2, R, T | P).c| f(a)

D == {fi[Xi] = ci}i

r = letrec D in ¢

@ Andersen, Elsborg, Henglein, Larsen, Simonsen, Compositional
Specification of Commercial Contracts (2006).
» Basis for Deon Digital CSL, financial instrument issuance, Iife—cyc

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

Contracts: Relational semantics

@ Idea: Specify inductively when a trace satisfies a CSL contract

dFps:ca dFps:c
0 Fp €: Success dFps:ci+ca dFps:ci+co
dFpsi:er dbpsy:icy (s1,82) v s 0Fpsi:ci dFpsa:e
dFps:ci| e 0 Fp si1s2:ci5c

QIP]* =true &' Fps:c (8 =6 {A1+> a1, As > as, R>r,T —t})
0 Fp transfer(a1, az,r,t) s : Transfer(A:1, A2, R, T | P).c

X vbps:c f(X)=ceD v=Q[a]’
dFp s: f(a)

14

UNIVERSITY OF COPENHAGEN

15

Department of Computer Science

Contract properties

@ Not all possible formal contracts are fair (“real”) contracts.

» Wrong participants, information providers, resource types (formulation
errors).

» Lack of consideration (fair exchange/fair value for all parties).

o ldea: Check properties of general importance.
@ Given any contract:
» Who may be participating?
» Who may be obliged to do something? (Do we have their signature?)

> Are all executions fair? (Do they have consideration? Might one party
get unfair advantage?)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Static analysis by abstract interpretation
o Idea:
» Analyze a contract by abstractly interpreting contracts in a suitable
abstract domain A= (L,...).
» Ensure that interpretation is sound wrt. semantics.
» Extract analysis result (superset of participants, upper bound on
unfairness, etc).
@ Define g : T — L for abstract interpretation of single trace.
o Define abstract combinators +, ... for concrete combinators +, . . .,
respectively, such that

B(s1) CAlal = B(s1) C Ala] + Ale] = Al +]
B(22) CAle]l = B(s) C Ala] + Ale] = Ala +

and similarly for other combinators.
@ Challenge: Formalization and mechanization of abstract interpretation
of infinite unfolding of recursion.
» Employ Schmidt (1995): Coinductive interpretation of abstract
derivation trees. Prove and mechanize its soundness.

16 .

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Soundness of abstract interpretation framework

If certain properties for the abstract operators +*, . .
satisfied (see paper) then

. in relation to (8 are

Vse T,0FP s:c)Ad ~ m= B(s) C Alc]m.

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Mechanization

The following is mechanized in Coq:
@ Multiple semantics of CSL: denotational, relational, small-step
(online, monitoring); proofs of their equivalence

@ Static analysis framework based on abstract interpretation of
natural semantics

» Example analyses: participation, fairness (see paper)

@ Mechanization of semantics, equivalences, abstract interpretation
framework, its soundness, example analyses in Coq

Paper at http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_8.pdf

@ Coq source code at
ayertienna.github.io/csl_formalization_wtsc20.zip

18 .

http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_8.pdf
ayertienna.github.io/csl_formalization_wtsc20.zip

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Discussion: Digital contracts versus smart contracts

@ Ethereum-style smart contract: contract, control and settlement
conflated as single-threaded program in GPL

o Digital contract management:

“smart contract = contract + control + settlement

>

>

w1l

Domain-specific/ “small” language for contracts of their own
Same contract, running on multiple platforms (Corda, Fabric,
Ethereum, etc)
Multiple contracts, same contract manager (“generic”’ smart contract)
Same contract, multiple contract managers:
* Same contract, multiple implementation techniques (centralized, TEEs,
zero-knowledge, etc.)
* Same contract, multiple instrumentations (with/without logging,
with /without escrow/collateral, etc)
Prove properties about a contract without having to prove properties
about the implementation of its contract manager.

'Kowalski, Algorithm = Logic + Control, CACM 1979

19

UNIVERSITY OF COPENHAGEN Department of Computer Science

Discussion: Digital contracts versus smart contracts

e Digital contract versus smart contract analysis/verfication: DSL/little
language analysis versus GPL/big language analysis.
» analysis of digital contracts (CSL, MLFi, ...) excluding contract
manager (Haskell, Kotlin, OCaml, etc.; GPL/big language) vs.
» analysis of smart contract (Solidity/EVM, Kotlin, Go, etc.; GPL/big
language).

20

UNIVERSITY OF COPENHAGEN Department of Computer Science

CSL semantics: Discussion

@ Three different inductive reasoning principles = three different static

analysis/abstract interpretation frameworks:
» Induction on proof of containment (22 induction on the legal parses) of
event sequences (grammar view)
» Induction on abstract syntax of contracts (hierarchical view)
» Induction on length of traces (automata view)
* Basis for contract life-cycle management (run-time monitoring),
optimization and compilation
* Automatically makes any contract analysis based on denotational or
relational semantics applicable not only to original contracts, but to
residual (“running”) contracts in any state.

@ Semantics-driven language design: What do/should contracts denote?
In which domains? How are denotations combined? Can they be
freely (“orthogonally”) combined?

» Systematic derivation of automata-view (operational) semantics from
grammar-view/denotational semantics.

o Reference semantics for correctness of contract managers, e.g. earl
matching, routed matching, greedy matching, escrow managemen

21 netting, etc. ®

U

22

NIVERSITY OF COPENHAGEN Department of Computer Science

CSL semantics: Summary

@ CSL with denotational semantics: Compositional reasoning on syntax
of contracts (reasoning on sets of traces)

@ CSL with relational semantics: Inductive reasoning on containment
relation

e CSL with monitoring semantics (computing residual contracts):
Inductive reasoning on length of trace

» Basis for contract life-cycle management (run-time monitoring),
optimization and compilation

» Automatically makes any contract analysis based on denotational or
relational semantics applicable not only to original contracts, but to
residual (“running”) contracts in any state.

