Optimizing Program Size Using Multi-result
Supercompilation

Dimitur Krustev

IGE+XAO Balkan

IGE+XAO

GROUP

27 March 2021 / VPT 2021

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC

Outline

@ Introduction
e Multi-result Supercompilation
e Size-Limiting Generalization

@ Empirical Evaluation

e Conclusions, Future Work

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 2/20

Introduction

Introduction

@ Supercompilation - a very general and powerful program
transformation technique, invented by Turchin
@ Advantages:
o fully automatic
e more powerful than most other similar techniques (partial
evaluation, deforestation, .. .)
o diverse potential applications (program optimization, program
analysis and verification, .. .)
@ Issues:
e not powerful enough in certain cases; improvements possible
(distillation, higher-level supercompilation, ...)
e unpredictable result size - code size explosion possible
@ unpredictable transformation time (related to previous issue)

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021

3/20

Introduction

Approach outline

@ Tame unpredictable output program size, relying on:
e supercompilation itself, in particular multi-result supercompilation
@ a generalization strategy explicitly tailored to avoid code explosion
@ a compact representation for the set of alternative configuration
graphs produced by multi-result supercompilation
o efficient filtering algorithms — based on the compact representation
of graph sets — to select “interesting” results w.r.t. program size

@ Evaluate approach on a number of small examples

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 4/20

Multi-result Supercompilation

Supercompilation Overview

@ Supercompilation:

e transforms (drives) configurations, which represent sets of possible
states of program execution

@ organizes them into configuration trees (because transforming a
configuration can produce several different new ones, for example
due to branching in the input program)

e performs folding to a previously met configuration whenever
possible, to turn the potentially infinite configuration tree into a
configuration graph

@ Folding by itself does not guarantee termination of
supercompilation. Solution:

@ add dynamic termination checks w.r.t. already explored
configurations (whistle, based, for example, on the homeomorphic
embedding relation)

e if non-termination risk detected = generalize

@ f(Cons(x, xs), Cons(y, ys))
= let z0 = Cons(x, xs) in f(z0, Cons(y, ys))

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 5/20

Multi-result Supercompilation (MRSC)

@ Classical supercompilation generalizes as late and as little as
possible

@ In certain situations this can actually lead to worse results

@ Key insight of multi-result supercompilation: explore different
times and ways to generalize, hoping to find a “better” result (in
some sense) among the alternatives

@ Example: f (xs, ys) = fbody € program P; transform
f(Cons(x, xs), Cons(y, ys)) toseveral alternative
configurations:

@ fbody [xs — Cons(x, xs),ys — Cons(y, ys)] (unfolding,
where e[x — e,y — €, ...] denotes substitution)

@ let z0 = Cons(x, xs) in f(z0, Cons(y, ys))
(generalization)
@ let z0 = Cons(y, ys) in f(Cons(x, xs), z0) (a

different generalization)
e maybe some other generalizations

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 6/20

Multi-result Supercompilation

Representing Sets of Configuration Graphs

@ Conceptually, we should clone the current configuration tree each
time we want to explore several alternatives
= potentially exponential blow-up of the number of configuration
trees
@ Solution: compact representation, which merges alternative
configuration trees/graphs into a single (labeled) graph (with some
efficient operations supported: set membership, filtering, .. .)

(S G P
CGNodecl:- "~ > SBuild ¢

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 7/20

Using MRSC to Limit Code Size Explosion

@ Key idea: for each configuration, explore with priority
generalizations, which avoid the risk of code explosion

@ In parallel, also explore what a traditional supercompiler would do
with the configuration (aggressive unfolding, information
propagation, ...)

@ use the efficient filtering operations on the resulting set of
configuration graphs, in order to select:

e the first configuration graph (the one corresponding to maximum
generalization at each step)

o the last one (the one corresponding to what a traditional
supercompiler would produce without any generalization, if
possible)

o the smallest and the largest configuration graphs

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 8/20

Input Language

@ Tiny first-order functional language with pattern-matching and
non-pattern-matching definitions

Expressions e = X variable
| aley,...,en) call

Callkinds a = C constructor
| f function

Patterns p := C(xq,...,Xpn)

Function definitions
d == f(xy,....,xp)=¢€ ordinary function
| g(p1,Y1,---,¥Ym) = €1 pattern-matching
. function
g(pn7y17"'7ym) =€n

Programs P = di,...,dy

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021

9/20

Size-Limiting Generalization

Input Language Examples

@ Example: list append, double-append expression

append (Nil, ys) = ys;
append (Cons (x, xs), ys) = Cons(x, append(xs, ys));
append (append (xs, ys), zs)

@ Example: Boolean equality, commutativity

not (True) = False;
not (False) = True;
eqgqBool (True, b) = b;

egBool (False, b) not (b) ;

egqBool (egBool (x, y), egBool(y, x))

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 10/20

Size-Limiting Generalization

Examples (cont.)

@ Example: reconstructing Knuth-Morris-Pratt algorithm by
supercompilation (program omitted due to size, see paper)

isSublist (p, s) = match(p, s, p, s);
isSublist (Cons (True, Cons (True, Cons (False,
Nil))), s)

@ Example: artificial program demonstrating code explosion in
supercompilation (M.H. Sgrensen, MSc thesis, 1994)

g(Nil, y) = Vi
g(Cons (x, xs), V) f(g(xs, y));
f(w) = B(w, w);

g(Cons (A, Cons (A, Cons (A, Nil))), z)

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021

11/20

Size-Limiting Generalization

Driving With Size-limiting Generalization

@ Driving and generalization of different expressions shapes
(underlining indicates subexpressions to be driven further):

o X=
o X
e C(ey,...,en) =
o C(ey,...,€en)
@ iff(x1,...,xp) = e € Pthen f(ey,...,en) =
o let yy=6,....¥n==6ninexy = yi,...,.Xnp = yi|
(where y1, ..., ya —fresh)
e e[x1 —e1,...,Xn— €en)]

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 12/20

Size-Limiting Generalization

Driving With Size-limiting Generalization (cont.)

@ if g(C(x1,....Xm), Y1,...,¥n) = € € Pthen g(C(é,, ..., €p,), e,
..., €n) =
o let Uy =€f,...,Un=€np, 21 =€1,...,2n=€n in
e[Xi = Uty ..., Xm = Un, Y1 = Z1,. .., ¥Yn = Zp]
(where uy, ..., Um, Z1,...,2Z, —fresh)
o e[xy —€,....Xm— €pn Y1 = €1,....Yn— €
° ifg(Pth---»Yn):eq7---ag(pm7}’1a---a}’n):e;nepthen
a(x,eq,...,en) =
@ case X of { py — propagate(X,ps,(€1,...,€n),(V1:---.¥n), €});
..;pm—>propagate(X,pm,(e1,...,en),(y1,...,yn),e;,,); }

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 13/20

Size-Limiting Generalization

Driving With Size-limiting Generalization (cont.)

° g(f(é},....em). e1,...,en) =
o let xo=f(€],...,en), X1 =61,....,.Xn=€p in g(Xo, ..., Xn)

(where xo, . .., X, — fresh)

o g(f(e},...,en).e1,....en)

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC

MRSC Example

@ Configuration graph of g (Cons (A, Nil), z) (usingthe
code-explosion program from earlier slides)
e only the leftmost branches of the graph are fully shown, the

remaining parts are omitted

[(GSBuikd (et x0= s xs0=_;y0=_in fig(xs0, y0)) | | GSBuild (A)) |’ | usau.u (Nil)) | usau.u @ | GSBuikd mgw.ky 2) |
alt.2 | [t alt |

GSBuikd (let w0 ~_in B(w0, w0))

[(Gsuid (w0) | [GSBuid (w0) | [GSBuild (ease xs0 = Nil) :y0) |
[anr | [e | alt. | | |(1§l‘uld1c=hc‘s!):(uns!‘ll. xs1) : figxs1, y0)), Ix)|fx>0.)ﬂf}0]'|
[]] | |

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 15/20

MRSC Example

@ Configuration graph of g (Cons (A, Nil), =z) (using the
code-explosion program from earlier slides)
e only the leftmost branches of the graph are fully shown, the
remaining parts are omitted

GSBuild (g(Cons(A(), Nil(). 2))

generalize a pattern

match on a known / [~ \
COﬂStrUCtOF I Gssuim:xlof,. VsO’l ¥0= m]:lgzv x50, y0))) I I (JSB;.M“) I’ I usan:i:\kn I lus:‘ 1:“ 2) I GSBuil ldlﬂg(‘(:\..i)i |
[|]

GSBuikd (let w0 ~_in B(w0, w0))

——

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 15/20

MRSC Example

@ Configuration graph of g (Cons (A, Nil), z) (usingthe
code-explosion program from earlier slides)

e only the leftmost branches of the graph are fully shown, the
remaining parts are omitted

let-bound expressions G ECom(A0).
(A, Ni1, z) are driven — N
no fu rth er I GSBuild (let X0 = _: xs0= _: y0 = _ in fig(xs0, y0))) GSBuild (A) GSBuild (Nil)] GSBuild () us: uild (fg(Nik). 2))) |

S

]
alt | | alt 2 alt 1 alt | [ar]
]

GSBuikd (let w0 ~_in B(w0, w0))

——

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 15/20

MRSC Example

@ Configuration graph of g (Cons (A, Nil), z) (usingthe
code-explosion program from earlier slides)

e only the leftmost branches of the graph are fully shown, the
remaining parts are omitted

1 - GSBuild (g(Cons(A(), Nil()).)
generalize .be . T
fore unfolding £ in

GSBuild (let X0 = _:xs0= 130~ mngv 50,0)) | [GSBuikd (A0) | [GSBuid (Nik) | | GSBuik 2) | [GSBuild (ftgNil), m|
£(9(xs0,y0)) i va— 1l e e |
[| []

GSBuikd (let w0 ~_in B(w0, w0))

——

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 15/20

MRSC Example

@ Configuration graph of g (Cons (A, Nil), z) (usingthe
code-explosion program from earlier slides)

e only the leftmost branches of the graph are fully shown, the
remaining parts are omitted

subexpressmns (.)f _“SB“‘;"“” ot _“‘ e
B(w0,w0) remain as

[(GSBuikd (letx0= ;xs0=_:y0=_infigxs0, y0)) | [GSBuikd (A0) | [GSBuikl (Nik)) | [GSBuikd (2) | [GSBuid (fgNil), m|
Ieaves | alt | | alt.2 | [t | [e | [|

[Gomievo~ Za o
—C
——

[(GsBuid (w0) | [GSBuid (w0) | [GSBuild (ease xs0 = Nil) :y0) |
[anr | [e | alt. | ||osru1mo(s(x0, xs1) : Rg(xs1, yO)), [xs1 = xs0; y0 = «m|
[]] | |

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 15/20

MRSC Example

@ Configuration graph of g (Cons (A, Nil), z) (usingthe
code-explosion program from earlier slides)

e only the leftmost branches of the graph are fully shown, the
remaining parts are omitted

pattern matching on
a variable requires

driving all branches in 71 N
[(GsBuikd (et x0= sxs0=_;y0=_infigtxs0, y0))) | [GSBuikd (A0) |~ [GSBuikt (Ni) | [GSBuid) | [GSBuild (fiacNil), 2)) |
| [a2
]

GSBuild (g(Cons(A(), Nil(). 2))

| alt | | alt 2 | [t] [e
parallel - | | | |

GSBuild (let w0 = _in B(w0, w0))

GSBuild (g(xs0, y0))
alt. 1

|osx umo;| |osn kmm| [[Gsbai u(u s0=Nil) :y0) |
[|1 | | ||osru1mo((0, xs1) : figlxs1, yO), [xs1 = xs0; y0 = «m|
[]] |

Dimitur Krustev (IGE+XAO Balkan)

Optimizing Program Size Using MRSC VPT 2021 15/20

MRSC Example

@ Configuration graph of g (Cons (A, Nil), =z) (using the
code-explosion program from earlier slides)
e only the leftmost branches of the graph are fully shown, the
remaining parts are omitted

GSBuild (g(Cons(A(), Nil(). 2))

the Nil-branch is a
leaf

GSBuikd (let w0 ~_in B(w0, w0))

——

Dimitur Krustev (IGE+XAO Balkan)

Optimizing Program Size Using MRSC VPT 2021 15/20

MRSC Example

@ Configuration graph of g (Cons (A, Nil), =z) (using the
code-explosion program from earlier slides)
e only the leftmost branches of the graph are fully shown, the
remaining parts are omitted

the Cons-branch is a
renaming of a previ-
ous configuration, so

we fold = H“ m t|==ss

GSBuild (g(Cons(A(), Nil(). 2))

GSBuild (let w0 = _in B(w0, w0))

GSBuild (g(xs0, y0))
alt. 1

|osx umo;| |osn kmm| [[Gsbai u(u s0=Nil) :y0) |
[|1 | | ||osru1mo((0, xs1) : figlxs1, yO), [xs1 = xs0; y0 = «m|
[]] |

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 15/20

Empirical Evaluation

Empirical Evaluation — Example Statistics

@ Statistics about 4 examples from previous slides

Example First | Last | Min. size | Max. size
double append 12 10 10 19
KMP test 203 | 39 38 1055
egBool symmetry 16 17 16 30
exp growth 15| 37 15 57

@ Minimum-size result for “exp growth” example:

main_letl (wO) = B(w0, wO0);
expression: main_letl (main_letl (B(z, z)))

@ Key take: exploring different combinations of (sub-)configuration
generalizations + a mechanism for quickly finding suitable graphs
among the whole set of alternative graphs results in a reliable way
to obtain an optimal program without code explosion

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 16/20

Empirical Evaluation

Empirical Evaluation — Examples (cont.)

@ Statistics on several different examples (from long version in

arXiv):
Example First | Last | Min. size | Max. size
Even-or-odd 14 18 14 21
idNat Idempotent 9 6 6 12
take-length 13 8 8 19
length-intersperse 36 27 27 187

@ Minimum-size result for take (length (xs), xs)

f (xs) = f_ casel(x

f caseQ(Nil(),) = Nil();

f_ case0 (Cons (x00,
expression: f_ (xs)

s);

xs00),

) =

Cons (x00,

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC

f (xs00));

VPT 2021

17/20

Conclusions, Future Work

Conclusions

Achievements:
@ An approach for systematically exploring different combinations of
configuration generalizations, which
o keeps the benefits of the aggressive optimizations performed by
traditional supercompilers
e while reducing the risk of code size explosion in the resulting
program
@ The approach re-uses existing ideas about efficient
implementation of MRSC, coupled with a generalization strategy
specifically aimed at reducing risks of code size explosion

@ Empirical evaluation based on several small examples (typically
used for benchmarks of supercompilers and similar program
transformers) shows encouraging results

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 18/20

Future Work

@ Evaluate the approach on more and larger examples
@ Refine approach to generalization
o for example, no need to generalize a variable
e not useful to generalize a function argument, which occurs only
once in the body
@ Study theoretical properties, especially potential bounds on result
size

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021 19/20

Future Work (cont.)

Idea for bounds on result program size (WIP after paper published):

@ Use a further restricted input language (still Turing-complete
though)
e only pattern-matching function definitions
e function calls in “A-Normal Form”: g(xi, ..., X»)
e only direct recursion = we can topologically sort definitions:

@ P=gi(...)=¢e1,...,0n(...) =€n

o s.tif gi(x1,...,xm) € ejthenj>i
@ Current conjecture on size bound:
e VidC.graphSize(g;) <= C + > graphSize(g;)

Gi(X1,.. s Xm)EQNJ>i

Dimitur Krustev (IGE+XAO Balkan) Optimizing Program Size Using MRSC VPT 2021

20/20

	Introduction
	Multi-result Supercompilation
	Size-Limiting Generalization
	Empirical Evaluation
	Conclusions, Future Work

