# Optimizing Program Size Using Multi-result Supercompilation

Dimitur Krustev

IGE+XAO Balkan



27 March 2021 / VPT 2021



#### **Outline**

- Introduction
- Multi-result Supercompilation
- Size-Limiting Generalization
- Empirical Evaluation
- 5 Conclusions, Future Work

#### Introduction

- Supercompilation a very general and powerful program transformation technique, invented by Turchin
- Advantages:
  - fully automatic
  - more powerful than most other similar techniques (partial evaluation, deforestation, ...)
  - diverse potential applications (program optimization, program analysis and verification, . . .)
- Issues:
  - not powerful enough in certain cases; improvements possible (distillation, higher-level supercompilation, . . .)
  - unpredictable result size code size explosion possible
  - unpredictable transformation time (related to previous issue)



#### Approach outline

- Tame unpredictable output program size, relying on:
  - supercompilation itself, in particular multi-result supercompilation
  - a generalization strategy explicitly tailored to avoid code explosion
  - a compact representation for the set of alternative configuration graphs produced by multi-result supercompilation
  - efficient filtering algorithms based on the compact representation of graph sets – to select "interesting" results w.r.t. program size
- Evaluate approach on a number of small examples



# Supercompilation Overview

- Supercompilation:
  - transforms (*drives*) configurations, which represent sets of possible states of program execution
  - organizes them into configuration trees (because transforming a configuration can produce several different new ones, for example due to branching in the input program)
  - performs folding to a previously met configuration whenever possible, to turn the potentially infinite configuration tree into a configuration graph
- Folding by itself does not guarantee termination of supercompilation. Solution:
  - add dynamic termination checks w.r.t. already explored configurations (whistle, based, for example, on the homeomorphic embedding relation)
  - if non-termination risk detected ⇒ *generalize*

```
• f(Cons(x, xs), Cons(y, ys))

\Rightarrow let z0 = Cons(x, xs) in f(z0, Cons(y, ys))
```

# Multi-result Supercompilation (MRSC)

- Classical supercompilation generalizes as late and as little as possible
- In certain situations this can actually lead to worse results
- Key insight of multi-result supercompilation: explore different times and ways to generalize, hoping to find a "better" result (in some sense) among the alternatives
- Example: f(xs, ys) = fbody ∈ program P; transform f(Cons(x, xs), Cons(y, ys)) to several alternative configurations:
  - fbody [xs  $\rightarrow$  Cons(x, xs), ys  $\rightarrow$  Cons(y, ys)] (unfolding, where  $e[x \rightarrow e_1, y \rightarrow e_2,...]$  denotes substitution)
  - let z0 = Cons(x, xs) in f(z0, Cons(y, ys))
     (generalization)
  - let z0 = Cons(y, ys) in f(Cons(x, xs), z0) (a
     different generalization)
  - maybe some other generalizations



#### Representing Sets of Configuration Graphs

- Conceptually, we should clone the current configuration tree each time we want to explore several alternatives
  - $\Rightarrow$  potentially exponential blow-up of the number of configuration trees
- Solution: compact representation, which merges alternative configuration trees/graphs into a single (labeled) graph (with some efficient operations supported: set membership, filtering, . . .)



# Using MRSC to Limit Code Size Explosion

- Key idea: for each configuration, explore with priority generalizations, which avoid the risk of code explosion
- In parallel, also explore what a traditional supercompiler would do with the configuration (aggressive unfolding, information propagation, ...)
- use the efficient filtering operations on the resulting set of configuration graphs, in order to select:
  - the first configuration graph (the one corresponding to maximum generalization at each step)
  - the last one (the one corresponding to what a traditional supercompiler would produce without any generalization, if possible)
  - the smallest and the largest configuration graphs



#### Input Language

 Tiny first-order functional language with pattern-matching and non-pattern-matching definitions

Expressions 
$$e := x$$
 variable  $| a(e_1, \dots, e_n) |$  call

Call kinds  $a := C$  constructor  $| f |$  function

Patterns 
$$p$$
 ::=  $C(x_1,...,x_n)$ 

#### Function definitions

$$d$$
 ::=  $f(x_1, \dots, x_n) = e$  ordinary function  $g(p_1, y_1, \dots, y_m) = e_1$  pattern-matching function  $g(p_n, y_1, \dots, y_m) = e_n$ 

Programs 
$$P ::= d_1, \ldots, d_n$$



#### Input Language Examples

Example: list append, double-append expression

```
append(Nil, ys) = ys;
append(Cons(x, xs), ys) = Cons(x, append(xs, ys));
append(append(xs, ys), zs)
```

Example: Boolean equality, commutativity

```
not(True) = False;
not(False) = True;
eqBool(True, b) = b;
eqBool(False, b) = not(b);
eqBool(eqBool(x, y), eqBool(y, x))
```

#### Examples (cont.)

 Example: reconstructing Knuth-Morris-Pratt algorithm by supercompilation (program omitted due to size, see paper)

```
isSublist(p, s) = match(p, s, p, s);
isSublist(Cons(True, Cons(True, Cons(False,
Nil))), s)
```

 Example: artificial program demonstrating code explosion in supercompilation (M.H. Sørensen, MSc thesis, 1994)

```
g(Nil, y) = y;

g(Cons(x, xs), y) = f(g(xs, y));

f(w) = B(w, w);

g(Cons(A, Cons(A, Nil))), z)
```

# **Driving With Size-limiting Generalization**

- Driving and generalization of different expressions shapes (underlining indicates subexpressions to be driven further):
- $\bullet$   $x \Rightarrow$ 
  - X
- $C(e_1,\ldots,e_n) \Rightarrow$ 
  - $C(e_1, ..., e_n)$
- if  $f(x_1,\ldots,x_n)=e\in P$  then  $f(e_1,\ldots,e_n)\Rightarrow$ 
  - let  $y_1 = \underline{e_1}, \dots, y_n = \underline{e_n}$  in  $\underline{e[x_1 \to y_1, \dots, x_n \to y_n]}$  (where  $y_1, \dots, y_n$  fresh)
  - $\bullet \ e[x_1 \rightarrow e_1, \dots, x_n \rightarrow e_n])]$



# Driving With Size-limiting Generalization (cont.)

- if  $g(C(x_1,\ldots,x_m),y_1,\ldots,y_n)=e\in P$  then  $g(C(e'_1,\ldots,e'_m),e_1,\ldots,e_n)\Rightarrow$ 
  - let  $u_1 = \underline{e'_1}, \dots, u_m = \underline{e'_m}, z_1 = \underline{e_1}, \dots, z_n = \underline{e_n}$  in  $\underbrace{e[x_1 \to u_1, \dots, x_m \to u_m, y_1 \to z_1, \dots, y_n \to z_n]}_{\text{(where } u_1, \dots, u_m, z_1, \dots, z_n \text{fresh)}}$
  - $\bullet \ e[x_1 \rightarrow e'_1, \dots, x_m \rightarrow e'_m, y_1 \rightarrow e_1, \dots, y_n \rightarrow e_n]$
- if  $g(p_1, y_1, ..., y_n) = e'_1, ..., g(p_m, y_1, ..., y_n) = e'_m \in P$  then  $g(x, e_1, ..., e_n) \Rightarrow$ 
  - case X of {  $p_1 \rightarrow \text{propagate}(x, p_1, (e_1, \dots, e_n), (y_1, \dots, y_n), e'_1);$  $\dots; p_m \rightarrow \text{propagate}(x, p_m, (e_1, \dots, e_n), (y_1, \dots, y_n), e'_m);$  }

# Driving With Size-limiting Generalization (cont.)

- $g(f(e'_1,\ldots,e'_m),e_1,\ldots,e_n) \Rightarrow$   $e \text{ let } x_0 = f(e'_1,\ldots,e'_m), x_1 = e_1,\ldots,x_n = e_n \text{ in } \underline{g}(x_0,\ldots,x_n)$ 
  - Let  $X_0 = f(e'_1, \dots, e'_m)$ ,  $X_1 = e_1, \dots, X_n = e_n$  in  $g(x_0, \dots, x_n)$ (where  $x_0, \dots, x_n$  – fresh)
  - $g(\underline{f(e'_1, \ldots, e'_m)}, e_1, \ldots, e_n)$

- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



- Configuration graph of g (Cons (A, Nil), z) (using the code-explosion program from earlier slides)
  - only the leftmost branches of the graph are fully shown, the remaining parts are omitted



#### Empirical Evaluation – Example Statistics

Statistics about 4 examples from previous slides

| Example                | First | Last | Min. size | Max. size |
|------------------------|-------|------|-----------|-----------|
| double append          | 12    | 10   | 10        | 19        |
| KMP test               | 203   | 39   | 38        | 1055      |
| eqBool <b>symmetry</b> | 16    | 17   | 16        | 30        |
| exp growth             | 15    | 37   | 15        | 57        |

• Minimum-size result for "exp growth" example:

```
main_let1(w0) = B(w0, w0);
expression: main_let1(main_let1(B(z, z)))
```

 Key take: exploring different combinations of (sub-)configuration generalizations + a mechanism for quickly finding suitable graphs among the whole set of alternative graphs results in a reliable way to obtain an optimal program without code explosion

#### Empirical Evaluation – Examples (cont.)

 Statistics on several different examples (from long version in arXiv):

| Example                 | First | Last | Min. size | Max. size |
|-------------------------|-------|------|-----------|-----------|
| Even-or-odd             | 14    | 18   | 14        | 21        |
| idNat <b>Idempotent</b> | 9     | 6    | 6         | 12        |
| take-length             | 13    | 8    | 8         | 19        |
| length-intersperse      | 36    | 27   | 27        | 187       |

Minimum-size result for take (length (xs), xs)

```
f_(xs) = f__case0(xs);
f__case0(Nil(), ) = Nil();
f__case0(Cons(x00, xs00), ) = Cons(x00, f_(xs00));
expression: f_(xs)
```

#### Conclusions

#### Achievements:

- An approach for systematically exploring different combinations of configuration generalizations, which
  - keeps the benefits of the aggressive optimizations performed by traditional supercompilers
  - while reducing the risk of code size explosion in the resulting program
- The approach re-uses existing ideas about efficient implementation of MRSC, coupled with a generalization strategy specifically aimed at reducing risks of code size explosion
- Empirical evaluation based on several small examples (typically used for benchmarks of supercompilers and similar program transformers) shows encouraging results

#### **Future Work**

- Evaluate the approach on more and larger examples
- Refine approach to generalization
  - for example, no need to generalize a variable
  - not useful to generalize a function argument, which occurs only once in the body
- Study theoretical properties, especially potential bounds on result size

#### Future Work (cont.)

Idea for bounds on result program size (WIP after paper published):

- Use a further restricted input language (still Turing-complete though)
  - only pattern-matching function definitions
  - function calls in "A-Normal Form":  $g(x_1, ..., x_n)$
  - only direct recursion ⇒ we can topologically sort definitions:

• 
$$P = g_1(...) = e_1,...,g_n(...) = e_n$$

• s.t. if 
$$g_i(x_1, \ldots, x_m) \in e_i$$
 then  $j \ge i$ 

- Current conjecture on size bound:
  - $\forall i \exists C. graphSize(g_i) <= C + \sum\limits_{g_j(x_1,...,x_m) \in e_i \land j > i} graphSize(g_j)$

