
Submitted to:
VPT 2020

c© Moa Johansson
This work is licensed under the
Creative Commons Attribution License.

Theory Exploration:
Conjecturing, Testing and Reasoning about Programs

(Invited Talk)

Moa Johansson
Chalmers University, Gothenburg, Sweden

moa.johansson@chalmers.se

Theory Exploration is a technique for automatically discovering (and proving) interesting properties
about programs. This has successfully been used for automation of inductive proofs, where theory
exploration can be used to discover auxiliary lemmas needed in all but the simplest inductive proofs.
A richer background theory, consisting of additional equational properties, is constructed automat-
ically, allowing harder theorems to be proved automatically. I believe theory exploration can also
have applications in program transformation and I look forward to discuss such possibilities at this
workshop.

We have developed several systems for theory exploration, the most recent ones being QuickSpec
and Hipster. QuickSpec is a tool written in Haskell concerned with the task of efficiently conjecturing
candidate properties about functional programs, using term generation and property based testing. It
produces a set of candidate properties, which can either be directly presented to the user, or passed to
an automated theorem prover. Hipster is our link to such a theorem prover, and is built on top of the
proof assistant Isabelle/HOL. Hipster communicates with QuickSpec, and will attempt to automati-
cally prove candidate properties, possibly using other discovered properties as lemmas. Naturally, we
only want to present “interesting” properties to the user, not swamping the output with trivial equa-
tions. But how do we define what is to be considered interesting? In Hipster, the user can control this
by configuring the system with two reasoning strategies: If the system can prove something by the
“easy reasoning strategy” (e.g. simplification) we may discard it as uninteresting, while properties
requiring proof by the “hard reasoning strategy” (e.g. induction) are presented to the user.

I will also mention some of our ongoing work, where we consider extensions of theory explo-
ration for very large theories (or programs), which otherwise are computationally expensive.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

