
Polyvariant program
specialisation

with property-based abstraction

John P Gallagher
Roskilde University, Denmark

IMDEA Software Institute, Madrid, Spain

VPT 2019, Genoa

Program specialization

• Given a program P
• Let ! be some set of input states

for P
• Transform P to P! that “behaves

the same” as P when starting
from a !-state

• For other initial states, P! can be
undefined.

P! P

Specialization as optimization

• The aim of the transformation is
to gain efficiency.
• Exploit the knowledge of !

throughout the computation
• Trivial specialization not

acceptable

if (initial state in !) {
call(P);

}
else {

undefined;
}

Internal specialization

• In the paper, focus on internal
specialization
• Related to “driving”, equivalent

to partial deduction [Glück
1994]

if (e) s1; else s2

s1 s2

e ¬e

Logic program specialization: 3 approaches

•Global computation tree (e.g. Mixtus)

•Compute set of predicate calls that is “closed” with
respect to an unfolding rule (Lloyd-Shepherdson)

• Local unfold-fold-newdef transformations (Pettorossi-
Proietti et al.)

Common aspects in all approaches

• A generalization operation
• Needed to ensure termination of

the specialization algorithm

• A closure property
• Global tree approaches – branches

loop back to ancestors
• Fold-unfold-newdef - folding wrt

to a previously unfolded new
definition.

generalization

Lloyd-Shepherdson approach

• The algorithm computes a set
of predicate calls
• Represent a call to predicate

p(x) with constraint !(x) as
p(x) ⟵!(x)

• Let U be an unfolding rule that
builds a partial derivation tree
for a call.

⟵ p(x),!(x)

⟵ B1 ⟵ Bk
. . . .

The partial evaluation of p(x) ⟵!(x) under U is the
set of clauses
p(x) ⟵ B1,
….,

p(x) ⟵ Bk

Closed set of calls under unfolding rule U

• Given a finite set of calls S and
an unfolding rule U

• S is closed under U if the partial
evaluation trees for elements of
S contain leaves that are
subsumed by elements of S

S = {p1(x1) ⟵"1(x1), …., pn(xn) ⟵"n(xn)

All leaf calls are of the form pj(xj) ⟵#j(xj)

where "j(xj) is more general than #j(xj)

Algorithm to generate a closed set of calls

• Start with the initial calls S0

• Repeat
• pe: Partially evaluate the set of

calls
• collect: Collect the leaves of the

partial trees.
• !": Generalise them

• Until the set of calls is closedSee Section 3 of paper.
Algorithm structure based on [Gallagher
1993] which followed the Lloyd-Shepherdson
approach.

The generalization operation

• The generalization operation is crucial

• Over-generalization – loses specialization

• Under-generalization – risk code explosion

• In the paper we explore a generalization operation using property-
based abstraction

Property-based abstraction

• The idea originated in software model checking [Ball et al. 2001]
• Let p(x) be a predicate and let ! = {"1(x), …., "k(x)} be a finite set of

properties

• The property-based abstraction of #(x) wrt ! is the conjunction of
the set of elements of ! and their negations that are entailed by #(x)

Property-based abstraction in pictures

!1

"

!3!2!1

"

!3!2

!1

"

!3!2 !1

"

!3!2

!1

"

!3!2 !1

"

!3!2

! = {"1, "2, "3}

the property to be
abstracted
(dotted area)

Shaded area is the result of
abstracting # using !.

It is always a generalization
(i.e. a larger area)

Note that only a finite number
of different generalizations are
possible.

Control-flow refinement

• Why is property-based
abstraction a good idea?

• Because the properties chosen
for ! can be those that
determine control-flow in the
program

• Consider Example 2 from paper

while (x>0) {
if (y<m) y++; else x--;

}

then branch of if statement
does not affect while
condition

else branch of if statement
does not affect if condition

Horn clause representation of program

start ⟵
while0(X,Y,M).

while0(X,Y,M) ⟵
X>0,
if0(X,Y,M).

while0(X,Y,M) ⟵
X=<0.

if0(X,Y,M) ⟵
Y<M, Y1=Y+1,
while0(X,Y1,M).

if0(X,Y,M) ⟵
Y>=M, X1=X-1,
while0(X1,Y,M).

1: while0(A,B,C) ⟵ A>0
2: while0(A,B,C) ⟵ A≤0
3: while0(A,B,C) ⟵ B<C
4: while0(A,B,C) ⟵ B≥C
5: if0(A,B,C) ⟵ B<C
6: if0(A,B,C) ⟵ B≥C

Specialize wrt call to start and the following set of
properties

The unfolding rule stops when a branch is reached

while0(X,Y,Z)

if0(X,Y,M)

X>0 X≤0

{}

X>0

start

while0(X,Y,M)

{}

No properties
hold for this call

Next
slide

true

if0(X,Y,M)

while0(X,Y1,M)

Y<M

while0(X1,Y,M)

Y≥M

{X>0}

X1> -1, Y≥M

Property Y≥M holds

while0(X,Y,M)

if0(X,Y,M)

X>0

{X>0}

X>0

Next
slide

Property X>0 holds

X>0, Y1<M+1

Property-based generalization

while0(X,Y,M)

if0(X,Y,M)

X>0

Y≥M

X>0, Y≥M

true

if0(X,Y,M)

X>0, Y≥M

while0(X1,Y,M)

X1≥-1, Y≥M

Property Y≥M holds

Property-based generalization

Closed set achieved

• The set of calls is now closed

if0(A,B,C)⟵ A>0, B≥C
while0(A,B,C) ⟵ B≥C
while0(A,B,C) ⟵ A>0
if0(A,B,C) ⟵ A>0
while0(A,B,C) ⟵ true
start ⟵ true

true
2-phase loop

Reconstructed imperative code

if (x>0) {
while (y<m) { /* x>0 */

y++;}
x--;
while (x>0) { /* y>=m */

x--;}
}

start ⟵ while5(A,B,C).
while5(A,B,C) ⟵ A>0,if4(A,B,C).
while5(A,B,C) ⟵ -A≥0.
if4(A,B,C) ⟵ A>0,-B+C>0,B+ -D= -1,while3(A,D,C).
if4(A,B,C) ⟵ A>0,B+ -C≥0,A+ -D=1,while2(D,B,C).
while3(A,B,C) ⟵ A>0,if4(A,B,C).
while2(A,B,C) ⟵ B+ -C≥0,A>0,if1(A,B,C).
while2(A,B,C) ⟵ B+ -C≥0,-A>=0.
if1(A,B,C) ⟵ A>0,B+ -C≥0,A+ -D=1,while2(D,B,C).

2-phase loop

Polyvariant specialization

• Polyvariant specialization means
that more than one version of a
call is generated.

• Different constraints on calls can
result in different control flow

• Experiments show that
polyvariant specialization using
property-based abstraction
improves termination analysis

• E.g. the 2-phase loop is easily
proved to be terminating, but
the original program is not

What is a good set of properties?

• The key abstractions apply to
loop entry points.

• Consider a loop. Collect all the
choices made within the loop,
projected onto the variables at
the loop entry point
• That is, the properties collect all

the relevant information
determining which path through
the loop will be taken

Loop entry,
Variables x1,…,xm

!1

!2

!3

Project !1, !2, !3 etc. onto x1,…,xm

Internal loop
control flow
conditions !1,
!2, !3 etc.

Polyvariance and disjunctive invariants

• A good set of loop properties
helps to find disjunctive
invariants

• Many verification problems
require discovery of disjunctive
invariants
• Difficult to achieve automatically

using standard abstractions such
as convex polyhedra

Control flow minimization

• We may over-specialize a
program by choosing properties
that are too fine-grained.
• The different versions that are

produced may simply be
“clones” of each other
• Automata minimization can

reduce to the minimum number
of versions
• Tree automata minimization for

non-linear Horn clauses

Is there a set of properties that would
generate the minimized version directly?

Conclusions

• Property-based abstraction has
many practical advantages as a
generalization mechanism in
program specialization
• Easy to implement using a

SAT/SMT solver
• Guarantees termination of

specialization
• Relevant properties can be

generated beforehand, capturing
control-flow

• (but more study is needed on this)

• We can reproduce special-
purpose techniques from the
literature, regarding control-flow
refinement and loop splitting

• Like all finite abstraction
technique (with no widening) it
can lose precision and potential
specializations.

