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It is known that the verification of imperative, functional, and logic programs can be

reduced to the satisfiability of constrained Horn clauses (CHCs), and this satisfiabil-

ity check can be performed by using CHC solvers, such as Eldarica and Z3. These

solvers perform well when they act on simple constraint theories, such as Linear Integer

Arithmetic and the theory of Booleans, but their efficacy is very much reduced when

the clauses refer to constraints on inductively defined structures, such as lists or trees.

Recently, we have presented a transformation technique for eliminating those induc-

tively defined data structures, and hence avoiding the need for incorporating induction

principles into CHC solvers. However, this technique may fail when the transforma-

tion requires the use of lemmata whose generation needs ingenuity. In this paper we

show, through an example, how during the process of transforming CHCs for eliminat-

ing inductively defined structures one can introduce suitable predicates, called difference

predicates, whose definitions correspond to the lemmata to be introduced.

1 Introduction

In recent years it has been shown that the verification of program properties can be performed by proving

the satisfiability of sets of constrained Horn clauses (CHCs). Since a general decision procedure for

proving satisfiability of CHCs does not exist, the best one can do is to propose heuristics, and indeed

various heuristics for proving satisfiability have been proposed in the literature. Among them we recall:

(i) Counterexample Guided Abstraction Refinement (CEGAR) [2], (ii) Craig interpolation [15], and

(iii) Property Directed Reachability (PDR) [1, 11]. Moreover, a variety of tools for satisfiability proofs,

called CHC solvers, has been made available to the scientific community. Let us mention: Eldarica [12],

HSF [10], RAHFT [13], VeriMAP [4], and Z3 [16]. Most of those tools work well on simple constraint

theories, such as the theory of Linear Integer Arithmetic (LIA) and the theory of Booleans (Bool).

Unfortunately, when the properties to be verified refer to programs that act on inductively defined

data structures, such as lists or trees, then the satisfiability proofs via CHC solvers becomes much harder,

or even impossible, because those solvers do not usually incorporate induction principles relative to the

data structures in use.

To avoid this difficulty, two approaches have recently been suggested. The first one consists in the

incorporation into the CHC solvers of suitable induction principles [17, 19], and the second one consists
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2 Lemma Generation for Horn Clause Satisfiability

in the use of a CHC transformation strategy, based on the familiar fold/unfold rules [9, 18], whose goal

is to generate an equisatisfiable set of CHCs where the inductively defined data structures are removed.

In this paper we will follow this second approach and, in particular, we will consider the Elimination

Algorithm presented in a previous work of ours [8], which implements a transformation strategy for

removing inductively defined data structures. Thus, if the clauses derived by the Elimination Algorithm

have all their constraints in the LIA or Bool theory, then no modifications of the CHC solvers are needed

to perform the required satisfiability proofs.

As usual in the transformation-based approach, the success of the Elimination Algorithm depends on

the introduction of suitable predicate definitions.

The novel contribution of this paper is a technique, presented through an example, for introducing

those suitable predicates, which we call difference predicates, because they express the relation between

the values computed by two different functions. The definition of those predicates also corresponds to

the statement of the lemmata which should be proved if one were to show the properties of interest

by structural induction. Our example shows that, by extending the Elimination Algorithm with the

introduction of difference predicates, we can remove inductively defined data structures in cases where

the plain Elimination Algorithm would not terminate.

In Sections 2 and 3, we will present the verification of a property of a functional program that acts

on lists of integers, by first (i) deriving by transformation, using a suitable difference predicate, a set of

CHCs on LIA constraints only (that is, constraints on lists will no longer be present), and then (ii) proving

the satisfiability of the derived CHCs by using the solver Z3 acting on LIA constraints only. Note that

neither Z3 nor Eldarica are able to check satisfiability of the clauses which are obtained by the direct

translation into CHCs of the functional program and the property, before the transformation of Step (i).

2 Horn Clause Satisfiability for Program Verification

Let us consider the following functional program InsertionSort, which we write using the OCaml syn-

tax [14]:

type list = Nil | Cons of int * list

let rec ins i l =

match l with

| Nil -> Cons(i,Nil)

| Cons(x,xs) -> if i<=x then Cons(i,Cons(x,xs)) else Cons(x,ins i xs)

let rec insertionSort l =

match l with

| Nil -> Nil

| Cons(x,xs) -> ins x (insertionSort xs)

let rec sumlist l =

match l with

| Nil -> 0

| Cons(x,xs) -> x + sumlist xs

In this program: (i) the insertionSort function sorts a list of integers, in ascending order, according

to the familiar insertion sort algorithm, and (ii) the sumlist function computes, given a list of integers,

the sum of all integers in that list.
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Suppose we want to prove the following Property Sum stating that the sum of the elements of a list l

is equal to the sum of the elements of the sorted list insertionSort l. Thus, in formulas, we want to

prove that:

∀l. sumlist l= sumlist (insertionSort l) (Property Sum)

If we want to make a proof of Property Sum by induction on the structure of the list l, we have to use a

lemma stating that the sum of the list ins x l obtained by inserting the element x in the list l is obtained

by adding x to the sum of the elements of l. This lemma can be expressed by the following formula:

∀x,l. sumlist (ins x l) = x+(sumlist l) (Lemma L)

The technique we present in this paper for the proof of Property Sum avoids the explicit introduction of

this lemma, and thus the use of the induction principle on lists.

Let us start off by considering the translation of the functional program InsertionSort and Prop-

erty Sum into a set of CHCs as explained in the literature [8, 19]. In our example, we get the following

set of clauses 1:

1. false :- M=\=N, sumlist(L,M), insertionSort(L,SL), sumlist(SL,N).

2. sumlist([],0).

3. sumlist([X|Xs],M) :- M=X+N, sumlist(Xs,N).

4. ins(I,[],[I]).

5. ins(I,[X|Xs],[I,X|Xs]) :- I=<X.

6. ins(I,[X|Xs],[X|Ys]) :- I>X, ins(I,Xs,Ys).

7. insertionSort([],[]).

8. insertionSort([X|Xs],SL) :- insertionSort(Xs,SXs), ins(X,SXs,SL).

In these clauses, sumlist(L,M), insertionSort(L,SL), and ins(X,L,L1) hold iff sumlist L = M,

insertionSort L= SL, and ins X L = L1, respectively, hold in program InsertionSort.

As usual, we assume that all clauses are universally quantified in front. Clause 1 translates Prop-

erty Sum as it stands (using the functional notation) for:

∀l,m,sl,n. sumlist l= m ∧ insertionSort l= sl ∧ sumlist sl= n → m= n

and clauses 1–8 are satisfiable iff Property Sum holds. Unfortunately, state-of-the-art CHC solvers, such

as Eldarica or Z3, fail to prove satisfiability of clauses 1–8, because those CHC solvers do not incorporate

any induction principle on lists.

Moreover, starting from clauses 1–8, the Elimination Algorithm [8] which has the objective of elim-

inating lists from CHCs, is not able to derive a set of clauses without lists, and this inability is due to the

fact that the algorithm is unable to introduce a predicate definition corresponding to the needed Lemma L.

3 Transformation of Constrained Horn Clauses

In this section we show that, if we extend the Elimination Algorithm [8] by a technique for introducing

difference predicates, we are able to transform clauses 1–8 into a set of clauses without lists and we will

see that the definition of the difference predicate we will introduce exactly corresponds to Lemma L.

First, we briefly recall the Elimination Algorithm which makes use of the well-known transformation

rules define, fold, unfold, and replace for CHCs [9, 18]. The details can be found in the paper where the

algorithm was originally presented [8].

1We use Prolog-like syntax for writing clauses, instead of the more verbose SMT-LIB syntax.

The predicates = (equal), =\= (not-equal), =< (less-or-equal), and > (greater) denote constraints between integers.
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We assume that the basic types are the integers and the booleans. We say that a clause has basic

types if all its variables have basic types. In the outline of the algorithm below, Cls is the set of input

clauses which define the predicates occurring in the set Gs of input goals. Defs is the set of definition

clauses which are introduced by the algorithm and used for folding. Defs accumulates the sets NewDefs

of definition clauses which are introduced during the various iterations of the while-do statement. FldCls,

UnfCls, and RCls are the sets of clauses which are obtained after the applications of the folding, unfold-

ing, and replace rules, respectively. The Elimination Algorithm works by enforcing that all new predicate

definitions which are introduced have their arguments of basic types only.

The Elimination Algorithm E .

Input: A set Cls∪Gs, where Cls is a set of definite clauses and Gs is a set of goals;

Output: A set TransfCls of clauses such that: (i) Cls∪Gs is satisfiable iff TransfCls is satisfiable, and

(ii) every clause in TransfCls has basic types.

Defs := /0; InCls := Gs; TransfCls := /0;

while InCls 6= /0 do

Define-Fold(Defs, InCls,NewDefs,FldCls);

Unfold(NewDefs,Cls,UnfCls);

Replace(UnfCls,Cls,RCls);

Defs := Defs∪NewDefs; InCls := RCls; TransfCls := TransfCls∪FldCls;

We start off the transformation of clauses 1–8 so to get clauses without list variables by applying the

Elimination Algorithm E to Cls = {clause 2, . . . , clause 8} and Gs = {clause 1}. Thus, the first step is

the introduction of a new predicate new1 by the following clause (here and in what follows the numbers

under the body of the clauses identify the various atoms):

9. new1(M,N) :- sumlist(L,M), insertionSort(L,SL), sumlist(SL,N).

(9.1) (9.2) (9.3)

The arguments of new1 are the integer variables occurring in the body of clause 9. Thus, by folding, we

derive a new clause without occurrences of list variables:

10. false :- M=\=N, new1(M,N).

We proceed by eliminating lists from the body of clause 9. By unfolding clause 9, we replace the

predicate calls by their definitions and we derive the following clauses:

11. new1(0,0).

12. new1(M1,N1) :- M1=H+M, sumlist(T,M), insertionSort(T,ST), ins(H,ST,SU),

(12.1) (12.2) (12.3)

sumlist(SU,N1).

(12.4)

Now, in order to fold clause 12 using clause 9 and derive a recursive definition of new1, we depart

from the Elimination Algorithm and we propose a new technique that introduces a so-called difference

predicate diff. The definition of diff is based on the mismatch between clause 9 and clause 12. The

new technique is applied according to the following six steps.

• Step 1. Embed. We have that the body of clause 9 is embedded in the body of clause 12, that is, each

distinct atom in the body of clause 9 is a variant of a distinct atom in the body of clause 12. In particular,

(i) 9.1 is a variant of 12.1, (ii) 9.2 is a variant of 12.2, and (iii) 9.3 is a variant of 12.4. However,
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clause 12 cannot be folded using clause 9, because the conjunction (9.1, 9.2, 9.3) does not match

the conjunction (12.1, 12.2, 12.4) (see arguments SL, ST, and SU). It can be shown that no further

unfolding of clause 12 will generate a clause whose body is an instance of the body of clause 9, and

indeed the Elimination Algorithm will not terminate.

• Step 2. Rename. We rename apart clause 9, which we would like to use for folding, so as to have

variable names that do not occur anywhere else. We get:

9a. new1(Ma,Na) :- sumlist(La,Ma), insertionSort(La,SLa), sumlist(SLa,Na).

(9a.1) (9a.2) (9a.3)

• Step 3. Match. We match the body of clause 9a against the body of clause 12 to be folded. We manage

to match the conjunction (9a.1, 9a.2) with the conjunction (12.1, 12.2) by the renaming substitution

σ = {La/T, Ma/M, SLa/ST,}, but we cannot extend this matching to the remaining atom 9a.3 because

the substitution {SLa/SU, Na/N1} is inconsistent with σ . By applying the substitution σ , we get the

following clause 9m, which is a variant of clause 9a:

9m. new1(M,Na) : - sumlist(T,M), insertionSort(T,ST), || sumlist(ST,Na).

(9m.1) (9m.2) (9m.3)

This clause 9m is the actual clause which we will use for folding at Step 6 below. The marker || we

have placed in its body has no logical meaning and it is used only as a separator between the matching

conjunction (9m.1, 9m.2) to its left and the non-matching conjunction 9m.3 to its right (in general, also

the non-matching conjunction may consist of more than one atom).

Also for the clause to be folded (clause 12 in our case) we define the matching and the non-matching

conjunctions: (i) the matching conjunction of the clause to be folded is equal to the one of the clause we

will use for folding (atoms 12.1 and 12.2 in our case), while (ii) the non-matching conjunction of the

clause to be folded is the conjunction of its body atoms (atoms 12.3 and 12.4 in our case) that do not

belong to the matching conjunction.

• Step 4. Introduce a Difference Predicate. Now, in order to fold clause 12 using clause 9m we need to

replace the non-matching conjunction of clause 12 by the non-matching conjunction of clause 9m. This

replacement can be done at the expense of adding to the body of clause 12 a new atom with a so-called

difference predicate. This atom addition is required for preserving satisfiability of the derived clauses.

In our case the difference predicate we introduce, called diff, is defined as follows:

13. diff(H,Na,N1) : - ins(H,ST,SU), sumlist(SU,N1), || sumlist(ST,Na).

(12.3) (12.4) (9m.3)

Let us explain how this clause is constructed. Its body is made out of two conjunctions (separated by

the || marker): (i) the first one is the non-matching conjunction of the clause to be folded (atoms 12.3

and 12.4 in our case), and (ii) the second one is the non-matching conjunction of the clause we will

use for folding (atom 9m.3 in our case). The arguments H, Na, and N1 of the new predicate diff are

the non-list variables occurring in the clause body we have now constructed (obviously these arguments

can be placed in any order). This choice of the arguments of diff is in accordance with our goal of

eliminating lists.

Note that the marker || separates the atoms to the left that are the atoms to be removed from the body

of clause 12 from the atoms to its right that are the atoms to be added to the body of clause 12 so that

folding may be performed (see Step 6 below).

The reader may note that the difference predicate diff(H,Na,N1) expresses the relation between

the non-list output variable N1 of the atoms 12.3 and 12.4 that are removed and the non-list output
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variable Na of the atom 9m.3 that is added (the input and output variables of the predicates ins and

sumlist in the atoms 12.3, 12.4, and 9m.3 are defined as expected, when considering the associated

functional expressions (ins H ST) = SU, (sumlist SU) = N1, and (sumlist ST) = Na, respectively).

Indeed, clause 13 can be read (in functional notation) as follows:

if sumlist (ins H ST) = N1 and sumlist ST = Na in program InsertionSort, then the relation be-

tween Na and N1 is given by diff(H,Na,N1).

• Step 5. Replace. In the clause to be folded (clause 12 in our case) we replace the non-matching

conjunctions (atoms 12.3 and 12.4 in our case) by: (i) the non-matching conjunction of the clause we

will use for folding (that is, atom 9m.3), and (ii) the head of the definition of diff. By doing so we get

the following clause:

12r. new1(M1,N1) :- M1=H+M, sumlist(T,M), insertionSort(T,ST), sumlist(ST,Na),

diff(H,Na,N1).

• Step 6. Fold. We fold clause 12r using clause 9m (this folding is possible by construction) and we get:

12f. new1(M1,N1) :- M1=H+M, new1(M,Na), diff(H,Na,N1).

It can be shown that the above Steps 1–6 preserve satisfiability of clauses in the sense that the clauses

after those steps are satisfiable iff so are the clauses before those steps. This satisfiability preservation

is a needed requirement for being able to prove property Sum by performing a satisfiability check. The

detailed proof of this fact is outside the scope of the present paper. In particular, regarding the correctness

of the replacement of Step 5, it can be shown that:

if (H1) sumlist(L,N) and ins(X,S,S1) define total functional relations, and

(H2) diff(H,Na,N1) is a functional relation, that is, there is a function f such that

diff(H,Na,N1) implies f(H,Na)=N1,

then the replacement of clause 12 by clauses 12f and 13 produces an equisatisfiable set of clauses.

Note that Hypothesis (H1) holds by construction, because the predicates sumlist and ins come from

the translation of fragments of functional programs that terminate for all input values.

Note also that in the above procedure for introducing difference predicates no extra variable renaming

of clauses is necessary besides those of Step 2.

The clauses we have derived so far are clauses 10, 11, 12f, 13, together with the clauses defining

the predicates sumlist and ins, that is, clauses 2–6. Still clause 13, which defines the predicate diff,

and clauses 2–6 have list variables and we should eliminate them by applying the Elimination Algo-

rithm. If we do so by starting from Cls = {clause 2, . . . , clause 6} and InCls = {clause 13}, we derive

the following final clauses (during this elimination there is no need of introducing any new difference

predicate):

10. false :- M=\=N, new1(M,N).

11. new1(0,0).

12f. new1(M1,N1) :- M1=H+M, new1(M,Na), diff(H,Na,N1).

14. diff(H,0,N1) :- N1=H.

15. diff(H,Na,N1) :- H=<X, Na=X+N2, N1=H+Na, new2(N2).

16. diff(H,Na,N1) :- H>X, Na=X+N2, N1=X+N3, diff(H,N2,N3).

17. new2(0).

18. new2(N) :- N=X+N1, new2(N1).
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This final set of clauses has no list arguments and all the constraints belong to the LIA theory. The CHC

solver Z3 proves that this set of clauses is satisfiable by computing the following model expressible in

LIA 2:

D1. new1(M,N) ≡ M=N

D2. new2(N) ≡ true

D3. diff(H,Na,N1) ≡ H+Na=N1

Indeed, by replacing the left-hand side predicates by the corresponding right-hand side LIA formulas in

the final set of clauses 10, 11, 12f and 14–18, we get a set of valid implications. Note that, by D3 we

have that if diff(H,Na,N1) holds, then the function f such that f(H,Na)=N1 is the familiar ‘+’ function

on integers.

Thus, we have proved that Property Sum holds for the given program InsertionSort.

• Note on the Introduction of Difference Predicates and Lemma Generation. If in clause 13 defining the

difference predicate diff we replace its head diff(H,Na,N1) by the constraint H + Na = N1 computed

by Z3, we exactly get the CHC translation of Lemma L needed for proving Property Sum by structural

induction on lists. Thus, the introduction of the difference predicates can be viewed, at least in some

cases, as a way of generating the lemmata required during proofs by structural induction.

4 Concluding Remarks

Let us briefly discuss how the correctness and mechanization of the transformation technique presented

through an example in this paper can be obtained for large classes of clauses.

The main hypothesis needed to show the correctness of our transformation technique is that the pred-

icates occurring in the initial set of clauses define total functional relations. This property is guaranteed

by construction whenever those predicates are the CHC translation of functional programs that terminate

for all inputs. One more hypothesis that is needed is the functionality of the difference predicates intro-

duced during the transformation. This functionality requirement can be checked in the model computed

by the CHC solver, which is expressed as a set of LIA constraints.

In order to mechanize our transformation technique, we need to extend the Elimination Algorithm [8]

with a suitable automated mechanism for introducing difference predicates. As shown in Section 3, this

mechanism can be based on matching the clauses obtained by unfolding (clause 12, in our example)

against the predicate definitions introduced in previous transformation steps (clause 9, in our example),

and computing the “difference” between their bodies. More sophisticated mechanisms may take into

account the constraints occurring in the clauses, and may apply widening techniques which have been

considered in other transformation methods [3, 13]. We have made initial steps towards an implemen-

tation of such an extended Elimination Algorithm using the VeriMAP transformation and verification

system [4].

To summarize, this paper presents ongoing work which follows a very general approach to program

verification based on constrained Horn clauses. As shown in the example we have presented, the re-

duction of a program verification problem to a CHC satisfiability problem can often be obtained by a

straightforward translation. However, proving the satisfiability of the clauses obtained by that translation

is, in many cases, a much harder task. In a series of papers [3, 5, 6, 8, 7, 13] it has been shown that

by combining various transformation techniques, such as Specialization and Predicate Pairing, we can

derive equisatisfiable sets of clauses where the efficacy of the CHC solvers is significantly improved.

2By using ‘z3_4.8.4 -smt2 sumlist.transf.smt fp.engine=spacer dump_models=true’.
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This approach avoids the burden of implementing very sophisticated solving strategies depending on the

class of satisfiability problems to be solved. In particular, in the class of problems considered in this

paper consisting in checking the satisfiability of clauses over inductively defined data structures, we can

avoid to implement ad hoc strategies that deal with induction proofs. We leave it for future work to

experiment on various benchmarks available from the literature and to test whether our approach pays

off in practice.
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