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Program specialization

• Given a program P
• Let ! be some set of input states 

for P
• Transform P to P! that “behaves 

the same” as P when starting 
from a !-state

• For other initial states, P! can be 
undefined.

P! P



Specialization as optimization

• The aim of the transformation is 
to gain efficiency.  
• Exploit the knowledge of !

throughout the computation
• Trivial specialization not 

acceptable

if (initial state in !) {
call(P);

}
else {

undefined;
}



Internal specialization

• In the paper, focus on internal 
specialization
• Related to “driving”, equivalent 

to partial deduction [Glück
1994]

if (e) s1; else s2

s1 s2

e ¬e



Logic program specialization: 3 approaches

•Global computation tree (e.g. Mixtus)

•Compute set of predicate calls that is “closed” with 
respect to an unfolding rule (Lloyd-Shepherdson)

• Local unfold-fold-newdef transformations (Pettorossi-
Proietti et al.)



Common aspects in all approaches

• A generalization operation
• Needed to ensure termination of 

the specialization algorithm

• A closure property
• Global tree approaches – branches 

loop back to ancestors
• Fold-unfold-newdef - folding wrt

to a previously unfolded new 
definition.

generalization



Lloyd-Shepherdson approach

• The algorithm computes a set 
of predicate calls
• Represent a call to predicate 

p(x) with constraint !(x) as 
p(x) ⟵!(x)

• Let U be an unfolding rule that 
builds a partial derivation tree 
for a call.

⟵ p(x),!(x)

⟵ B1 ⟵ Bk
. . . . 

The partial evaluation of p(x) ⟵!(x) under U is the 
set of clauses
p(x) ⟵ B1,
…., 

p(x) ⟵ Bk



Closed set of calls under unfolding rule U

• Given a finite set of calls S and 
an unfolding rule U

• S is closed under U if the partial 
evaluation trees for elements of 
S contain leaves that are 
subsumed by elements of S

S = {p1(x1) ⟵"1(x1),   ….,   pn(xn) ⟵"n(xn)

All leaf calls are of the form pj(xj) ⟵#j(xj)

where "j(xj) is more general than #j(xj) 



Algorithm to generate a closed set of calls

• Start with the initial calls S0

• Repeat
• pe: Partially evaluate the set of 

calls
• collect: Collect the leaves of the 

partial trees.
• !": Generalise them 

• Until the set of calls is closedSee Section 3 of paper.
Algorithm structure based on [Gallagher 
1993] which followed the Lloyd-Shepherdson 
approach.



The generalization operation

• The generalization operation is crucial

• Over-generalization – loses specialization

• Under-generalization – risk code explosion

• In the paper we explore a generalization operation using property-
based abstraction



Property-based abstraction

• The idea originated in software model checking [Ball et al. 2001]
• Let p(x) be a predicate and let ! =  {"1(x), …., "k(x)} be a finite set of 

properties

• The property-based abstraction of #(x) wrt ! is the conjunction of 
the set of elements of ! and their negations that are entailed by #(x) 



Property-based abstraction in pictures

!1

"

!3!2!1

"

!3!2

!1

"

!3!2 !1

"

!3!2

!1

"

!3!2 !1

"

!3!2
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# the property to be 
abstracted 
(dotted area)

Shaded area is the result of 
abstracting # using !. 

It is always a generalization 
(i.e. a larger area)

Note that only a finite number 
of different generalizations are 
possible.



Control-flow refinement

• Why is property-based 
abstraction a good idea?

• Because the properties chosen 
for ! can be those that 
determine control-flow in the 
program

• Consider Example 2 from paper

while (x>0) {
if (y<m)  y++; else x--; 

}

then branch of if statement 
does not affect while
condition

else branch of if statement 
does not affect if condition



Horn clause representation of program

start ⟵
while0(X,Y,M).

while0(X,Y,M) ⟵
X>0,
if0(X,Y,M).

while0(X,Y,M) ⟵
X=<0.

if0(X,Y,M) ⟵
Y<M, Y1=Y+1,
while0(X,Y1,M).

if0(X,Y,M) ⟵
Y>=M, X1=X-1,
while0(X1,Y,M).

1: while0(A,B,C) ⟵ A>0
2: while0(A,B,C) ⟵ A≤0
3: while0(A,B,C) ⟵ B<C
4: while0(A,B,C) ⟵ B≥C
5: if0(A,B,C) ⟵ B<C
6: if0(A,B,C) ⟵ B≥C

Specialize wrt call to start and the following set of 
properties

The unfolding rule stops when a branch is reached  



while0(X,Y,Z)

if0(X,Y,M)

X>0 X≤0

{}

X>0

start

while0(X,Y,M)

{}

No properties 
hold for this call

Next 
slide

true



if0(X,Y,M)

while0(X,Y1,M)

Y<M

while0(X1,Y,M)

Y≥M

{X>0} 

X1> -1, Y≥M

Property Y≥M holds 

while0(X,Y,M)

if0(X,Y,M)

X>0

{X>0} 

X>0

Next 
slide

Property X>0 holds 

X>0,  Y1<M+1

Property-based generalization



while0(X,Y,M)

if0(X,Y,M)

X>0

Y≥M

X>0, Y≥M

true

if0(X,Y,M)

X>0, Y≥M

while0(X1,Y,M)

X1≥-1, Y≥M

Property Y≥M holds 

Property-based generalization



Closed set achieved

• The set of calls is now closed

if0(A,B,C)⟵ A>0, B≥C
while0(A,B,C) ⟵ B≥C
while0(A,B,C) ⟵ A>0 
if0(A,B,C) ⟵ A>0 
while0(A,B,C) ⟵ true
start ⟵ true

true
2-phase loop



Reconstructed imperative code

if (x>0) {
while (y<m) { /* x>0 */

y++;}
x--;
while (x>0) { /* y>=m */

x--;}
}

start ⟵ while5(A,B,C).
while5(A,B,C) ⟵ A>0,if4(A,B,C).
while5(A,B,C) ⟵ -A≥0.
if4(A,B,C) ⟵ A>0,-B+C>0,B+ -D= -1,while3(A,D,C).
if4(A,B,C) ⟵ A>0,B+ -C≥0,A+ -D=1,while2(D,B,C).
while3(A,B,C) ⟵ A>0,if4(A,B,C).
while2(A,B,C) ⟵ B+ -C≥0,A>0,if1(A,B,C).
while2(A,B,C) ⟵ B+ -C≥0,-A>=0.
if1(A,B,C) ⟵ A>0,B+ -C≥0,A+ -D=1,while2(D,B,C).

2-phase loop



Polyvariant specialization

• Polyvariant specialization means 
that more than one version of a 
call is generated.

• Different constraints on calls can 
result in different control flow

• Experiments show that 
polyvariant specialization using 
property-based abstraction 
improves termination analysis

• E.g. the 2-phase loop is easily 
proved to be terminating, but 
the original program is not



What is a good set of properties?

• The key abstractions apply to 
loop entry points.

• Consider a loop.  Collect all the 
choices made within the loop, 
projected onto the variables at 
the loop entry point
• That is, the properties collect all 

the relevant information 
determining which path through 
the loop will be taken

Loop entry,
Variables x1,…,xm

!1

!2

!3

Project !1, !2, !3 etc. onto x1,…,xm

Internal loop 
control flow 
conditions !1, 
!2, !3 etc.



Polyvariance and disjunctive invariants

• A good set of loop properties 
helps to find disjunctive 
invariants

• Many verification problems 
require discovery of disjunctive 
invariants
• Difficult to achieve automatically 

using standard abstractions such 
as convex polyhedra



Control flow minimization

• We may over-specialize a 
program by choosing properties 
that are too fine-grained.
• The different versions that are 

produced may simply be 
“clones” of each other
• Automata minimization can 

reduce to the minimum number 
of versions 
• Tree automata minimization for 

non-linear Horn clauses

Is there a set of properties that would 
generate the minimized version directly?



Conclusions

• Property-based abstraction has 
many practical advantages as a 
generalization mechanism in 
program specialization
• Easy to implement using a 

SAT/SMT solver
• Guarantees termination of 

specialization
• Relevant properties can be 

generated beforehand, capturing 
control-flow 

• (but more study is needed on this)

• We can reproduce special-
purpose techniques from the 
literature, regarding control-flow 
refinement and loop splitting

• Like all finite abstraction 
technique (with no widening) it 
can lose precision and potential 
specializations. 


