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Due to the complexity of find-replace algorithms for strings [2, 7], the works on verification of string
replacing programs mostly aim at verifying properties of strings with uniformly bounded lengths or they
restrict the verification domain by programs implementing finite automata [2, 5, 16].

Turchin’s supercompilation is one of program specialization methods based on unfold/fold operations
[14, 12, 4]. A supercompiler is a specializer based on this method. Turchin’s original works use the string
operating language Refal [15] as the input language of a supercompiler. This language is based on
the Markov normal algorithms computation model, which is known to be Turing complete [7].

A Markov normal algorithm is a list of string rewriting rules of the two following forms.

x++Φ++y→ x++Ψ++y | x++Φ++y→. x++Ψ++y

There Φ, Ψ are constant strings; x and y are distinct string variables; → stands for a normal transition,
→. stands for a transition stopping computations; ++ is the associative concatenation. The left-hand
sides of the rules should be seen as patterns. If an input string ∆ matches against the pattern x++Φ++y

then we say the corresponding rule is applicable to ∆. Given an input string ∆ the Markov model uses
the following two assertions in order to make the rewriting process deterministic.

• Screening. ∆ is matched against the left-hand sides of the rules from the beginning to the end of
the rule list. Thus, if the n-th rule from the list is applied to ∆, then all the rules preceding it are
not applicable to ∆.

• Markov’s rule. If ∆ has several occurrences of Φ, we choose the first one to apply the rewriting
rule. In particular, the variable x never takes a value containing the substring Φ.

Markov’s rule is a natural choice which is assumed in almost all deterministic find-replace algorithms
over strings. In programming languages with the syntax not supporting the associative concatenation
(e.g., Lisp, Haskell), the constraints hidden in Markov’s rule are to be expressed with the use of recursion.
The things change if the program rules can use patterns like x++Φ++y in the left-hand sides.

Let Σ be an alphabet, ε be the empty string, V be a set of all variables, Vc be a set of the variables of
the character type. A passive expression [Passive] over the set of variables V is defined as follows.

[Passive] ::= ε | c ∈ Σ | v ∈ V | [Passive]++[Passive]

We use the presentation language based on the following version of the Markov normal algorithms.
Replacing functions are defined in the following two ways.

F(x1, . . . ,xi1++Φ++xi2 , . . . ,xn) = F(ξ1, . . . ,ξn) | F(x1, . . . ,xi1++Φ++xi2 , . . . ,xn) = ξ
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There Φ ∈ {Σ∪Vc}∗, ξi, ξ are passive expressions over the set of variables occurring in the left-hand
side, and all the string variables x j are distinct. The rules returning ξ correspond to the final transitions;
the others perform the normal transitions. In order to define the verification task, we also introduce
a special function Test computing a predicate, with the following syntax.

Test(x1, . . . ,xi1++Φ++xi2 , . . . ,xn) = T | F | Test(ξ1, . . . ,ξn)

Every program in the presentation language computes a predicate. Thus, the input point of any program
is of the form Test(γ), where γ is a composition of the replacing functions.

Given such kind of a language we use the rules of the Markov normal algorithms above to gener-
ate constraints, which allow us to prove some safety properties of string manipulating programs. Here
the verification is understood in the following sense [6]. Given an initial program P1 which returns
a boolean value, we say P1 is successfully verified if the residual program P2 generated by the super-
compilation of P1 does not contain rules returning F. Thus, the implicit semantics feature of P1 becomes
the explicit syntactic property of P2. We do not aim to prove termination of the analysed program, we
are only interested in the unreachability of the output value F.

We use the notion of a parameter for an object which already has a value but it is unknown to us;
while a variable value is undefined and is to be assigned. Henceforth the string parameters are denoted
with the letters u, w, v. We consider the following verification task.

Problem 1 Given an input string ∆, let Test(∆) return F if ∆ contains a forbidden substring Φ, and T
otherwise. Given a program with the parameterized input point Test(F(u)), where F = F1 ◦F2 ◦ . . .Fn,
can it return F?

Let u be a string presenting some html-code, and Φ be a part of a malicious script possibly included
in this code. Then the composition of the functions Fi can be understood as a sanitization function
[3, 13], which tries to prevent a possible attack encoded by an intruder in the string u. The issue is:
how to verify that the sanitization procedure is correct in the sense described above or to construct
a counterexample refuting its correctness? Using negative constraints as a part of parameterized program
states, the supercompilation is sometimes able to solve the problem considered.

We say that γ is a parameterized expression, if γ is a constant string, a parameter, a concatenation of
parameterized expressions, or a call of a replacing function over parameterized expressions. To reason
about the functions defined above, it is enough to use the negative constraints of the form ∧n

i=1∨
ki
j=1 Ii

j,
where Ii

j are linear word inequalities defined as follows.

Definition 1 Let Σ be an alphabet, Vc be a set of the character type variables1. A linear pattern P is an
expression Φ0++z1++Φ1++ . . .++zn++Φn, where Φi ∈ (Σ∪Vc)

+, and all the string type variables zi are
distinct. Let the predicate Match(∆,P) return T iff ∆ matches against P and F otherwise.

A linear word inequality is an inequality I of the form ¬Match(u,P), where u is a string parameter.
For the sake of brevity, we also write I as u 6= P. A parameterized program state is a pair {γ,Pred},
where Pred is ∧n

i=1∨
ki
j=1 Ii

j, and γ is a parameterized expression.

1Actually, this extended abstract does not contain any examples with the use of the character type objects. However, they
are used in the input language of the supercompiler MSCP-A [9] and allow us to operate with alphabets of the unbounded size.
Note that the multiple occurrences of the same character type variable are not forbidden both in the input language and in
the constraint language, thus, the following rules can be used, where c ∈ Vc.

Pal(c++x++c) = Pal(x)
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We denote the literal coincidence with ≡ , the logical implication with ⇒. Given an inequality
I = ¬Match(u,P) and a substitution σ from the set of parameters to the set of parameterized expres-
sions, we define σ(I) as a predicate which is true iff ¬Match(σ(u),P) is true. Given two parameterized
program states C1 = {γ1(w1, . . . ,wk1),Pred1} and C2 = {γ2(w1, . . . ,wk2),Pred2}, we say C2 is folded
with C1 if there is a substitution σ s.t. Pred2⇒ σ(Pred1) and γ1(σ(w1), . . . ,σ(wk1))≡ γ2(w1, . . . ,wk2).
A generalization of parameterized states {γ1,Pred1}, {γ2,Pred2} is a state {γ ′,Pred′} and substitutions
σ1, σ2 s.t.

• γ ′(σ1(u1), . . . ,σ1(un))≡ γ1(w1, . . . ,wk1), γ ′(σ2(u1), . . . ,σ2(un))≡ γ2(w1, . . . ,wk2);

• Pred1⇒ σ1(Pred′), Pred2⇒ σ2(Pred′).

We emphasize that we do not require the parameter values lengths to be uniformly bounded. Con-
straints are generated by the supercompiler as follows. First, they are taken from the screening rule and
Markov’s rule. Second, they may be generated by the generalization algorithm based on the program
behaviour, without a reference to the syntax of the input program (e.g., see Example #15 in the list of
MSCP-A demo examples [9]). This approach is the main novelity of the presented work. In both cases,
the constraints are considered as hypotheses that are to be proved or refuted along the computation paths
starting from the state where they are generated. Our contributions are the following:

1. We have developed the algorithms to generate, simplify, and check the inference of the negative
constraints.

2. We have developed the algorithms to unfold, fold, and generalize the program states of the form
given above.

3. We proved that the version of supercompilation using these algorithms terminates.

The algorithms we have developed continue the work on unfolding string programs [8], providing
the entire scheme of supercompilation for the string programs of the restricted type. In addition to
the algorithm given in [8], we have constructed an algorithm extracting and simplifying the negative
constraints introduced in the paper [8] in an informal way. As far as we know, our unfolding algorithm is
the first algorithm for the perfect driving of the string manipulating programs given in a language whose
syntax supports the associative concatenation. Unlike the algorithm for the perfect driving of programs
over lists given in [11], our algorithm for the string manipulating programs uses negative constraints
which cannot be checked in a uniformly bounded number of steps. Moreover, not only the unfolding
scheme, but the whole scheme of the supercompilation of the string manipulating programs from the class
discussed in [8] has been developed and implemented.

All the mentioned algorithms are implemented in the model supercompiler MSCP-A transforming
programs written in the language Refal (the web-page of the supercompiler is [9]). The web-page also
contains a number of examples showing how the supercompiler works, including the examples verifying
models of the programs given in the papers by the other authors [1, 3, 13].

Example 1 Below xi, yi, and zi are the string type variables; ui, wi are the string type parameters; A,
B belong to Σ; ε is the empty string; the concatenation symbol ++ is omitted.

Let us show how our version of the supercompilation does work on the input point Test(FDel(ε,u))
and the following definition.

FDel(y,x1 AABx2) = FDel(y,x1 Ax2); Test(x1 ABx2) = F;
FDel(y,x1 ABx2) = FDel(yx1,x2); Test(x) = T;
FDel(y,x) = yx;
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The screening rule and Markov’s rule are both used in the program semantics. Thus, given a string
matched against the pattern x1 AABx2, its prefix string matched against x1 AA cannot contain the sub-
string AAB (due to Markov’s rule); given a string matched against the second pattern x1 ABx2, it
cannot contain the substring AAB (due to the screening rule), etc.

In the diagrams below, the branches outgoing from the root node are ordered from left to right. If
the set of the negative constraints is empty, it is omitted for the sake of brevity. The arrow 7→ means
a narrowing relation imposed on a parameter. The dashed arc stands for the folding.

C0 : Test(FDel(ε,u))

u 7→ u1 AABu2

yy

u 7→ u1 ABu2
u 6= z1 AABz2

%%

C1 : Test(FDel(ε,u1 Au2))

!aa folding
u := u1 Au2

,,

C2 :

Test(FDel(u1,u2))
u1 6= z1 ABz2
u1 6= z3 A
u2 6= z4 AABz5

In the parameterized program state C2, the constraint u1 6= z1 ABz2 is generated by Markov’s rule. The
other two constraints are corollaries of the screening rule.

The parameterized program state C1 is folded with C0. When the program state C2 has been gener-
ated, C0 and C2 are generalized. The generalization algorithm generates expression Test(FDel(w1,w2))
and substitutions σ1, σ2: σ1(w1) = ε , σ1(w2) = u1, σ2(w1) = u1, σ2(w2) = u2. Both of the constraints
imposed on u1 are preserved in the generalized state, while the constraint on u2 disappears.

The entire residual graph generated by our version of the supercompilation is as follows.

C0 :
let w1 := ε,w2 := u in Test(FDel(w1,w2))
w1 6= z1 ABz2
w1 6= z3 A

w2 7→ u1 AABu2

vv w2 7→ u1 ABu2
w2 6= z4 AABz5

��

w2 6= z4 AABz5
w2 6= z6 ABz7

""

C1 :
Test(FDel(w1,u1 Au2))
w1 6= z1 ABz2
w1 6= z3 A

!aa folding
w2 := u1 Au2

55

C2 :

Test(FDel(w1 u1,u2))
w1 6= z1 ABz2 w1 6= z3 A
u1 6= z8 ABz9 u1 6= z10 A
u2 6= z4 AABz5

!aa

!aa folding
w1 := w1 u1
w2 := u2

>>

C3 :

Test(w1 w2)
w1 6= z1 ABz2
w1 6= z3 A
w2 6= z6 ABz7

��
T

The inequality set in the program state C3 hinders the successful matching of w1 w2 against the pat-
tern z1 ABz2. Thus the program cannot return F for any input string, and FDel does a correct sani-
tization of the substring AB in the sense described above. Note that without the constraint w1 6= z3 A
generated by the supercompiler, we cannot prove the correctness of the sanitization. Hence, if the first
rule of the function FDel is removed, the exhaustive deletion algorithm becomes incorrect. That can be
shown by the input point Test(FDel(ε,AABB)).
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