Program Specialization as a Tool for Solving Word Equations

Antonina Nepeivoda Program Systems Institute of RAS

Verification and Program Transformation 2021 March 28th

VPT 2021 1 / 26

.

A satisfiability problem

Given a word equation system \mathcal{E}_{qs} , is there a sequence σ of variable narrowings leading to a solution of \mathcal{E}_{qs} ?

The main contribution

A method for solving word equation satisfiability problem by means of a program specialization, reducing **the satisfiability problem to a (un)reachability problem.**

We show our method works for some the word equations sets for which equations Z3Str3 and CVC4 are not able to solve the problem:

- by demonstrating the benchmark experiments using Turchin's supercompilation;
- by proving that the corresponding specialization tasks terminate.

Word equations

Definition

Given a constant alphabet Σ and a variable set \mathcal{V} , *a word* equation is an equation $\Phi = \Psi$, where $\Phi, \Psi \in {\Sigma \cup \mathcal{V}}^*$. A solution to the word equation is a substitution $\sigma : \mathcal{V} \to \Sigma^*$ s.t. $\Phi\sigma$ textually coincides with $\Psi\sigma$.

Let E be xAB = BAx, where A, $B \in \Sigma$, $x \in \mathcal{V}$. Consider the sequence $\sigma_1 : x \to Bx$, $\sigma_2 : x \to \varepsilon$. Then $\sigma_2 \circ \sigma_1 : x \to B$ is a solution to E: $(xAB)\sigma_1\sigma_2 = BAB = (BAx)\sigma_1\sigma_2$.

The history of the word equations

In theory:

- Algorithms for solving the quadratic (e.g. xAy = yAx) and one-variable word equations (Matiyasevich, 1965)
- An algorithm for solving the three-variable word equations (Hmelevskij, 1971)
- An algorithm for solving the word equations in the general case (Makanin, 1977)
- More efficient (but still worst-case doubly-exponential) algorithms (Plandowski, 2006, Jez, 2016)

The history of the word equations

In practice:

- efficient algorithms for solving the straight-line (e.g. xxx = yAz) word equations (Rümmer et al., 2014-...)
- algorithms for solving the quadratic word equations (Le et al., Lin et al., 2018)
- algorithms for solving the word equations in the case when the solution lengths are bounded (Bjørner, 2009-..., Day, 2019)

Our contribution

Our method can solve equations in some classes, in which variables may occur on the both sides and more than twice.

One-variable word equations

.

• Regular-ordered word equations with repetitions:

The solvers CVC4 and Z3Str3 do not terminate on the equation ABxxyy = xxyyBA which belongs to the second class and is solvable by our method.

Encoded word equations

Definition

The set of encoded word equations Eqs is as follows.

Eqs ::= Eq Eqs | ε

Eq ::= (Side, Side)

.

Side ::= Char Side | Var Side | ε

There $Var \in \mathcal{V}$, $Char \in \Sigma$, ε is the empty word.

As a sugar, we write the encoded equation (LHS, RHS) as

LHS = RHS;

and the sequence (LHS₁, RHS₁). . . (LHS_n, RHS_n) as

 $\langle LHS_i = RHS_i \rangle_{i=1}^n$.

VPT 2021 8 / 26

A simple logic programming language \mathscr{L}

Definition

A (finite) narrowings sequence Narrs is defined as follows.

Narrs ::= (Narr) Narrs | ε

Narr ::= 'Var \rightarrow Char Var'|'Var \rightarrow Var₁Var'|'Var $\rightarrow \epsilon$ '

There Var, $Var_1 \in \mathcal{V}$, $Char \in \Sigma$, $Var \neq Var_1$.

Every narrowings sequence belonging to Narrs defines a substitution $\sigma: \mathcal{V} \to (\mathcal{V} \cup \Sigma)^*$. Given $x \in \mathcal{V}$, σ is either $x \to \Phi$ or $x \to \Phi x$ where Φ does not contain x.

We consider a set of Narrs sequences as a simple acyclic logic programming language $\mathscr L$ over the data Eqs.

9 / 26

A simple logic programming language \mathscr{L}

Definition

A (finite) narrowings sequence Narrs is defined as follows.

Narrs ::= (Narr) Narrs | ε

Narr ::= 'Var \rightarrow Char Var'|'Var \rightarrow Var₁Var'|'Var $\rightarrow \varepsilon$ '

Compatibility of the narrowings with $\langle \Phi_1 = \Psi_1, \dots, \Phi_n = \Psi_n \rangle$:

$'x \rightarrow \epsilon'$	$\begin{array}{c} \mathbf{x} \Phi_1 = \Psi_1 \\ \text{or} \ \ \Phi_1 = \mathbf{x} \Psi_1 \end{array}$	$'x \rightarrow tx'$	$\begin{split} & x \Phi_1 = t \Psi_1 \\ & \text{or} \ t \Phi_1 = x \Psi_1 \end{split}$
$' x ightarrow x_1 x'$		$\begin{array}{c} x \Phi_1 = x_1 \Psi_1 \\ \text{or} \ x_1 \Phi_1 = x^{\chi} \end{array}$	Ψ_1

We consider a set of Narrs sequences as a simple acyclic logic programming language $\mathscr L$ over the data Eqs.

Operational semantics of \mathscr{L}

An \mathscr{L} interpreter $WI_{\mathscr{L}}$ takes a finite sequence $(\sigma_1)(\sigma_2)...(\sigma_n)$ and a datum $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$.

The call $Wl_{\mathscr{L}}((\sigma_1)(\sigma_2)...(\sigma_n)$, $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$) returns T iff $\forall i, 1 \leq i \leq m (\Phi_i \sigma_1...\sigma_n = \Psi_i \sigma_1...\sigma_n)$, and F otherwise.

Given a sequence of n narrowings, the interpreter $\mathsf{WI}_{\mathscr{L}}$:

- does at most n steps (i.e. always terminates);
- for all equation lists $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$ returns either T or F, hence $WI_{\mathscr{L}}$ never falls in deadlock.

Specialization of \mathscr{L} -interpreters

Given the call $Wl_{\mathscr{L}}(P, \langle \Phi_i = \Psi_i \rangle_{i=1}^n)$, we replace the \mathscr{L} -program P with a parameter \mathcal{P} ranging over \mathscr{L} -programs. Thus, the specialization task is as follows.

 $WI_{\mathscr{L}}(\mathcal{P}, \langle \Phi_i = \Psi_i \rangle_{i=1}^n)$

The unfolding of this initial configuration results in a possibly infinite tree: a description of the runs of all possible \mathscr{L} -programs on $\langle \Phi_i = \Psi_i \rangle_{i=1}^n$.

- The program lengths are unknown ⇒ runs are described by means of graphs, which may contain loops.
- Most of the programs return F.

The verification task

Consider the following verification task over the $\mathscr L$ programs.

Given a word equation system $\mathcal{E}qs$, we say that the verification task succeeds iff $\mathcal{E}qs$ has solutions if and only if the residual program generated by specialization of $WI_{\mathscr{L}}(\mathcal{P}, \mathcal{E}qs)$ contains a function returning T.

We do not require the specialization to terminate for every system \mathcal{E}_{qs} .

Syntax of the residual programs

Syntax definition

Program ::= Rule; Program | ε

Rule ::= Name(Pattern) = Expression

Pattern ::= (Narr) | (Narr) ++ Pattern | p | ϵ Expression ::= T | F | Name(p)

There \mathbf{p} is a variable ranging over Narrs, Name is a function name.

Every function definition contains a single argument, and the only variable occurring at most once in its left- and right-hand sides is p.

Examples

Given the equation Ax = xA, a specializer produces the following residual program, where the entry point is F(p), and p is a variable ranging over Narrs.

Given the equation Ax = xB, the residual program is as follows, where the entry point is G(p).

The general interpreters' structure

Main loop Main function 1. Take the first program rule Subst function 2. Apply (substitute) Smpl function 3. Simplify the result

The function Smpl varies in the different interpreters.

- Smpl takes a constant equation list and returns a constant equation list with the same set of solutions.
- Smpl terminates on every constant equation list vPT 2021

Interpreters

Basic interpreter WIBase_L

Structure of Smpl function

Reduce prefixes --> Reduce suffixes

Further we refer to this simplification operation as Reduce.

Input format

p — ranges over sequences of the rules; $\mathcal{E}qs$ — ranges over equations.

 $Go(p, \mathcal{E}qs) = Main(p, Smpl(\mathcal{E}qs));$

 Specialization of the scheme WIBase_𝔅(𝒫, Φ = Ψ) successfully solves all the quadratic equations Φ = Ψ (e.g. xABy = yBAx). Interpreters

Splitting interpreter $WISplit_{\mathcal{L}}$

Structure of Smpl function

Input format

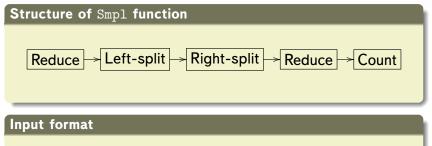
$$Go(p, \mathcal{E}qs) = Main(p, Smpl(0, \mathcal{E}qs));$$

- The first argument of Smpl (initially valued 0) is added to prevent an unwanted folding.
- Specialization of the scheme $WISplit_{\mathscr{L}}(\mathfrak{P}, \langle \Phi = \Psi \rangle)$ successfully solves every regular-ordered equation with var-repetitions $\Phi = \Psi$ (e.g. xxAB = BAxx).

.

Counting interpreter $\mathsf{WICount}_{\mathscr{L}}$

Finds contradictions, comparing variables and constants multisets in the left- and right-hand equation sides.



$$Go(p, \mathcal{E}qs) = Main(p, Smpl(0, \mathcal{E}qs));$$

• Specialization of WICount $_{\mathscr{L}}(\mathfrak{P}, \langle \Phi = \Psi \rangle)$ successfully solves every one-variable word equation $\Phi = \Psi$.

VPT 2021 18 / 26

Interpreters

Optimality lemma

Lemma

All the folding operations in the process graph of $Wl_{\mathscr{L}}(\mathcal{P}, \langle \Phi_i = \Psi_i \rangle_{i=1}^n)$ occur only on the pairs of the configurations:

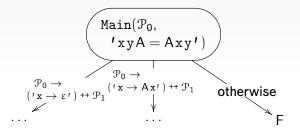
$$\operatorname{Main}(\mathcal{P}_{j}, \langle \Phi_{i}^{j} = \Psi_{i}^{j} \rangle_{i=1}^{n_{j}})$$

where $\ensuremath{\mathcal{P}}_j$ is a parameter, and the equation system does not contain parameters.

The lemma implies a mapping between the process graph of $Wl_{\mathscr{L}}(\mathcal{P}, \langle \Phi_i = \Psi_i \rangle_{i=1}^n)$ and the solution graph of the equation list $\langle \Phi_i = \Psi_i \rangle_{i=1}^n$.

.

Generating the narrowings

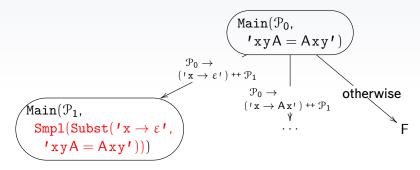


VPT 2021 00

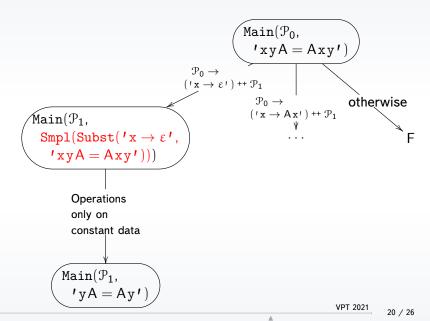
.

20 / 26

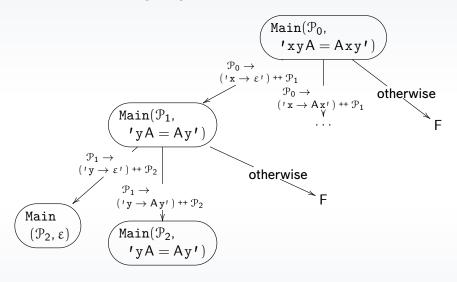
Generating the new configuration



Transient operations



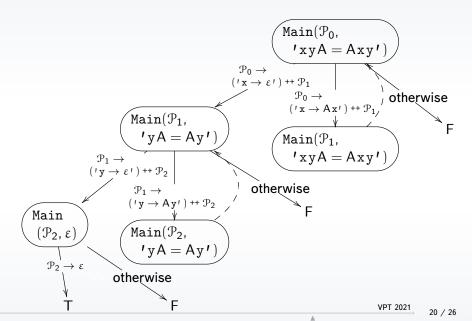
The next unfolding step



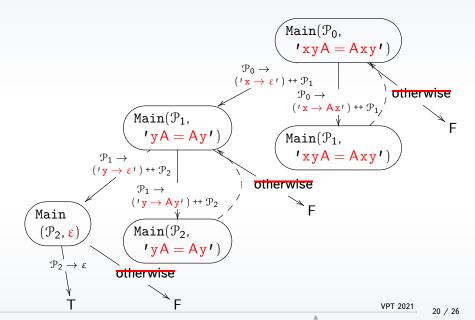
VPT 2021 20

20 / 26

The folding



Deleting interpreter data



The solution graph



VPT 2021 2

.

20 / 26

Summary of the verification results

The classes of equations not solvable by CVC4 and Z3Str3 in general but solvable by our verification scheme:

 the quadratic equations with no solution (e.g. x₁x₂x₃ABABAB = AAABBBx₂x₃x₁);

• the regular-ordered equations with var-repetitions and no solution (e.g. ABxxyy = xxyyBA).

The one-variable word equations not solvable by CVC4 and Z3Str3 also belong to the regular-ordered with repetitions and no solution.

VPT 2021 21 / 26

Benchmark results

Benchmark	Tests	Not terminating		
Denchinark		CVC4	Z3str3	$WICount_{\mathscr{L}}$
Track 1 (Woorpje)	200	8	13	21
Track 5 (Woorpje)	200	4	14	19
Our benchmark	50	21	28	10

Average time for WICount_{\mathcal{L}}: 3,5 min for one equation.

Time for CVC4 and Z3str3 is less than 2 min for all the solved equations.

.

Summary

Challenges

• The function composition depths of all the interpreters are implicitly bounded, i.e. they comprise formal rather than semantic loops.

• The lengths of the programs being interpreted are not explicitly bounded, because the lengths are finite while unknown.

VPT 2021 23 / 26

.

Our solutions to the challenges

- The renaming relation is used on the set of interpreters configurations along a given unfolding path.
- The word equations solved by the proposed method can be encoded with lisp lists.
- The interpreters are also can be written in the functional languages based on the list data rather than the string data.
- The suggested approach can be used by means of various specializers manipulating the lisp lists.

Summary

Open challenges

- Refine the method in order to solve wider (or other) classes of the word equations.
- Solving the word equations over the nested words.
- Solving equations over the regular expressions.
- Development of an online SMT string-solver based on the suggested method.

Summary

Conclusion

- Supercompilation can be used to solve word equations, based on the specialization of various interpreters of a simple logic language.
- The method has shown itself to be useful to prove unsatisfiability of the word equations sharing variables in left- and right-hand sides.

Thank you for your attention!