
Abstract Interpretation and
Program Transformation:
techniques running after each other
Agostino Cortesi
Ca’ Foscari University, Venice, Italy

VPT 2021
Ninth International Workshop on
Verification and Program Transformation

March 28th, 2021

Motivation

▪  An affectionate tribute to Alberto Pettorossi
▫  The man who at dinner proves theorems on paper napkins
▫  The man who never misses a Q&A session

▪  Share some general ideas on the different interrelationships between
Abstract Interpretation and Program Transformation techniques

▪  Bring attention to the needs of software engineering in “real world”

Setting the scene - I

▪  In the software lifecycle everything starts from requirements

▪  Functional requirements
▫  tell which services the system should provide (pre- & post-)
▪ Non-functional requirements
▫  constraints on the services (product NFRs)
▫  constraints on the way the services are realized (process

NFRs)

▪  Product and Process NFRs are not independent, and
conflicts arise often.

▪  The set of requirements represents the (possibly empty)
space of acceptable software product solutions

Setting the scene - I

▪  The starting point is the Requirement set R
▪  The final objective is an executable system that satisfies R
▪  Functional requirements
▪ Non functional product requirements
▪ Non functional process requirements

Requirements Execution Design & Coding

FUNCTIONAL

NON-FUNCTIONAL (PRODUCT)

NFR (PROCESS)

Setting the scene - II
▪  Program transformation and static analysis techniques apply to

source code written in a given programming language
▪  The aims of these techniques are various: optimization,

verification, etc.

Requirements Execution Design & Coding

FUNCTIONAL

NON-FUNCTIONAL (PRODUCT)

NFR (PROCESS)

CHOICE OF THE
PROGRAMMING

LANGUAGES

PROGRAM
MANIPULATION

The solution space of a requirements’ set

▪  Let R= FR U NFR be a set of requirements
▪  Let L be a set of programming languages
▪  The solution space S(R,L) of R in L is defined as the set of all the

program codes P written in any language in L such that:
 P U {t(I): t is an execution trace of c(P) with initial state in I} U I
 satisfies all the requirements r in R, where c(P) is the compiled
 version of P.

Monotonicity

▪  The elements of S(R,L) are syntactic objects
▪  If R is the emptyset (no requirement) then S(R,L) is the set of all the

programs that comply with the L syntax.
▪  Adding requirements reduces the solution space:

if R and R’ are requirement sets and R is a subset of R’,
then S(R’,L) is a subset of S(R,L)

▪  If the set R is not consistent then S(R,L) is empty

Observe and constraint

▪  A requirement can be seen as the result of two actions: observe and
constraint

▫  E.g. observe only the input and the output, and make the constraint
that the output is the square of the input

▫  E.g. observe only the execution time, and make the constraint on
the overall time efficiency

▫  E.g. observe the modular structure, of the program code and make
a constraint on the max size of each component

Observe and constraint (formally)

▪  At each requirement is associated a metric mr and a threshold tr

▪  P satisfies the requirement r if mr(P) ≥ tr

▫  E.g. observe only the input and the output and make the constraint
that the output is the square of the input
mr(P) = 1 if the output is always correct, 0 otherwise

▫  E.g. observe only the execution time and make the constraint on
the overall time efficiency
mr(P) = program execution time

▫  E.g. observe the modular structure of the program code and make
a constraint on the size of each component

▫  mr(P) = max{LOC(p): p is a procedure in P}

Abstract Interpretation

▪  Abstract interpretation formalizes the conservative approximation of
the semantics of computer systems.

▪  Approximation: observation of the behavior of a computer system at
some level of abstraction, ignoring irrelevant details;

▪  Conservative: the approximation cannot lead to any erroneous
conclusion.

▪  Consider a set of requirements R= FR U NFR and P be a program in
the solution space S(R,L)

Then, Abstract Interpretation of a program P just focuses on {t(I): t is
an execution trace of c(P) with initial state in I}

Abstract Interpretation

▪  By the abstract interpretation theory…

▪  If the abstract domain A is able to represent a subset S of the
requirement set R, having as a target the execution traces,

▪  and I# is an overapproximation of I in A,
▪  and the set of abstract traces {t(I#): t is a trace of P# with initial value I#}

satisfies the requirements in S,

▪  then P satisfies the requirements in S as well.

Example

Example

▪  Let us consider the possible execution traces

Example
▪ Let us consider the possible execution traces

Example
▪ Let us consider the possible execution traces

Example

Example

Example

Program Transformations

▪  Focus on syntactic modification of the program code
▫  Within the same programming language
▫  Translating into another programming language

▪  Based on transformation rules
▪  Correctness is usually proved with respect to an equivalence relation

(e.g. bisimilarity)

Correctness
▪  We may say that a program transformation is correct with

respect to a requirement set if the resulting process & product is
still compliant with respect to the entire requirements’ set

▪  Formally, a transformation rule z for L is R-compliant if P is an
element of S(R,L) implies z(P) is in S(R,L) too.

▪  However, the process NFR may also provide constraints on the
applyable program transformation techniques

Design & Coding Requirements Execution

FUNCTIONAL

NON-FUNCTIONAL (PRODUCT)

NON-FUNCTIONAL (PROCESS) PROGRAM
TRANSFORMATION

 public static void main(String[] args) {
 …
 if(num1 >= num2 && num1 >= num3)
 System.out.println(num1+" is the largest Number");
 else if (num2 >= num1 && num2 >= num3)
 System.out.println(num2+" is the largest Number");
 else
 System.out.println(num3+" is the largest Number");
 }

 public static void main(String[] args) {
 …
 if(kow >= labaad && kow >= terco)
 System.out.println(kow+" waa tirada ugu badan");
 else if (labaad >= kow && labaad >= terco)
 System.out.println(labaad+" waa tirada ugu badan");
 else
 System.out.println(terco+" waa tirada ugu badan");
 }

?

Syntactic equivalence?
Semantic equivalence?
User independence?

What are the effects on the code?
What are the effects on the exec trace?
What are the effects on the user?

What are the effects on the code?
What are the effects on the exec trace?
What are the effects on the user?

 public static void large(int num1, int num2, int num3) {
 …
 if(num1 >= num2 && num1 >= num3)
 System.out.println(num1+" is the largest Number");
 else if (num2 >= num1 && num2 >= num3)
 System.out.println(num2+" is the largest Number");
 else
 System.out.println(num3+" is the largest Number");
 }

 public static void weyn(int ow, int labaad, int terco) {
 …
 if(kow >= labaad && kow >= terco)
 System.out.println(kow+" waa tirada ugu badan");
 else if (labaad >= kow && labaad >= terco)
 System.out.println(labaad+" waa tirada ugu badan");
 else
 System.out.println(terco+" waa tirada ugu badan");
 }

?

247 characters
output in english
the largest number

251 characters
output in somali
the largest number

What are the effects on the code?
What are the effects on the exec trace?
What are the effects on the user?

 int add (int x, int y)
{
 return x + y;
}

int sub (int x, int y)
{
 return add (x, -y);
}

 int sub (int x, int y)
{
 return x - y;
}

?

Does inlining
preserve maintainability?

INLINING

What are the effects on the code?
What are the effects on the exec trace?
What are the effects on the user?

int a[100][300];

for (i = 0; i < 300; i++)
 for (j = 0; j < 100; j++)
 a[j][i] = 0;

int a[100][300];
int *p = &a[0][0];

for (i = 0; i < 30000; i++)
 *p++ = 0;

?

Does loop collapsing
keeps the program
analysis feasible?
LOOP
COLLAPSING

Static Analyses and Program
Transformations
▪  The soundness of program transformation often relies on the

result of a static analysis

Design & Coding Requirements Execution

FUNCTIONAL

NON-FUNCTIONAL (PRODUCT)

NON-FUNCTIONAL (PROCESS) PROGRAM
TRANSFORMATION

STATIC ANALYSIS

Examples

▪  Constant propagation relies on reaching definition analysis
▪  Dead code elimination relies on liveness analysis
▪  Hoisting relies on very busy expressions analysis
▪  Common subexpression elimination relies on available expressions

analysis
▪  Unswitching (a loop containing a loop-invariant if statement can be

transformed into an if statement containing two loops) relies on loop
invariance analysis

▪  … the list is much longer…

Design & Coding Requirements Execution

FUNCTIONAL

NON-FUNCTIONAL (PROCESS) PROGRAM
TRANSFORMATION

STATIC ANALYSIS

NON-FUNCTIONAL (PRODUCT)

Static Analyses and Program
Transformations
▪  And static analyses are performed on the resulting code
▫  to find bugs & vulnerabilities
▫  to support the assessment of requirement satisfaction

Requirements Execution

FUNCTIONAL

NON-FUNCTIONAL (PRODUCT)

NON-FUNCTIONAL (PROCESS) PROGRAM
TRANSFORMATION

STATIC ANALYSIS

Design & Coding

Program transformation may help
static analysis too
▪ Requirement: output x is even

x=0;
for (i = 0; i < 100; i++)
 x=x+3;

PARITY
ANALYSIS

x is even

x is odd

x is lub(even, odd) = TOP

x is TOP

x is lub(TOP, odd) = TOP

TOP

BOT

even odd

x is BOT

Program transformation may help
static analysis too
▪ Requirement: output x is even

x=0;
for (i = 0; i < 100; i++)
 x=x+3;

x=0;
for (i = 0; i < 100; i += 2)
{
 x=x+3;
 x=x+3;
}

PARITY
ANALYSIS

Loop
Unrolling

PARITY
ANALYSIS

Program transformation may help
static analysis too
▪ Requirement: output x is even

x=0;
for (i = 0; i < 100; i += 2)
{
 x=x+3;
 x=x+3;
}

TOP

BOT

even odd

x is BOT
x is even

x is even

x is odd

x is even

Program transformation may help
static analysis too
▪ Requirement: output x is even

x=0;
for (i = 0; i < 100; i += 2)
{
 x=x+3;
 x=x+3;
}

TOP

BOT

even odd

x is BOT
x is even

x is even

x is odd

x is even

x is lub(even,even)=even

x is lub(even,even)=even

x is lub(odd,odd)=odd

x is lub(even,even)=even

x is even

Program transformation may help
static analysis too
▪ Requirement: output x is even

x=0;
for (i = 0; i < 100; i++)
 x=x+3;

x=0;
for (i = 0; i < 100; i += 2)
{
 x=x+3;
 x=x+3;
}

PARITY
ANALYSIS

Loop
Unrolling

PARITY
ANALYSIS

✓

Static Analyses and Program
Transformations: a third scenario

▪  Program transformation can be needed for static analysis
purposes only (with no effect on the code to be delivered)

Requirements Execution

FUNCTIONAL

NON-FUNCTIONAL (PRODUCT)

NON-FUNCTIONAL (PROCESS) PROGRAM
TRANSFOR

MATION
STATIC ANALYSIS

Design & Coding

JB and CIL bytecode languages

▪ Machine-independent low-level languages
▪  Interpreted or compiled Just-In-Time
▪  Based on an array of local variables for source code

variables, operand stack of temporary values, heap
▪ Object-oriented

javac

MSBuild
CIL

JVM Execute

Execute .NET RE

The Julia static analyzer

javac

BCEL

MSBuild

Checkers

Fixpoint
engine

Framework

CIL

Framework

CIL and JB look similar but…
▪ CIL and JB differ
▫  for the way of performing parameter passing
▫  for the way they handle object creation
▫  for the way the allocate memory slots
▫ CIL uses pointers (also in type unsafe ways) while JB has

no notion of pointers

javac

MSBuild
CIL

JVM Execute

Execute .NET RE

Concrete states

1 0.4 3
local

variables

12

0.4

0

operand
stack heap

f 1

g null

3
local

variables

12

0.4

0

operand
stack heap

f 1

g null

1 0.4
arguments

0 1 3 4

0 1

0 1

Java Bytecode MS CIL

States translation

1 0.4 3
local

variables

12

0.4

0

operand
stack heap

3
local

variables

12

0.4

0

operand
stack heap

f 1

g null

1 0.4
arguments

0 1 3 4

0 1

0 1

Java Bytecode (JB) vs. CIL

JB: typed
CIL: untyped

JB: local vars
CIL: local vars + args

CIL: direct pointers

CIL: unique values
JB: 32- and 64-bit values

JB: typed
CIL: untyped

JB: static and dynamic
CIL: generic

•  CIL more expressive than JB
•  Direct references are

simulated by constructing a
wrapper object

•  We focus on CIL derived from
safe C# code only (where
direct pointers apply only to ref
and out method parameters)

Concrete semantics

add 1

2

op. stack
3

op. stack

iadd 1

2

op. stack
3

op. stack

iload 4 ldloc 1
0

op. stack

4

0

op. stack

3 4vars

1 2 args

3 4vars

1 2 args
0

op. stack

4

0

op. stack

1 2 3 4

vars
1 2 3 4

vars

0 1 3 4 0 1 3 4

0 1

0 1

0 1

0 1

+ +

Java Bytecode MS CIL

Concrete semantics

Concrete semantics

Statement translation

int

int

operand
stack

add iadd

ldloc 1
iload 4

obj int local vars

int long arguments 1 2 1 + +
0 1

0 1

Statement translation

Correctness of the translation

 st
CIL σCIL σ’CIL

   Τσ Τσ

 Τ[st,Κ]
 JB Τσ[σCIL] σ’JB

 means equal up to instrumentation variables introduced in
 the translation process

Correctness

0

op. stack

4

0

op. stack

3 4vars

1 2 args

3 4vars

1 2 args ldloc 1

iload 4

0

op. stack

4

0

op. stack

1 2 3 4

vars
1 2 3 4

vars

4

0

op. stack

1 2 3 4

vars

0 1 3 4 0 1 3 4

0 1 3 4

0 1

0 1

0 1

0 1

What we learned from the CIL to JB
transformation…
▪  The translation from CIL to JN scales well:

▫  Translating all the .NET libraries (500K methods, about 5MLOCs) took about
24 minute, i.e. 4 methods per milliseconds. It required at most 238 MB of RAM

▫  On 5 large GitHub projects (more than 250 KLOCs) the analysis took 9
minutes, with only 40 sec. consumed for the translation from CIL to JB

▪  On the GitHub projects analysed the analysis reported about 2K critical or major
warnings. Only 4% of them are false alarms due to the CIL to JB translation

▪  About libraries: the translation succeeds to translate 99,4% of their methods
(only unsafe methods cannot be translated)

▪  The translation may also be applied to let Java and C# code interoperate, by
compiling both of them in JB

▪  Which properties of the code are preserved by the transformation rules?

Trasformations as abstractions:
the Cousot ’02 overall vision

What was missing there?

αs(P) = αs(t[P]) OBSERVE THE CODE OBSERVE THE CODE

The resulting picture

αs(P) = αs(t[P])

PROCESS REQUIREMENTS

PRODUCT REQUIREMENTS

Offline program transformation

αs(P) = αs(t[P])
PROCESS REQUIREMENTS

PRODUCT REQUIREMENTS

Conclusions

▪  Program Transformation and Abstract interpretation interact in
different ways

▪  The key actions are just: observe, abstract and verify

▪  Correctness should refer to the whole Requirement set

▪  There are still many challenging issues that wait for us!

Thanks!

Tino Cortesi, cortesi@unive.it

Our last publications - Ca’ Foscari SSV

▪  M.Roy, N.Deb, A.Cortesi, R.Chaki, N.Chaki. “NFR-Aware Prioritization of
Software Requirements”. Journal of Systems Engineering, Wiley, in print (2021)

▪  L.Negrini, V.Arceri, P.Ferrara and A.Cortesi: “Twinning automata and regular
expressions for string static analysis”. Proc. VMCAI’21 - 22nd Intern.Conf. on
Verification, Model Checking, and Abstract Interpretation, Springer LNCS (2021)

▪  Ferrara, P., Mandal, A.K., Cortesi, A., Spoto, F: “Static analysis for discovering
IoT vulnerabilities”. International Journal on Software Tools for Technology
Transfer, Springer (2021)

▪  P.Ferrara, A.Cortesi, F.Spoto: “From CIL to Java bytecode: Semantics-based
translation for static analysis leveraging”. Sci. Comput. Program. Vol. 191:
102392, Elsevier (2020)

▪  A.Jana, R.Halder, K.V.Abhishekh, S.Devi Ganni, A.Cortesi: “Extending Abstract
Interpretation to Dependency Analysis of Database Applications“. IEEE
Transactions on Software Engineering. Vol. 46(5): 463-494 (2020)

▪  A.K. Mandal, F.Panarotto, A.Cortesi, P.Ferrara, F.Spoto: “Static analysis of
Android Auto infotainment and on-board diagnostics II apps”. Software Practice
and Experience. Vol. 49(7): 1131-1161 (2019)

