
Submitted to:
VPT 2019

© J. P. Gallagher
This work is licensed under the
Creative Commons Attribution License.

Polyvariant program specialisation
with property-based abstraction

John P. Gallagher
Roskilde University, Denmark

IMDEA Software Institute, Madrid, Spain

jpg@ruc.dk

In this paper we show that property-based abstraction, an established technique originating in soft-
ware model checking, is a flexible method of controlling polyvariance in program specialisation in a
standard online specialisation algorithm. Specialisation is a program transformation that transforms a
program with respect to given constraints that restrict its behaviour. Polyvariant specialisation refers
to the generation of two or more specialised versions of the same program code. The same program
point can be reached more than once during a computation, with different constraints applying in
each case, and polyvariant specialisation allows different specialisations to be realised. A property-
based abstraction uses a finite set of properties to define a finite set of abstract versions of predicates,
ensuring that only a finite number of specialised versions is generated. The particular choice of prop-
erties is critical for polyvariance; too few versions can result in insufficient specialisation, while too
many can result in an increase of code size with no corresponding efficiency gains. Using examples,
we show the flexibility of specialisation with property-based abstraction and discuss its application
in control flow refinement, verification, termination analysis and dimension-based specialisation.

1 Program specialisation

Specialisation is a program transformation that transforms a program with respect to some given con-
straints that restrict its behaviour. A classic example is the loop in Figure 1(a) for computing z= xy.
Figure 1(b) shows the result of specialising the loop with the input constraint y= 3, unfolding the loop
three times and evaluating the statement y-- in the loop body.

z = 1;
while (y>0) {
z = x*z; y--;

}

/* Input constraint y=3 */
z = 1; z = x*z; z = x*z; z = x*z;

(a) (b)

Figure 1: Partial evaluation of a loop

Some specialisation methods could further transform the code in Figure 1(b) to z = x*x*x; using
algebraic reasoning.

As well as exploiting input constraints to specialise the program, we can perform internal specialisa-
tions based on constraints generated during program execution. For example, when specialising a state-
ment if(e){s1}{s2}, even where the test e itself cannot be evaluated, the branch s1 can be specialised
with the constraint e and the branch s2 can be specialised with the constraint ¬e. This is sometimes called
driving [24].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Polyvariant program specialisation with property-based abstraction

while (x>0) {
if (y<m) {

y++;
} else {

x--;
}

}

if (x>0)
while (y<m) { /* x>0 */

y++;}
x--;
while (x>0) { /* y>=m */

x--;}
}

(a) (b)

Figure 2: Polyvariant specialisation of a loop

Polyvariant specialisation refers to the generation of two or more specialised versions of the same
program code. For example suppose that the statement if(x < 100){s1}{s2} is reached twice during a
computation, once with the constraint x < 100 and the other with the constraint x ≥ 100. Polyvariant
specialisation gives rise to two instances of the statement in the specialised code, s1 and s2 respectively.

Figure 2 illustrates both internal specialisation and polyvariance. The “then” branch of the if state-
ment in Figure 2(a) does not affect the loop condition and so if it is taken, the “then” branch is repeatedly
taken until the test y< m fails. Then the “else” statement is executed (x--;) after which the “else”
branch is repeatedly taken, since it does not affect the condition y< m, until the test x> 0 fails.

Thus implicitly there are two distinct loops separated by x--; and this leads to the polyvariant
specialisation shown in Figure 2(b). The transformation in this case is more involved than in Figure 1;
for instance, the first while statement does not directly correspond to the while statement in the original
code, having a different loop test. However, the specialised program performs exactly the same sequence
of computations as the original program, apart from tests that have been evaluated to true during partial
evaluation and thus omitted from the specialised code. Further explanation is given in Example 3.

The main contribution of this paper is a specialisation algorithm that performs polyvariant speciali-
sation. Instances of this algorithm have been previously used and briefly described [16, 17, 8] but these
papers did not present and discuss the general algorithm. A key question is the control of polyvariance;
in general there could be many (even an infinite number) of possible variants of a given program point.
How does the partial evaluation algorithm determine a suitable set of variants, while ensuring termination
of the specialisation algorithm.

The algorithm operates on constrained Horn clauses, which provide a representation language capa-
ble of representing the semantics of a wide range of programming languages and systems. The algorithm
is parameterised by a set of properties that control the generation of polyvariance.

2 Preliminaries

2.1 Constraints and entailment

Let T be a theory and let C T be the set of formulas (also called constraints) constructed from the predi-
cates and function symbols of T together with variables and boolean connectives, and the formulas true
and false. |=T φ means that φ is true in the theory T , where φ is a variable-free formula. For example,
|=T 1 ≥ 0 where T is the theory of linear real arithmetic. In this paper, if we omit the theory subscript
T we assume that T is the theory of linear real arithmetic, and we omit the symbol |= when clear from
context.

J. P. Gallagher 3

Let φ ∈ C T be a constraint possibly containing variables; a substitution for the variables of φ is a
grounding substitution if the result of applying the substitution to φ , say φ ′, contains no variables; if
|=T φ ′ the grounding substitution satisfies φ .

For all constraints φ and ψ , we say that φ entails ψ in T , written φ �T ψ , if every grounding
substitution that satisfies φ in T also satisfies ψ in T . For example, x≥ 1� x≥ 0.

We assume that there is a procedure called SAT such that for every φ ∈ C T , SAT(φ) is true if there
is some substitution that satisfies φ and false otherwise. Using SAT, we can check entailment; φ �T ψ

if and only if SAT(φ ∧¬ψ) is false.

Definition 1 (Generalisation) A function ρ : C T →C T is called a generalisation operator if φ �T ρ(φ).

2.2 Constrained Horn clause representation of programs

A constrained Horn clause (CHC) is a first-order predicate logic formula of the form ∀x0 . . .xk(p1(x1)∧
. . .∧ pk(xk)∧φ → p0(x0)), where φ is a finite conjunction of constraints, x0, . . . ,xk are (possibly empty)
tuples of variables, p0, . . . , pk are predicate symbols, p0(x0) is the head of the CHC and p1(x1)∧ . . .∧
pk(xk)∧φ is the body. Formulas of the form p(x) are called atomic formulas or simply atoms. A CHC
is often written as p0(x0)← φ , p1(x1), . . . , pk(xk) in the style of constraint logic programs, or p0(X0)
← C, p1(X1),....,pk(Xk) in text form, where C is a constraint formula.

A constrained fact is a CHC p(x)← φ , where φ is a constraint over x.

Definition 2 (Ordering on sets of constrained facts) We extend the relation � to sets of constrained
facts. Let S,S′ be sets of constrained facts. Then S � S′ if for each constrained fact p(x)← φ in S
there exists a constrained fact (with variables suitably renamed) p(x)← ψ in S′, such that φ � ψ .
Furthermore, if ρ is a generalisation operator on constraints then S� {p(x)← ρ(φ) | p(x)← φ ∈ S}.

We do not go into detail on the translation of imperative programs to CHCs, but note that a distinct
predicate symbol is generated for each program point, and the arguments of the predicate for a given
program point are the values of the program variables at that point. The CHCs defining a predicate
capture the transitions in an operational semantics. Figure 3 illustrates the translation of the programs in
Figures 1(a) and 2(a) into CHCs. Depending on the style of semantic specification (such as small-step
semantics or big-step semantics), different CHCs can be obtained for a program.

2.3 Constrained Horn clause derivations

The definitions of CHC derivations and partial evaluation are based on standard definitions (e.g. [20])
adapted to include constraints, and using the “resultant” style of derivation. Instead of an initial query or
goal← φ , p(x), we use with a CHC p(x)← φ , p(x) and each steps resolves on a body literal.
Definition 3 (Derivation step) A CHC derivation step or unfolding step is defined as follows. Let c1,c2
be CHCs, where c1 = q0(x0)← φ ,q1(x1), . . . ,qk(xk) and c2 = qi(y0)← φ ′,r1(y1), . . . ,rm(ym), with vari-
ables renamed so that c1 and c2 have no variables in common. Then the result of unfolding c1 with c2
on qi(xi) is: 

q0(x0) ← φ ∧φ ′∧xi = y0,

q1(x1), . . . ,qi−1(xi−1),

r1(y1), . . . ,rm(ym),

qi+1(xi+1), . . . ,qk(xk)

if SAT(φ ∧φ ′∧xi = y0)

q0(x0)← false otherwise

4 Polyvariant program specialisation with property-based abstraction

start ←
p0(X,Y,Z).

p0(X,Y,Z) ← Z1 = 1,
while0(X,Y,Z1).

while0(X,Y,Z) ←
Y>0, Z1=X*Z, Y1=Y-1,
while0(X,Y1,Z1).

while0(X,Y,Z) ←
Y=<0.

start ←
while0(X,Y,M).

while0(X,Y,M) ←
X>0,
if0(X,Y,M).

while0(X,Y,M) ←
X=<0.

if0(X,Y,M) ←
Y<M, Y1=Y+1,
while0(X,Y1,M).

if0(X,Y,M) ←
Y>=M, X1=X-1,
while0(X1,Y,M).

(a) (b)

Figure 3: CHC representation of (a) Figure 1(a) and (b) Figure 2(a)

Definition 4 (Derivation tree) Let P be a set of CHCs and let A = p(x)← φ be a constrained fact over
x. Then a derivation tree for A in P is a tree where every node is labelled by a CHC, such that:

• the root is labelled with p(x)← φ , p(x);

• for a non-leaf node labelled with a CHC c, its children are labelled with CHCs {c1, . . . ,ck}, where
qi(xi) is some atom in the body of c, {d1, . . . ,dk} is the set of CHCs (with variables suitably
renamed) in P, whose head has predicate qi, and ci is the result of unfolding c with di on qi(xi);

• a leaf node is labelled by a CHC of the form p(x)← φ , where φ is a constraint (possibly false).

The definition is non-deterministic since any atom qi(xi) can be selected at a non-root node.

A derivation tree can contain infinite branches. The specialisation algorithm developed in the next
section depends on constructing a partial derivation tree, which is a finite tree following Definition 4 with
the additional case that a leaf node may be labelled by a CHC of the form p(x0)← φ ,q1(x1), . . . ,qk(xk)
(k > 0) representing an incomplete branch of the derivation tree.

A branch of a (partial) derivation tree is a failing branch if it ends in a leaf labelled by p(x)← false,
otherwise it is non-failing.

Definition 5 (Partial evaluation of a constrained fact) Let A be a constrained fact and P be a set of
CHCs. Let T be a derivation tree for A in P. Then a partial evaluation of A in P is a finite set of CHCs
{c1, . . . ,cm} labelling nodes chosen from the non-root nodes of T such that there is exactly one node for
each non-failing branch of T .

Clearly, the whole derivation tree does not have to be constructed in order to get a partial evaluation,
but only an initial portion; then one CHC from each branch is collected.

The non-determinism in the definition of a derivation tree is resolved by an unfolding rule, which
both selects which body atom to unfold at each step, and decides when to stop extending a branch in a
(partial) derivation tree in order to return a partial evaluation.

Definition 6 (Unfolding rule) An unfolding rule U is a function which given a set of CHCs P and a
constrained fact A, returns exactly one finite set of CHCs that is a partial evaluation of A in P. For a set
S of constrained facts, the set of CHCs obtained by applying U to each element of S is called a partial
evaluation of S in P using U.

J. P. Gallagher 5

while0(X,Y,M) ←
X>0,
if0(X,Y,M).

while0(X,Y,M) ←
X=<0.

while0(X,Y,M) ←
X>0,
Y<M, Y1=Y+1,
while0(X,Y1,M).

while0(X,Y,M) ←
X>0,
Y>=M, X1=X-1,
while0(X1,Y,M).

while0(X,Y,M) ←
X=<0.

while0(X,Y,M) ←
X>0,
Y<M, Y1=Y+1,
X>0,
if0(X,Y1,M).

while0(X,Y,M) ←
X>0,
Y<M, Y1=Y+1,
X=<0.

while0(X,Y,M) ←
X>0,
Y>=M, X1=X-1,
while0(X1,Y,M).

while0(X,Y,M) ←
X=<0.

Figure 4: Three possible partial evaluations of constrained fact while0(X,Y,M)← true in Figure 3(b).
The leftmost column is the trivial unfolding, consisting of the original clauses for while0.

Example 1 Let P be the set of clauses in Figure 3(b). Let A be the constrained atom while0(X,Y,M)←
true.

Figure 4 shows three sets of CHCs that are examples of partial evaluations of A in P, with different
unfolding rules. Note that for CHCs with at most one atom in the body, such as in this example, the
choice of atom for each derivation step is determinate, so the unfolding rule only determines how far to
unfold each branch.

3 Specialisation algorithm

Algorithm 1 shows an outline specialisation algorithm SP for CHCs based on the “basic algorithm” in
[10]. This is a so-called online partial evaluation algorithm, which makes control decisions on evalua-
tion and polyvariance on the fly, as opposed to offline partial evaluation, in which control decisions are
determined by the results of a prior analysis such as a binding time analysis.

The algorithm takes as input a set of CHCs P and a set of entry points S0, where each entry point is
a constrained fact. It is parameterised by two operations, namely pe and αρ .

• pe(S) returns a partial evaluation (Definition 5) of the set of constrained facts S.

• αρ(S) is a set of constrained facts such that αρ(S) = {p(x)← ρ(φ) | p(x)← φ ∈ S}, where ρ is
some generalisation operator (Definition 2).

Two other functions are called in the algorithm, collect and renameρ .

• collect: Let Q be a set of CHCs. collect(Q) returns the set of constrained atoms collected from the
bodies of clauses in Q. It is defined as collect(Q)= {pi(xi)← φ |xi | p0(x0)← φ , p1(x1), . . . , pk(xk)∈
Q}.

The definition of the renameρ function is postponed to Example 3.
The successive values of S′ in the repeat loop of the algorithm (line 7) form an increasing sequence

of sets of constrained facts with respect to � starting from the input set S0, say S0,S1,S2, . . .; the loop
terminates if for some j > 0, S j−1 = S j.

6 Polyvariant program specialisation with property-based abstraction

Algorithm 1 SP(P,S0)
1: Input: Finite set of CHCs P, finite set of constrained facts S0, generalisation operator ρ .
2: Output: Finite set of CHCs
3: S← S0
4: repeat
5: S′ = S
6: S← S∪αρ(collect(pe(S)))
7: until S′ = S
8: return renameρ(pe(S))

4 Property-based abstraction

We now turn to the consideration of the abstraction function αρ , using property-based abstraction.
We first define a generalisation operator ρΨ. Let Ψ ⊆ C T be a finite set of constraints. Given a

formula φ ∈ C T , then

ρΨ(φ) =
∧
{ψ | ψ ∈Ψ,φ � ψ}∧

∧
{¬ψ | ψ ∈Ψ,φ � ¬ψ}.

Lemma 1 ρΨ is a generalisation operator, that is, for all φ ∈ C T , φ �T ρΨ(φ).

Note that ρΨ(φ) is a conjunction of elements of Ψ and negations of elements of Ψ. Since we assume
that Ψ is finite, then the set of possible values of ρΨ(φ) is finite. If none of the elements of Ψ or their
negations is entailed by φ then ρΨ(φ) = true.

Example 2 Consider a set Ψ= {ψ1,ψ2,ψ3}, where ψ1∧ψ3 = false, ψ2∧ψ3 = false and ψ1∧ψ2 6= false.
Figure 5 shows the generalisation for various choices of a property ϕ , that is, the values of ρΨ(ϕ).

ρΨ is extended to apply to constrained facts, and for convenience we take the set Ψ also to consist of
constrained facts.

ρΨ(p(x)← φ) = p(x)←
∧
{ψ | p(x)← ψ ∈Ψ,φ � ψ}∧

∧
{¬ψ | p(x)← ψ ∈Ψ,φ � ¬ψ}.

Let S and Ψ be sets of constrained facts. The operation αρ from Algorithm 1 is defined where ρ is
the generalisation operator ρΨ.

αρΨ
(S) = {p(x)← ρΨ(ϕ) | p(x)← ϕ ∈ S}

We now have all the components of the algorithm, and we show an example of specialisation with
property-based abstraction.

Example 3 Let P be the set of CHCs representing the code in Figure 2(a), that is, the clauses from
Figure 3(b). Let S0 = {start← true} and let the set Ψ contain the following constrained facts.

while0(A,B,C) ← A>0
while0(A,B,C) ← A≤0

while0(A,B,C) ← B<C
while0(A,B,C) ← B≥C

if0(A,B,C) ← B<C
if0(A,B,C) ← B≥C

The following unfolding rule is used: each branch is unfolded until either a branch point is reached
(that is, a call to a predicate that appears in the head of more than one clause) or a recursive predicate
is reached (more precisely, the predicate that is the target of a back edge in the predicate dependency
graph of the program traversed from the initial predicate start). In the given clauses, this implies that
each partial evaluation consists of only one unfolding step. This unfolding rule guarantees termination
of unfolding, but is conservative. We discuss other unfolding rules later. Algorithm 1 proceeds as follows.

J. P. Gallagher 7

!1

"

!3!2!1

"

!3!2

!1

"

!3!2 !1

"

!3!2

!1

"

!3!2 !1

"

!3!2

Figure 5: The property to be generalised (ϕ) is shown as an area with dotted outline, and the shaded
areas show the generalisation of ϕ using operation ρΨ(ϕ), where Ψ = {ψ1,ψ2,ψ3}.

• Initialisation: S0 = {start← true}.
• Iteration 1: S1 = S0∪{while0(A,B,C)← true}.
• Iteration 2: S2 = S1∪{if0(A,B,C)← A> 0}.
• Iteration 3: S3 = S2∪{while0(A,B,C)← A> 0, while0(A,B,C)← B≥ C}.
• Iteration 4: S4 = S3∪{if0(A,B,C)← A> 0,B≥ C}.
• Iteration 5: S5 = S4.

In this sequence we applied the operator αρΨ
at each stage to reach the sets shown in the sequence. (To

be precise, we apply the generalisation operator only to constrained facts for the recursive predicate
while0, which is sufficient to ensure termination). For example, in iteration 3, partial evaluation of the
constrained fact if0(A,B,C)← A> 0 results in the following CHCs.

if0(A,B,C) ← A>0,C>B,D=B-1,while0(A,D,C).
if0(A,B,C) ← A>0,B≥C,D=A-1,while0(D,B,C).

The constraints projected onto the body atoms while0(A,D,C) and while0(D,B,C) are respectively
A> 0 and D>−1,B≥ C. The result of applying abstraction, that is,

αρΨ
({while0(A,D,C)← A> 0, while0(D,B,C)← D>−1,B≥ C})

is {while0(A,B,C)← A> 0,while0(A,B,C)← B≥ C}. Notice that the second constrained fact has
been generalised; evaluating ρΨ(while0(D,B,C)← D>−1,B≥ C}) yields while0(A,B,C)← B≥ C,
which represents the only element of Ψ whose constraint is entailed. Also, in iteration 5, partial evalua-
tion of if0(A,B,C)← A> 0,B≥ C results in the CHC:

if0(A,B,C) ← A>0,B≥C,D=A-1,while0(D,B,C).

8 Polyvariant program specialisation with property-based abstraction

Figure 6: The predicate dependency graph for Example 3

The constraint on the body atom while0(D,B,C) is D>−1,B≥ C; as before this is generalised to the
constrained fact while0(A,B,C)← B≥ C.

The function renameρ of Algorithm 1 gives each constrained atom in the final set a different name,
in this case as follows.

Constrained f act VersionName Constrained f act VersionName
start← true start if0(A,B,C)← A> 0,B≥ C if01(A,B,C)
while0(A,B,C)← B≥ C while02(A,B,C) while0(A,B,C)← A> 0 while03(A,B,C)
if0(A,B,C)← A> 0 if04(A,B,C) while0(A,B,C)← true while05(A,B,C)

Finally, the partial evaluations of all the constrained atoms in the final set are collected, and the atoms
renamed according to the versions that occur in the final set. This gives the following specialised CHC
clauses.
start ← while05(A,B,C).
while05(A,B,C) ← A>0,if04(A,B,C).
while05(A,B,C) ← -A>=0.
if04(A,B,C) ← A>0,-B+C>0,B+ -D= -1,while03(A,D,C).
if04(A,B,C) ← A>0,B+ -C>=0,A+ -D=1,while02(D,B,C).
while03(A,B,C) ← A>0,if04(A,B,C).
while02(A,B,C) ← B+ -C>=0,A>0,if01(A,B,C).
while02(A,B,C) ← B+ -C>=0,-A>=0.
if01(A,B,C) ← A>0,B+ -C>=0,A+ -D=1,while02(D,B,C).

The predicate dependency graph for these clauses is shown in Figure 6 and it can be seen that this has
the same structure as the code in Figure 2(b) where there are two distinct loops. Note that the predicate
while05 is in fact not the head of a loop but rather the initial if-statement of Figure 2(b), while the
predicate if04 is the head of a loop.

5 Choice of properties and granularity of abstraction

The set of properties Ψ in Example 3 was chosen so that the properties were relevant to the tests determin-
ing the control flow. However, the choice of properties can be critical to achieving good specialisations.
In this section we discuss the effect of the choice of properties.

J. P. Gallagher 9

Figure 7: The predicate dependency graph for Example 3, with enlarged set of properties.

In general, it is clear that the larger the set of properties, the more versions of predicates can be
produced, and thus more specialised clauses can be generated. Fewer properties, on the other hand,
cause information needed for specialisation to be lost. For example, the following properties could also
be chosen in Example 3. It is a subset of the set previously chosen, incorporating only the constraints
directly appearing in the clauses for the respective predicates.

{ while0(A,B,C) ← A>0, while0(A,B,C) ← A≤0,
if0(A,B,C) ← B<C, if0(A,B,C) ← B≥C }

Using this choice of Ψ, no specialisation at all is achieved; the original clauses are returned. The problem
is that the constraints on if0 are lost when abstracting the calls to while0, since the properties applying
to while0(A,B,C) say nothing about the values of B or C.

However, for a given unfolding rule, there is a limit to how much specialisation can be achieved, no
matter how many properties Ψ contains. Consider the following set Ψ for Example 3, which results from
collecting all constraints from the given clauses, projected onto head and body atoms.

while0(A,B,C) ← A>0
while0(A,B,C) ← A≤0
while0(A,B,C) ← C>B-1
while0(A,B,C) ← B≥C

if0(A,B,C) ← A>0
if0(A,B,C) ← B<C
if0(A,B,C) ← B≥C

Figure 7 shows the predicate dependency graph for the clauses resulting from this set. While there
are more versions of predicates than in Figure 6, the corresponding clauses are no more specialised.
Viewing the graph as a finite automaton, it can be verified that the states if0 4 and if0 7 are equivalent,
as are while0 5 and while0 3, and if0 1 and if0 2. In short, the automaton can be minimised to
give the same automaton in Figure 6. More specifically, the versions corresponding to constrained facts
if0(A,B,C)← A> 0,C> B−1 and if0(A,B,C)← A> 0 are indistinguishable using the given unfolding
rule. Intuitively, there can be no better specialisation for the input clauses in Example 3, with any set of
properties Ψ or indeed any other unfolding rule, than the one achieved in Example 3.

Space does not permit a detailed account of the automata-theoretic argument, but we state the fol-

10 Polyvariant program specialisation with property-based abstraction

int a, b;
if (a ≤ 100)

a = 100-a;
else

a=a-100;
while (a ≥ 1)

a=a-1;
b=b-2;

assertassertassert(b != 0);

init(A,B) ← true.
if(A,B) ← A0 ≤ 100, A=100-A0, init(A0,B).
if(A,B) ← A0 ≥ 101, A=A0-100, init(A0,B).
while(A,B) ← if(A,B).
while(A,B) ← A0≥1, A=A0-1, B=B0-2,

while(A0,B0).
false ← A≤0, B=0,

while(A,B)

Figure 8: Example from [16]: (left) original program, (right) translation to CHCs

lowing proposition.

Proposition 1 Let P be a set of CHCs, specialised to a set P′ using Algorithm 1 using a given input set
S0, set of properties Ψ and unfolding rule. Then there exists a set of clauses P′′ having a minimal number
of versions of each predicate, that is equivalent to P′ with respect to computations starting from S0.

We also conjecture that there exists a set of properties Ψ′ such that executing the algorithm with Ψ′ would
yield this minimal version.

Proposition 1 holds for a fixed unfolding rule. Of course, further specialisation might be achievable
using a more aggressive unfolding rule.

6 Polyvariant specialisation in verification

In previous work, we have used specialisation of CHCs as a component in program verification tasks. In
this section we discuss its role.

Pre-condition inference. Firstly, in [16], Algorithm 1 was used as a component in an algorithm for
computing sufficient conditions for safety of imperative programs encoded as CHCs. In many cases, the
required safety condition is a disjunction. Polyvariant specialisation enabled the relevant disjuncts to be
found by a convex polyhedral analysis.

Example 4 Consider the example in Figure 8 taken from [16]. Note that the translation to CHCs cor-
responds to a backwards flow of control from the error predicate false to the program start predicate
init. The goal is to infer conditions on the start predicate that ensure that the error predicate is not
reached. Specialisation of the set of CHCs was carried out using the following set of properties, and the
same unfolding rule as in Example 3.

{if(A,B) ← A≥0, if(A,B) ← A≥1,
init(A,B) ← A≥101, init(A,B) ← -A≥ -100,
while(A,B) ← A≥0, while(A,B) ← A≥1, while(A,B) ← -A≥0,B=0,
while(A,B) ← -A≥0, while(A,B) ← B=0}

It can be seen that three versions of the predicate init have been generated, arising from different
paths through the program. Analysis of these specialised CHCs allowed the disjunctive precondition on
init(A,B), namely B 6= |2A−100| to be derived. This condition could not be derived from the original
code without an analysis domain of disjunctive properties, which is more difficult to implement and
control. Polyvariant specialisation, in effect, provides a heuristic for introducing disjunctions selectively,
where they can affect the control flow.

J. P. Gallagher 11

Figure 9: The predicate dependency graph for Example 4, before and after polyvariant specialisation

Termination analysis. In [8], polyvariant specialisation was used to transform a control-flow graph
obtained from a program into another equivalent control-flow graph in which the loops were in a form
more suitable for automatic proof of termination. The control-flow graphs are straightforwardly repre-
sented as CHCs and examples of their polyvariant specialisation are displayed in [8]. The example from
Figure 2 provides a case in point. The structure of the single loop makes it rather hard to find a suitable
ranking function that establishes termination; whereas the restructured code based on polyvariant spe-
cialisation, with two separate loops, is easy to prove terminating, since each loop has a simple ranking
function. A large number of experiments was reported in [8], showing that polyvariant specialisation
of the control-flow graph very often improves the effectiveness of both automatic termination analysis
and complexity bound analysis. In short, the work demonstrates that control-flow refinement [14] can be
achieved by polyvariant specialisation. Another relevant approach for finding better loop invariants, is
the “splitter predicates” method [23]; this can also be reproduced using property-based specialisation.

Dimension-based decomposition. The concept of tree dimension has been applied in verification to
decompose a proof. The dimension of a set of CHCs is a measure of their non-linearity. A set of CHCs
of dimension zero contains only linear clauses (that is, clauses having at most one atom in the body).
Proof trees in such sets of CHCs have no branching. Sets of clauses of higher dimension give rise to
branching proof trees, and the dimension of a tree is determined by the dimensions of the subtrees of
the root, as illustrated in Figure 10. A more detailed definition can be found in [17]. Given a set of
CHCs P for which some property is to be verified, we may decompose the problem by dimensions. For
a given dimension d, we can define a set of CHCs, say Pd , such that an atom A has a proof in P of
dimension d if and only if it has a proof in Pd . Since every proof has some finite dimension, P ` A if and
only if P0 ` A∨P1 ` A∨P2 ` A In [17], we showed a technique using polyvariant specialisation for
generating various dimension-bounded sets of clauses. We could generate Pd , the set of clauses yielding
exactly the proof trees of dimension d; we could also generate P≤d , the set of clauses yielding proof trees
of dimension at most d; and we could generate P>d , the set of clauses yielding proof trees of dimension
at least d +1. This enabled a variety of strategies for proof decomposition, described in detail in [17].

In order to derive such dimension-constrained sets of clauses, we first instrumented the clauses with
an extra argument for each predicate, representing the dimension, together with constraints capturing the

12 Polyvariant program specialisation with property-based abstraction

dimension(0(dimension(1(

n+1(n+1(≤(n+1(

≤(n+1(

dimension(n(.(.(.(

The(dimension(of((tree(is(a(measure(of(its((non)+linearity(

Figure 10: The dimension of a node in a tree: leaf nodes have dimension 0; a node has dimension n+1
if at least two subtrees have dimension n; it has dimension n if exactly one subtree has dimension n and
any other subtrees have lower dimension.

rule for computing dimension. That is, the clause p0(x0)← φ , p1(x1), . . . , pn(xn) is replaced by

p0(x0,k)← φ , p1(x1,k1), . . . , pn(xn,kn),dim(k1, . . . ,kn,k)

where dim(k1, . . . ,kn,k) represents the computation of the head dimension k from the (subtree) dimen-
sions k1, . . . ,kn.

Specialisation could then be performed by providing constraints on the argument k. The set of
properties Ψ input to Algorithm 1 consisted a constrained fact for each dimension up to the required
bound.
Example 5 Let P be the set of clauses for the Fibonacci function, instrumented with the dimension as
described above, together with a constraint representing a property to be proved and a dimension bound
on false of 2.
fib(A,B,0) :- A>=0, A=<1, A=B.
fib(A,B,K) :- A>1, D=A-2, E=A-1, B=F+G, fib(D,G,K2), fib(E,F,K1),

K1+1=<K, K2=K.
fib(A,B,K) :- A>1, D=A-2, E=A-1, B=F+G, fib(D,G,K1), fib(E,F,K2),

K1+1=<K, K=K2.
fib(A,B,K) :- A>1, D=A-2, E=A-1, B=F+G, fib(D,G,K1), fib(E,F,K2),

K1=K-1, K2=K1.
false(A) ← X>5, fib(X,Y,K), Y<X, K≤2.

Let Ψ be the following set of constrained facts.
fib(A,B,C)← C≤2, fib(A,B,C)← C≤1, fib(A,B,C)← C≤0, fib(A,B,C)← C≥0,
false(A)← A≤2, false(A)← A≤1, false(A)← A≤0, false(A)← A≥0,

Figure 11 shows the predicate dependency graphs before and after polyvariant specialisation using
initial call false(A)← A≤ 2, Ψ shown above and an unfolding rule that just unfolds one step. Here,
fib 1, fib 2 and fib 3 yield proof trees of dimension ≤ 0, ≤ 1 and ≤ 2 respectively.

7 Discussion and related work

The control of partial evaluation, and more broadly of program specialisation, has been much studied
[15]. The problem arises due to the two termination problems in specialisation: local termination, ensur-

J. P. Gallagher 13

Figure 11: The predicate dependency graph for Example 5 producing clauses yielding proof trees of
dimension at most 2, before and after polyvariant specialisation

ing that loops in the program are not unfolded indefinitely, and global termination, which can be seen as
the problem of generating only a finite number of versions of each program point. These two problems
are mutually dependent: the more conservative the local unfolding strategy is (in order to ensure local
termination), the more important it is to allow multiple versions of program points in order to preserve in-
formation, thus increasing the risk of global non-termination. In some approaches, the two problems are
somewhat merged in order to handle these interactions [24, 22, 21, 18]. However, from the point of view
of conceptual clarity and implementability, we argue that it is desirable to separate the two problems.
Thus it becomes important to have a flexible way of controlling polyvariance and global termination.

The problem of polyvariant specialisation also occurs in offline partial evaluation; the unfolding of
a program point marked as static by a binding time analysis must be accompanied by an assurance that
only a finite number of static instances will arise at partial evaluation time, and thus a finite number of
versions of the program point will be generated. This is known as bounded static variation [15].

The algorithm presented here is based on a framework for partial evaluation of logic programs origi-
nally formulated in [2] and refined in [10], based on the framework presented by Lloyd and Shepherdson
[20]. Some of the definitions in Section 2 are from these works, adapted for constrained Horn clauses.

The concept of property-based abstraction has been widely used in software model checking and
was first introduced by Ball et al. [1] where it is called the Cartesian abstraction. It is used in a form
similar to that shown in this paper in the HSF tool [13], though that work does not use the negations of
the properties as we do (following [1]). Though in this work we do not present it as an abstract interpre-
tation [4], the domain of properties based on a finite set of constraints forms a lattice and the process of
abstracting a concrete property is an example of a Galois connection. Being a finite domain, it has both
advantages and disadvantages compared to other domains that could be used to control polyvariance. For
a fixed local unfolding rule, property-based abstraction places a fixed limit on the number of realisable
versions, whereas with an infinite-height abstract domain, with global termination ensured by widening,
the dependence of global termination on local unfolding would be loosened and an infinite number of
versions could be produced. A general presentation of the relation between fixed height versus infinite
height domains can be found in [5], while an attempt to implement global control using an infinite height
lattice is shown in [12].

14 Polyvariant program specialisation with property-based abstraction

Property-based abstractions are indirectly related to trace-based abstractions, which have been used
in partial evaluation and supercompilation to control polyvariance, e.g. [24, 18, 11, 6]. Properties deter-
mine traces and vice versa; a property constrains the feasible program traces; whereas a trace implicitly
defines properties which permit the trace (a principle explicitly used by de Angelis et al. [6]). We con-
sider property-based abstractions to have some practical and conceptual advantages, opening up the use
of satisfiability solvers to compute the abstraction. However, further evaluation is needed, as well as
investigation on the choice of properties.

The usefulness of specialisation as a component in program verification tools has been established
in many works, including [25, 19, 7, 16] to name only a few. Fioravanti et al. investigated the trade-offs
of polyvariance with efficiency and precision when using specialisation as a verification tool [9]. The
use of constrained Horn clauses as a semantic representation formalism for verification of a wide range
of languages and systems is now well established [13, 3]. Here, we emphasise the role of polyvariant
specialisation in generating multiple versions of program points in a controlled way, when such versions
lead to different control flow. This in turn implicitly allows disjunctive properties to be handled.

Acknowledgements. The author acknowledges very useful discussions with Bishoksan Kafle, Pierre
Ganty, Samir Genaim and Jesús Doménech, contributing to the ideas presented here.

References
[1] T. Ball, A. Podelski & S. K. Rajamani (2001): Boolean and Cartesian Abstraction for Model Checking

C Programs. In T. Margaria & W. Yi, editors: Tools and Algorithms for the Construction and Analysis
of Systems, 7th International Conference, TACAS 2001, Proceedings, Lecture Notes in Computer Science
2031, Springer, pp. 268–283, doi:10.1007/3-540-45319-9 19.

[2] K. Benkerimi & J. W. Lloyd (1990): A Partial Evaluation Procedure for Logic Programs. In S. K. Debray
& M. V. Hermenegildo, editors: Logic Programming, Proceedings of the 1990 North American Conference,
MIT Press, pp. 343–358.

[3] N. Bjørner, A. Gurfinkel, K. L. McMillan & A. Rybalchenko (2015): Horn Clause Solvers for Program
Verification. In L. D. Beklemishev, A. Blass, N. Dershowitz, B. Finkbeiner & W. Schulte, editors: Fields of
Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, Lecture
Notes in Computer Science 9300, Springer, pp. 24–51, doi:10.1007/978-3-319-23534-9 2.

[4] P. Cousot & R. Cousot (1977): Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: Proceedings of the 4th ACM Symposium on Principles of
Programming Languages, Los Angeles, pp. 238–252.

[5] P. Cousot & R. Cousot (1992): Comparing the Galois Connection and Widening/Narrowing Approaches to
Abstract Interpretation. In: Proceedings of the 4th International Symposium on Programming Language
Implementation and Logic Programming, Springer-Verlag Lecture Notes in Computer Science 631, pp. 269–
295.

[6] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti (2012): Specialization with Constrained General-
ization for Software Model Checking. In E. Albert, editor: Logic-Based Program Synthesis and Transforma-
tion, LOPSTR 2012, Lecture Notes in Computer Science 7844, Springer, pp. 51–70, doi:10.1007/978-3-642-
38197-3 5.

[7] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti (2014): Program verification via iterated special-
ization. Sci. Comput. Program. 95, pp. 149–175.

[8] J. Doménech, S. Genaim & J. P. Gallagher (2018): Control-Flow Refinement via Partial Evaluation. In
S. Lucas, editor: 16th International Workshop on Termination (WST 2018), pp. 55–59. Available at http:
//wst2018.webs.upv.es/wst2018proceedings.pdf.

http://dx.doi.org/10.1007/3-540-45319-9_19
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-642-38197-3_5
http://dx.doi.org/10.1007/978-3-642-38197-3_5
http://wst2018.webs.upv.es/wst2018proceedings.pdf
http://wst2018.webs.upv.es/wst2018proceedings.pdf

J. P. Gallagher 15

[9] F. Fioravanti, A. Pettorossi, M. Proietti & V. Senni (2013): Controlling Polyvariance for Specialization-based
Verification. Fundam. Inform. 124(4), pp. 483–502, doi:10.3233/FI-2013-845.

[10] J. P. Gallagher (1993): Specialisation of Logic Programs: A Tutorial. In: Proceedings PEPM’93, ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, ACM Press, Copen-
hagen, pp. 88–98.

[11] J. P. Gallagher & L. Lafave (1996): Regular Approximation of Computation Paths in Logic and Functional
Languages. In O. Danvy, R. Glück & P. Thiemann, editors: Partial Evaluation, Springer-Verlag Lecture Notes
in Computer Science 1110, pp. 115–136.

[12] J. P. Gallagher & J. C. Peralta (2001): Regular Tree Languages as an Abstract Domain in Program Speciali-
sation. Higher-Order and Symbolic Computation 14(2-3), pp. 143–172.

[13] S. Grebenshchikov, N. P. Lopes, C. Popeea & A. Rybalchenko (2012): Synthesizing software verifiers from
proof rules. In J. Vitek, H. Lin & F. Tip, editors: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, ACM, pp. 405–416.

[14] S. Gulwani, S. Jain & E. Koskinen (2009): Control-flow refinement and progress invariants for bound anal-
ysis. In M. Hind & A. Diwan, editors: PLDI 2009, ACM, pp. 375–385, doi:10.1145/1542476.1542518.

[15] N. D. Jones, C. Gomard & P. Sestoft (1993): Partial Evaluation and Automatic Software Generation. Prentice
Hall.

[16] B. Kafle, J. P. Gallagher, G. Gange, P. Schachte, H. Søndergaard & P. J. Stuckey (2018): An iterative approach
to precondition inference using constrained Horn clauses. TPLP 18(3-4), pp. 553–570.

[17] B. Kafle, J. P. Gallagher & P. Ganty (2018): Tree dimension in verification of constrained Horn clauses.
TPLP 18(2), pp. 224–251.

[18] M. Leuschel & B. Martens (1996): Global Control for Partial Deduction through Characteristic Atoms and
Global Trees. In O. Danvy, R. Glück & P. Thiemann, editors: Partial Evaluation, Springer-Verlag Lecture
Notes in Computer Science 1110, pp. 263–283.

[19] M. Leuschel & T. Massart (2000): Infinite State Model Checking by Abstract Interpretation and Program
Specialisation. In A. Bossi, editor: Logic-Based Program Synthesis and Transformation (LOPSTR’99),
Springer-Verlag Lecture Notes in Computer Science 1817, pp. 63–82.

[20] J. Lloyd & J. Shepherdson (1991): Partial Evaluation in Logic Programming. Journal of Logic Programming
11(3 & 4), pp. 217–242.

[21] B. Martens & J. P. Gallagher (1995): Ensuring Global Termination of Partial Deduction While Allowing Flex-
ible Polyvariance. In L. Sterling, editor: Proc. International Conference on Logic Progrmaming, (ICLP’95),
Tokyo, MIT Press.

[22] D. Sahlin (1993): Mixtus: An Automatic Partial Avaluator for Full Prolog. New Generation Comput. 12(1),
pp. 7–51, doi:10.1007/BF03038271.

[23] R. Sharma, I. Dillig, T. Dillig & A. Aiken (2011): Simplifying Loop Invariant Generation Using Splitter
Predicates. In G. Gopalakrishnan & S. Qadeer, editors: Computer Aided Verification, CAV 2011, Lecture
Notes in Computer Science 6806, Springer, pp. 703–719, doi:10.1007/978-3-642-22110-1 57.

[24] V. Turchin (1988): The Algorithm of generalization in the supercompiler. In D. Bjørner, A. Ershov &
N. Jones, editors: Proc. of the IFIP TC2 Workshop on Partial Evaluation and Mixed Computation, North-
Holland, pp. 531–549.

[25] D. de Waal & J. P. Gallagher (1994): The Applicability of Logic Program Analysis and Transformation to
Theorem Proving. In: Proceedings of the 12th International Conference on Automated Deduction (CADE-
12), Nancy.

http://dx.doi.org/10.3233/FI-2013-845
http://dx.doi.org/10.1145/1542476.1542518
http://dx.doi.org/10.1007/BF03038271
http://dx.doi.org/10.1007/978-3-642-22110-1_57

	Program specialisation
	Preliminaries
	Constraints and entailment
	Constrained Horn clause representation of programs
	Constrained Horn clause derivations

	Specialisation algorithm
	Property-based abstraction
	Choice of properties and granularity of abstraction
	Polyvariant specialisation in verification
	Discussion and related work

