
Program Specialization

as a Tool for Solving Word Equations

Antonina Nepeivoda

Program Systems Institute of RAS

Verification and Program Transformation 2021

March 28th

1 / 26
VPT 2021

N



Introduction and Preliminaries

A satisfiability problem

Given a word equation system Eqs, is there a sequence σ of

variable narrowings leading to a solution of Eqs?

2 / 26
VPT 2021

N



Introduction and Preliminaries

The main contribution

A method for solving word equation satisfiability problem

by means of a program specialization, reducing

the satisfiability problem to a (un)reachability problem.

We show our method works for some the word equations

sets for which equations Z3Str3 and CVC4 are not able to

solve the problem:

by demonstrating the benchmark experiments using

Turchin’s supercompilation;

by proving that the corresponding specialization tasks

terminate.

3 / 26
VPT 2021

N



Introduction and Preliminaries

Word equations

Definition

Given a constant alphabet Σ and a variable set V, a word

equation is an equation Φ = Ψ, where Φ,Ψ ∈ {Σ ∪ V}∗. A

solution to the word equation is a substitution σ : V→ Σ∗

s.t. Φσ textually coincides with Ψσ.

Let E be xAB = BAx, where A, B ∈ Σ, x ∈ V. Consider

the sequence σ1 : x→ Bx, σ2 : x→ ε. Then σ2 ◦ σ1 : x→ B
is a solution to E: (xAB)σ1σ2 = BAB = (BAx)σ1σ2.

4 / 26
VPT 2021

N



Related works

The history of the word equations

In theory:

Algorithms for solving the quadratic (e.g. xAy = yAx)
and one-variable word equations (Matiyasevich, 1965)

An algorithm for solving the three-variable word

equations (Hmelevskij, 1971)

An algorithm for solving the word equations in the

general case (Makanin, 1977)

More efficient (but still worst-case doubly-exponential)

algorithms (Plandowski, 2006, Jez, 2016)

5 / 26
VPT 2021

N



Related works

The history of the word equations

In practice:

efficient algorithms for solving the straight-line (e.g.

xxx = yAz) word equations (Rümmer et al., 2014–...)

algorithms for solving the quadratic word equations (Le

et al., Lin et al., 2018)

algorithms for solving the word equations in the case

when the solution lengths are bounded (Bjørner,

2009–..., Day, 2019)

6 / 26
VPT 2021

N



Verification by specialization

Our contribution

Our method can solve equations in some classes, in which

variables may occur on the both sides and more than twice.

One-variable word equations

Regular-ordered word equations with repetitions:

The solvers CVC4 and Z3Str3 do not terminate on

the equation ABxxyy = xxyyBA which belongs to

the second class and is solvable by our method.

7 / 26
VPT 2021

N



Verification by specialization

Encoded word equations

Definition

The set of encoded word equations Eqs is as follows.

Eqs ::= Eq Eqs | ε

Eq ::= (Side, Side)

Side ::= Char Side | Var Side | ε

There Var∈ V, Char∈ Σ, ε is the empty word.

As a sugar, we write the encoded equation (LHS, RHS) as

LHS = RHS;

and the sequence (LHS1, RHS1). . . (LHSn, RHSn) as

〈 LHSi = RHSi 〉ni=1.
8 / 26

VPT 2021

N



Verification by specialization

A simple logic programming language L

Definition

A (finite) narrowings sequence Narrs is defined as follows.

Narrs ::= (Narr) Narrs | ε

Narr ::= ′Var→ Char Var ′ | ′Var→ Var1Var ′ | ′Var→ ε ′

There Var, Var1 ∈ V, Char∈ Σ, Var 6=Var1.

Every narrowings sequence belonging to Narrs defines

a substitution σ : V→ (V ∪ Σ)∗. Given x ∈ V, σ is either

x→ Φ or x→ Φx where Φ does not contain x.

We consider a set of Narrs sequences as a simple acyclic

logic programming language L over the data Eqs.

9 / 26
VPT 2021

N



Verification by specialization

A simple logic programming language L

Definition

A (finite) narrowings sequence Narrs is defined as follows.

Narrs ::= (Narr) Narrs | ε

Narr ::= ′Var→ Char Var ′ | ′Var→ Var1Var ′ | ′Var→ ε ′

Compatibility of the narrowings with〈Φ1 = Ψ1, . . . ,Φn = Ψn〉:

′x→ ε ′ xΦ1 = Ψ
!!

1 ′x→ tx ′ xΦ1 = tΨ
!!

1

or Φ1 = xΨ1 or tΦ1 = xΨ1

′x→ x1x ′ xΦ1 = x1Ψ
!!

1

or x1Φ1 = xΨ1

We consider a set of Narrs sequences as a simple acyclic

logic programming language L over the data Eqs.

9 / 26
VPT 2021

N



Verification by specialization

Operational semantics of L

An L interpreter WIL takes a finite sequence

(σ1)(σ2)...(σn) and a datum 〈Φi = Ψi〉mi=1.

The call WIL ((σ1)(σ2)...(σn), 〈Φi = Ψi〉mi=1) returns T iff

∀i, 1 6 i 6 m (Φiσ1...σn = Ψiσ1...σn), and F otherwise.

Given a sequence of n narrowings, the interpreter WIL :

does at most n steps (i.e. always terminates);

for all equation lists 〈Φi = Ψi〉mi=1 returns either T or F,
hence WIL never falls in deadlock.

10 / 26
VPT 2021

N



Verification by specialization

Specialization of L -interpreters

Given the call WIL (P, 〈Φi = Ψi〉ni=1), we replace the

L -program P with a parameter P ranging over

L -programs. Thus, the specialization task is as follows.

WIL (P, 〈Φi = Ψi〉ni=1)

The unfolding of this initial configuration results in

a possibly infinite tree: a description of the runs of all

possible L -programs on 〈Φi = Ψi〉ni=1.

The program lengths are unknown ⇒ runs are

described by means of graphs, which may contain

loops.

Most of the programs return F.

11 / 26
VPT 2021

N



Verification by specialization

The verification task

Consider the following verification task over

the L programs.

Given a word equation system Eqs, we say that

the verification task succeeds iff Eqs has solutions if and

only if the residual program generated by specialization of

WIL (P,Eqs) contains a function returning T.

We do not require the specialization to terminate for every

system Eqs.

12 / 26
VPT 2021

N



Verification by specialization

Syntax of the residual programs

Syntax definition

Program ::= Rule; Program | ε

Rule ::= Name(Pattern) = Expression

Pattern ::= (Narr) | (Narr) ++ Pattern | p | ε

Expression ::= T | F | Name(p)

There p is a variable ranging over Narrs, Name is a function

name.

Every function definition contains a single argument, and

the only variable occurring at most once in its left- and

right-hand sides is p.

13 / 26
VPT 2021

N



Verification by specialization

Examples

Given the equation Ax = xA, a specializer produces the

following residual program, where the entry point is F(p),

and p is a variable ranging over Narrs.

F(( ′x→ ε ′)) = T
F(( ′x→ Ax ′) ++ p) = F(p)
F(p) = F

Given the equation Ax = xB, the residual program is as

follows, where the entry point is G(p).

G(( ′x→ ε ′)) = F
G(( ′x→ Ax ′) ++ p) = G(p)
G(p) = F

14 / 26
VPT 2021

N



Interpreters

The general interpreters’ structure

The main loop

Main function 1. Take the first program rule

��

Subst function 2. Apply (substitute)

��

Smpl function 3. Simplify the result

oo

The function Smpl varies in the different interpreters.

Smpl takes a constant equation list and returns a

constant equation list with the same set of solutions.

Smpl terminates on every constant equation list.
15 / 26

VPT 2021

N



Interpreters

Basic interpreter WIBaseL

Structure of Smpl function

Reduce prefixes // Reduce suffixes

Further we refer to this simplification operation as Reduce.

Input format

p — ranges over sequences of the rules;

Eqs — ranges over equations.

Go(p,Eqs) = Main(p, Smpl(Eqs));

Specialization of the scheme WIBaseL (P,Φ = Ψ)
successfully solves all the quadratic equations Φ = Ψ
(e.g. xABy = yBAx).

16 / 26
VPT 2021

N



Interpreters

Splitting interpreter WISplitL

Structure of Smpl function

Reduce // Left-split // Reduce

Input format

Go(p,Eqs) = Main(p, Smpl(0,Eqs));

The first argument of Smpl (initially valued 0) is added

to prevent an unwanted folding.

Specialization of the scheme WISplitL (P, 〈Φ = Ψ〉)
successfully solves every regular-ordered equation with

var-repetitions Φ = Ψ (e.g. xxAB = BAxx).

17 / 26
VPT 2021

N



Interpreters

Counting interpreter WICountL
Finds contradictions, comparing variables and constants

multisets in the left- and right-hand equation sides.

Structure of Smpl function

Reduce // Left-split // Right-split // Reduce // Count

Input format

Go(p,Eqs) = Main(p, Smpl(0,Eqs));

Specialization of WICountL (P, 〈Φ = Ψ〉) successfully

solves every one-variable word equation Φ = Ψ.
18 / 26

VPT 2021

N



Interpreters

Optimality lemma

Lemma

All the folding operations in the process graph of

WIL (P, 〈Φi = Ψi〉ni=1) occur only on the pairs of

the configurations:

Main(Pj, 〈Φj
i = Ψ

j
i〉

nj

i=1)

where Pj is a parameter, and the equation system does not

contain parameters.

The lemma implies a mapping between the process graph of

WIL (P, 〈Φi = Ψi〉ni=1) and the solution graph of the

equation list 〈Φi = Ψi〉ni=1.

19 / 26
VPT 2021

N



Generating the narrowings

Main(P0,
′xyA = Axy ′ )

!aaP0→
( ′x→ ε ′) ++ P1

yy

!!P0→
( ′x→ Ax ′) ++ P1!

!

��

!aa!aa!aaotherwise

$$. . . . . . F

20 / 26
VPT 2021

N



Generating the new configuration

Main(P0,
′xyA = Axy ′ )

!aaP0→
( ′x→ ε ′) ++ P1

ww !!P0→
( ′x→ Ax ′) ++ P1!

!

��

!aa!aa!aaotherwise

""
Main(P1,
Smpl(Subst( ′x→ ε ′ ,

′xyA = Axy ′ )))

. . . F

20 / 26
VPT 2021

N



Transient operations

Main(P0,
′xyA = Axy ′ )

!aaP0→
( ′x→ ε ′) ++ P1

ww !!P0→
( ′x→ Ax ′) ++ P1!

!

��

!aa!aa!aaotherwise

""
Main(P1,
Smpl(Subst( ′x→ ε ′ ,

′xyA = Axy ′ )))

Operations

only on

constant data

��

. . . F

Main(P1,
′yA = Ay ′ )

20 / 26
VPT 2021

N



The next unfolding step

Main(P0,
′xyA = Axy ′ )

!aaP0→
( ′x→ ε ′) ++ P1

xx
!!P0→
( ′x→ Ax ′) ++ P1!

!

��

!aa!aa!aaotherwise

##Main(P1,
′yA = Ay ′ )

!aa!aa!aaotherwise

((

. . . F

Main

(P2, ε)

}}

!aaP1→
( ′y→ ε ′) ++ P2

Main(P2,
′yA = Ay ′ )

��

!!P1→
( ′y→ Ay ′) ++ P2!

! F

20 / 26
VPT 2021

N



The folding

Main(P0,
′xyA = Axy ′ )

!aaP0→
( ′x→ ε ′) ++ P1

xx
!!P0→
( ′x→ Ax ′) ++ P1!

!

��

!aa!aa!aaotherwise

##Main(P1,
′yA = Ay ′ ) Main(P1,

′xyA = Axy ′ )

``

F

Main

(P2, ε)

||

!aaP1→
( ′y→ ε ′) ++ P2

!aa!aa!aaotherwise

$$

!aaP2→ ε

��

Main(P2,
′yA = Ay ′ )

��

!!P1→
( ′y→ Ay ′) ++ P2!

!

cc

F
%%

!aa!aa!aaotherwise

T F
20 / 26

VPT 2021

N



Deleting interpreter data

Main(P0,
′xyA = Axy ′ )

!aaP0→
( ′x→ ε ′) ++ P1

xx
!!P0→
( ′x→ Ax ′) ++ P1!

!

��

!aa!aa!aaotherwise

##Main(P1,
′yA = Ay ′ ) Main(P1,

′xyA = Axy ′ )

``

F

Main

(P2, ε)

||

!aaP1→
( ′y→ ε ′) ++ P2

!aa!aa!aaotherwise

$$

!aaP2→ ε

��

Main(P2,
′yA = Ay ′ )

��

!!P1→
( ′y→ Ay ′) ++ P2!

!

cc

F
%%

!aa!aa!aaotherwise

T F
20 / 26

VPT 2021

N



The solution graph

xyA = Axy

x→ ε

xx x→ Ax

��yA = Ay

xyA = Axy

``

T

}}

!aay→ ε

yA = Ay

��

!!y→ Ay!!

dd

20 / 26
VPT 2021

N



Experiments

Summary of the verification results

The classes of equations not solvable by CVC4 and

Z3Str3 in general but solvable by our verification scheme:

the quadratic equations with no solution

(e.g. x1x2x3ABABAB = AAABBB x2x3x1);

the regular-ordered equations with var-repetitions and

no solution (e.g. ABxxyy = xxyyBA).

The one-variable word equations not solvable by CVC4 and

Z3Str3 also belong to the regular-ordered with repetitions

and no solution.

21 / 26
VPT 2021

N



Experiments

Benchmark results

Benchmark Tests
Not terminating

!!!
!
CVC4 !!!

!
Z3str3 !!!

!
WICountL

Track 1 (Woorpje)!!!
!

200 8 13 21

Track 5 (Woorpje)!!!
!

200 4 14 19

Our benchmark!!!
!

50 21 28 10

Average time for WICountL : 3,5 min for one equation.

Time for CVC4 and Z3str3 is less than 2 min for all the

solved equations.

22 / 26
VPT 2021

N



Summary

Challenges

The function composition depths of all the interpreters

are implicitly bounded, i.e. they comprise formal rather

than semantic loops.

The lengths of the programs being interpreted are not

explicitly bounded, because the lengths are finite while

unknown.

23 / 26
VPT 2021

N



Summary

Our solutions to the challenges

The renaming relation is used on the set of interpreters

configurations along a given unfolding path.

The word equations solved by the proposed method

can be encoded with lisp lists.

The interpreters are also can be written in the

functional languages based on the list data rather than

the string data.

The suggested approach can be used by means of

various specializers manipulating the lisp lists.

24 / 26
VPT 2021

N



Summary

Open challenges

Refine the method in order to solve wider (or other)

classes of the word equations.

Solving the word equations over the nested words.

Solving equations over the regular expressions.

Development of an online SMT string-solver based on

the suggested method.

25 / 26
VPT 2021

N



Summary

Conclusion

Supercompilation can be used to solve word equations,

based on the specialization of various interpreters of

a simple logic language.

The method has shown itself to be useful to prove

unsatisfiability of the word equations sharing variables

in left- and right-hand sides.

Thank you for your attention!

26 / 26
VPT 2021

N


	Introduction and Preliminaries
	Related works
	Verification by specialization
	Interpreters
	Experiments
	Summary

