
Submitted to:
VPT 2020

c© Jones, Bhaskar, Kop, Simonsen
This work is licensed under the
Creative Commons Attribution License.

Cons-free Programs and Complexity Classes between
LOGSPACE and PTIME (invited talk)

Neil D. Jones
Computer Science Department

University of Copenhagen
neil@diku.dk

Siddharth Bhaskar
Computer Science Department

University of Copenhagen
sbhaskar@di.ku.dk

Cynthia Kop
Department of Software Science
Radboud University. Nijmegen

C.Kop@cs.ru.nl

Jakob Grue Simonsen
Computer Science Department

University of Copenhagen
simonsen@di.ku.dk

Programming language concepts are used to give some new perspectives on a long-standing open
problem: is LOGSPACE = PTIME ?

Introduction

“P =? NP” is an archetypical question in computational complexity theory, unanswered since its formu-
lation in the 1970s. The question: Is the computional power of polynomially time-bounded programs
increased by adding the ability to “guess” (i.e., nondeterminism) ? This is interesting because “polyno-
mial time” is a plausible candidate for “feasibly solvable”.

Perhaps the second most important question is “L =? P”: whether LOGSPACE = PTIME. Here L is the
set of problems solvable by cursor programs. These also run in polynomial time, but have no rewritable
storage1. Both questions remain open since Cook and Savitch’s pathbreaking papers in the 1970s [1, 7].

We investigate the question “L =? P” from the viewpoint of functional programming languages: a
different viewpoint than Turing machines. The link is earlier characterisations of L and P by “cons-free”
programs [3, 4, 5]. The net result: a deeper and finer-grained analysis, illuminated by perspectives both
from programming languages and complexity theory.

Some new definitions and theorems give fresh perspectives on the question L =? P. We use programs
to define and study complexity classes between the two. By [3, 4, 5] cursor programs exactly capture
the problem class L; and cursor programs with recursive function definitions exactly capture the problem
class P. A drawback though is that recursive cursor programs can run for exponential time, even though
they exactly capture the decision problems that can be solved in polynomial time by Turing machines.

The goal of this talk is to better understand the problems in the interval between classes L and P.
Problem class NL is already-studied in this interval, and it is the logspace analog of similar long-standing
open problems. Kuroda’s two “LBA problems” posed in 1964 [6]: (1) Is DSPACE(n) =? NSPACE(n) and
(2) Is NSPACE(n) closed under complementation? After both stood unresolved for 23 years, (2) was
finally answered ”yes” (independently in 1987) by Immerman and by Szelepcsényi [2, 8]: NL and larger
nondeterministic space classes (with constructive bounds) are closed under complementation.2

1One take: a cursor program is a multihead two-way read-only finite automaton. A more classical but equivalent version: a
2-tape Turing machine with n-bit read-only input tape 1, that uses at most O(logn) bits of storage space on read-write tape 2.

2Kuroda’s other LBA problem DSPACE(n) =? NSPACE(n) is still open, as well as the question L =? NL.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Cons-free Programs and Complexity Classes between LOGSPACE and PTIME

We study the problems solvable by an in-between class CFpoly: recursive cursor programs that run in
polynomial time. Recursion is in some sense orthogonal to the ability to make nondeterministic choices,
i.e., to “guess”. The class CFpoly seems more natural than NL from a programming perspective.

References
[1] S. A. Cook (1971): Characterizations of pushdown machines in terms of time-bounded computers. Journal of

the ACM 18(1), pp. 4–18.
[2] Neil Immerman (1988): Nondeterministic space is closed under complementation. SIAM J. Comput. 17(5),

pp. 935–938.
[3] Neil D. Jones (1997): Computability and complexity - from a programming perspective. Foundations of

computing, MIT Press. 1 edition.
[4] Neil D. Jones (1999): LOGSPACE and PTIME characterized by programming languages. Theoretical Com-

puter Science 228(1-2), pp. 151–174.
[5] Neil D. Jones (2001): The expressive power of higher-order types or, life without CONS. Journal of Functional

Programming 11(1), pp. 55–94.
[6] Sige-Yuki Kuroda (1964): Classes of languages and linear-bounded automata. Information and Control 7(2),

pp. 207–223.
[7] Walter J. Savitch (1970): Relationships between nondeterministic and deterministic tape complexities. J.

Comput. Syst. Sci. 4(2), pp. 177–192.
[8] Róbert Szelepcsényi (1988): The method of forced enumeration for nondeterministic automata. Acta Inf.

26(3), pp. 279–284.


