Polyvariant program
specialisation
with property-based abstraction

John P Gallagher
Roskilde University, Denmark
IMDEA Software Institute, Madrid, Spain

VPT 2019, Genoa

Program specialization

* Given a program P

* Let @ be some set of input states
for P

* Transform P to P, that “behaves
the same” as P when starting
from a @-state

e For other initial states, P, can be
undefined.

Specialization as optimization

* The aim of the transformation is if\initial state in @) {
to gain efficiency. call(P);
* Exploit the knowledge of ¢ } ’
throughout the computation else {
* Trivial specialization not undefined;
acceptable }

Internal specialization

* In the paper, focus on internal if (€) sy else s,

specialization . e

* Related to “driving”, equivalent
to partial deduction [Gllck
1994]

Logic program specialization: 3 approaches

* Global computation tree (e.g. Mixtus)

* Compute set of predicate calls that is “closed” with
respect to an unfolding rule (Lloyd-Shepherdson)

* Local unfold-fold-newdef transformations (Pettorossi-
Proietti et al.)

Common aspects in all approaches

* A generalization operation

e Needed to ensure termination of
the specialization algorithm

* A closure property
* Global tree approaches — branches
loop back to ancestors

* Fold-unfold-newdef - folding wrt generalization

to a previously unfolded new
definition.

Lloyd-Shepherdson approach

* The alﬁprithm computes a set
of predicate calls

* Represent a call to predicate
p(x) with constraint ¢(x) as

— p(x),9(x)

p(x) < ¢(x)
«— B, «— B,
* Let U be an unfolding rule that
builds a Pd rtial derivation tree The partial evaluation of p(x) «— ¢(x) under U is the
f()r a Ca”, set of clauses
p(x) < By,

.....

Closed set of calls under unfolding rule U

e Given a finite set of calls S and

i S ={p1(X1) &= @1(xq1), ..., pn(X,) — @,(x,)
an unfolding rule U Palxa) = alX PrlXn) — Pa(x

* Sis closed under U if the partial
evaluation trees for elements of
S contain leaves that are
subsumed by elements of S

All leaf calls are of the form p;(x) «— ;(x;)

where @;(x;) is more general than y;(x))

Algorithm to generate a closed set of calls

S <+ Sy e Start with the initial calls S,
repeat * Repeat
¢ =9 * pe: Partially evaluate the set of
calls
55U %p (collect(pe(S))) * collect: Collect the leaves of the
until ' = S partial trees.

* ap: Generalise them

e Until the set of calls is closed

See Section 3 of paper.

Algorithm structure based on [Gallagher
1993] which followed the Lloyd-Shepherdson
approach.

The generalization operation

* The generalization operation is crucial

* Over-generalization — loses specialization

* Under-generalization —risk code explosion

* In the paper we explore a generalization operation using property-
based abstraction

Property-based abstraction

* The idea originated in software model checking [Ball et al. 2001]

* Let p(x) be a predicate and let ¥ = {@,(x),, @(x)} be a finite set of
properties

* The property-based abstraction of y)(x) wrt ¥ is the conjunction of
the set of elements of ¥ and their negations that are entailed by 1(x)

Property-based abstraction in pictures

-

Y ¥ b P Vs
(O | (oG)
Y Y Vs Vi P Vs

V= {¢1; ¢2' ¢3}

@ the property to be
abstracted
(dotted area)

Shaded area is the result of
abstracting ¢ using .

It is always a generalization
(i.e. a larger area)

Note that only a finite number
of different generalizations are
possible.

Control-flow refinement

* Why is property-based
abstraction a good idea?

* Because the properties chosen
for ¥ can be those that
determine control-flow in the

program

* Consider Example 2 from paper

while (x>0) {
if (y<m) y++; else x--;

)

then branch of if statement
does not affect while
condition

else branch of if statement
does not affect if condition

Horn clause representation of program

start «—
whileO(X,Y,M).
whileO(X,Y,M) «—
X>0,
ifO(X,Y,M).
whileO(X,Y,M) «—
X=<0.
ifO(X,Y,M) «—
Y<M, Y1=Y+1,

whileO(X,Y1,M).

ifO(X,Y,M) —
Y>=M, X1=X-1,

while0(X1,Y,M).

Specialize wrt call to start and the following set of
properties

: whileO(A,B,C) «— A>0
: whileO(A,B,C) «— A<0
: whileO(A,B,C) «— B<C
: whileO(A,B,C) «— B2C
: ifO(A,B,C) «— B<C

: if0O(A,B,C) «— B=>C

o b WN P

The unfolding rule stops when a branch is reached

{}

No properties
hold for this call

{}

while0(X,Y,2)

X>0

ifO(X,Y,M)

x>0

X<0

S~ o
——
e
e e e e e e = - -

{X>0} {x>0}

x>0

//’
4

1
/
while0(X,Y1,M) whileO(X1,Y,M) -7 ifO(XD

X>0, Y1<M+1 X1>-1, Y2M X>0

Property X>0 holds Property Y2M holds

®,

Property-based generalization

Y>M

whileO(X,Y,M)

x>0

X>0, Y2M

true

whileO(X1,Y,M)

X1>-1, Y>M

Property Y>M holds

Property-based generalization

Closed set achieved

* The set of calls is now closed

ifO(A,B,C)«— A>0, B=C

whileO(A,B,C) «— B>C

whileO(A,B,C) «— A>0

ifO(A,B,C) «— A>0

whileO(A,B,C) «— true

start «< true 2-phase loop

true

Reconstructed imperative code

start «<— while5(A,B,C). if (x>0) {

while5(A,B,C) < A>0,if4(A,B,C). . . .
while5(A,B,C) «— -A>0. while (y<m){/ x>0 /
if4(A,B,C) «— A>0,-B+C>0,B+ -D= -1,while3(A,D,C). y++;}

if4(A,B,C) «— A>0,B+-C20,A+ -D=1,while2(D,B,C). Xo-:

while3(A,B,C) «— A>0,if4(A,B,C). . .
while2(A,B,C) « B+-C20,A>0,if1(A,B,C). while (x>0) { /* y>=m */
while2(A,B,C) «— B+ -C20,-A>=0. X--;}

if1(A,B,C) «— A>0,B+-C20,A+ -D=1,while2(D,B,C).)

2-phase loop

Polyvariant specialization

* Polyvariant specialization means
that more than one version of a
call is generated.

e Different constraints on calls can
result in different control flow

* Experiments show that
polyvariant specialization using
property-based abstraction
improves termination analysis

* E.g. the 2-phase loop is easily
proved to be terminating, but
the original program is not

What is a good set of properties?

* The key abstractions apply to
loop entry points.

* Consider a loop. Collect all the
choices made within the loop,
projected onto the variables at
the loop entry point

* That is, the properties collect all
the relevant information
determining which path through
the loop will be taken

Loop entry,
Variables x4,...,Xm,

Internal loop
control flow
conditions ¢4

Py P3 etc.

Polyvariance and disjunctive invariants

* A good set of loop properties @
helps to find disjunctive @

invariants
Conie_s2 3
* Many verification problems
require discovery of disjunctive CEDECED

invariants

* Difficult to achieve automatically @ @ @

using standard abstractions such
as convex polyhedra @

Control flow minimization

* We may over-specialize a
program by choosing properties
that are too fine-grained.

* The different versions that are
produced may simply be
“clones” of each other

* Automata minimization can
reduce. to the mintimum number Is there a set of properties that would
of versions generate the minimized version directly?

* Tree gutomata minimization for
non-linear Horn clauses

Conclusions

* Property-based abstraction has
many practical advantages as a
generalization mechanism in
program specialization

e Easy to implement using a
SAT/SMT solver

e Guarantees termination of
specialization

* Relevant properties can be
generated beforehand, capturing
control-flow

* (but more study is needed on this)

* We can reproduce special-
purpose techniques from the
literature, regarding control-flow
refinement and loop splitting

* Like all finite abstraction
technique (with no widening) it
can lose precision and potential
specializations.

