
Comparative Study of Eight
Formal Specifications of the

Message Authenticator Algorithm

Hubert Garavel Lina Marsso
Inria Grenoble – LIG

Université Grenoble Alpes

http://convecs.inria.fr

http://convecs.inria.fr/

Outline

The Message Authenticator Algorithm (MAA)
Six formal models of the MAA
Two new formal models of the MAA
Key modelling issues
Code generation and validation
Errors found in ISO standards
Conclusion

2

The Message Authenticator
Algorithm (MAA)

3

Basics of cryptography
Message Digest

 function: (long) message → (short) numeric value
 ensures integrity (the message has not been modified)
 example: MD5

Message Authentication Code (MAC)
 function: (long) message, (short) key → (short) value
 the key is secret, shared by the sender and the receiver
 ensures both authentication and integrity
 examples: hash-based (HMAC) , universal (UMAC),
block ciphers (CMAC, OMAC, PMAC), etc.

4

Message Authenticator Algorithm (MAA)

First widely-used MAC function
Designed by Donald Davies
and David Clayden (NPL, 1983)

 to protect banking transactions
 intended to be implemented in software (32-bit PCs)

Adopted by financial institutions
 standardized by ISO in 1987 [ISO 8730 and 8731-2]
 attacks published in the mid 90s
 withdrawn from ISO standards in 2002

5

Overview of the MAA
Inputs:

 A 64-bit secret key (split into two blocks J, K)
 A message, seen as a sequence of (less than 1,000,000)
"blocks" (i.e., 32-bit words)

Output:
 A 32-bit MAC value (much too short nowadays!)

Basic operations:
 logical: AND, OR, XOR, CYC (bit rotation)
 arithmetic: ADD, MUL (mod 232), MUL1 (mod 232-1),
MUL2 (mod 232-2), MUL2A (faster variant of MUL2)

6

MAA
data flow

7

Prelude: converts key (J, K) into
6 blocks X0, Y0, V0, W, S, T

Main Loop: iterates on each
message block, modifying
3 variables X, Y, V

Coda: two final iterations on
the blocks S and T

"Mode of operation"
Message is split into a list of 256-block segments

8

segment 1 segment 2 segment 3 last

segment 2

segment 3

last

final MAC result

MAA

MAA

MAA

MAA

Informal specifications of the MAA
[Davies-Clayden-88] NPL technical report

 complete definition of the MAA in natural language
 two implementations in C and BASIC
 these implementations do not support the "mode of
operation" (only work for messages ≤ 256 blocks)

[ISO 8731-2:1992]
 core part very similar to [Davies-Clayden-88]

Specifications ambiguous at various places:
 byte ordering
 mode of operation

 9

Test vectors for the MAA
Various test vectors given in:

 [Davies-Clayden-88] and [ISO 8731-2:1992]
 [ISO-8730:1990]

10

Why choosing the MAA?
More challenging than conventional examples:

 protocols and circuits deal with simple data types
 compilers deal with abstract syntax trees (explored
using standard traversals)
 cryptographic functions exhibit "strange" behavior by
performing "irregular" calculations

Large example, still of manageable complexity
Definition of MAA is stable and available
MAA played a role in the history of formal methods

 NPL developed 3 formal specifications of the MAA

11

Six formal models of the MAA

12

VDM-90 [Parkin-O'Neill] and Z-91 [Lai]

VDM-90:
 the first formal model of the MAA
 included as Annex B of ISO standard 8731-2:1992
 3 implementations manually derived from this model:
 C, Miranda, Modula-2

Z-91:
 application of Knuth's "literate programming" idea
 Z code fragments inserted in natural-language ISO text

13

LOTOS-91 [Munster]

Only a subset of LOTOS was used:
 abstract data types only
 no use of the process-calculus part of LOTOS

Equational specifications
 sorts, operations, equations with premisses
 fully formal
 yet non executable
 many "wishful-thinking" equations:
 x = g (y) ⇒ f (x) = y means f =def g−1

14

A different approach
VDM-90, Z-91, LOTOS-91 were leading edge, but:

 "pen-and-pencil" formal methods
 lack of validation tools
 implementations had to be developed manually

 ⇒ possible incompatibilities between formal models
and handwritten implementations

A different path explored at INRIA Grenoble:
 executable formal models
 automated translators from formal models to C

15

LOTOS-92 [Garavel-Turlier]
Goals:

 prove that LOTOS abstract data types, used under
 a reasonable discipline, could become executable
 show the merits of the CAESAR.ADT compiler
 (LOTOS abstract data types → C)

Features:
 LOTOS-92: derived from LOTOS-91 with minimal changes
 equations turned into conditional rewrite rules
 all "wishful-thinking" equations eliminated
 a few types and functions implemented directly in C
 executable implementation generated by CAESAR.ADT

 16

LNT-16 [Serwe]

Goal:
 effort to migrate LOTOS demo examples to LNT ones

Features:

 LNT-16: systematic translation of LOTOS-92 to LNT
 slightly more concise than LOTOS-92
 reuse of the same C code fragments as LOTOS-92
 same test vectors, same results

17

LNT in a nutshell
A safe language for message-passing concurrent systems
A user-friendly synthesis between three paradigms:

 1) Process calculi
 nondeterministic choice, asynchronous parallel composition,
 multiway rendez-vous, disruption

 2) Functional languages
 types defined by free constructors, pattern matching

 3) Imperative languages
 structured programming constructs (if, while, for, case, etc.),
assignments, in/out parameters, Ada-like syntax for readability

Supported by CADP: compilers, model-checkers, etc.

18

REC-17 [Garavel-Marsso] (1/2)
A (conditional) term-rewrite system for the MAA
Maybe the largest term-rewrite system available:

 46 pages, 1575 lines
 13 sorts
 18 constructors, 644 non-constructors
 684 rewrite rules

Exhaustive, self-contained, fully formal:
 no import of external C code
 binary adders and multipliers for 8, 16, 32-bit words

 19

REC-17 [Garavel-Marsso] (2/2)
Executable:

 automated translation to 13 languages:
Clean, Haskell, LNT, LOTOS, Maude, mCRL2, OCaml,
Opal, Rascal, Scala, Standard ML, Stratego/XT, Tom

Verified/validated:
 confluence
 termination
 all test vectors from [ISO 8731-2] and [ISO 8730]
 new test vectors targeting endianness, byte
permutations, and message segmentation

20

Two new formal models
of the MAA

21

LOTOS-17 [Garavel-Marsso]

Goals:
 reuse the MAA knowledge acquired with REC-17
 produce an executable LOTOS specification
 as simple as possible
 no need to remain aligned with LOTOS-91

Features:
 major rewrite, many simplifications (see the paper)
 imports some fragments written in C
(operations on 32-bit machine words)
 (test vectors not added)

 22

LNT-17 [Garavel-Marsso]

Design:
 derived from LOTOS-17
 further simplified by using LNT's imperative style
 extended with additional test vectors
(pseudo-random message generation)

Qualities:
 MAA model with the most test vectors
 very readable
 close to the original MAA specification

23

Overview of MAA models
model size (in lines) total size

VDM-90 275 275
Z-91 608 608

LOTOS-91 438 438
LOTOS-92 641 (+ 63 lines in C) 704

LNT-16 543 (+ 63 lines in C) 606
REC-17 (+ tests) 1575 1575

LOTOS-17 266 (+ 157 lines in C) 423
LNT-17 268 (+ 345 lines in C) 345

LNT-17 (+ tests) 1334 (+ 345 lines in C) 1679

24

Executable specifications are not necessarily larger

Key modelling issues

25

Local variables in functions (1/3)
LNT-17: imperative style, easy to write, easy to read

 local variables and assignments
 compute a result once and reuse it several times
 direct correspondence with the informal MAA specification

26

VDM-90: very similar style, using the "let" operator

Local variables in functions (2/3)
LOTOS-91:

 MUL1 can still be defined using a single function
 but not executable (wishful-thinking equations)

27

 The 32-bit strings U and L are such that the integer value of their concatenation
is equal to the 64-bit product of the integer values of the 32-bit strings X and Y.

Local variables in functions (3/3)
LOTOS-92, REC-17:

 this time, MUL1 is defined as an executable function
 but it requires two auxiliary functions
 rather far from the informal MAA specification

28

Functions returning multiple results
LNT-17: functions can have "out" or "in out" parameters
(call by result or call by value-result)

29

In other languages: functions can return only one result
VDM-90, Z-91: Prelude returns a 6-tuple of blocks
LOTOS-91, LOTOS-17: Prelude returns a 3-tuple of
block pairs
⇒ requires auxiliary types, tupling, detupling, etc.
REC-17: Prelude was split into 3 functions, each
returning a block pair
⇒ decomposition not feasible in the general case

Useful combinations of LNT features

30

Code generation
and validation

31

Validation
LOTOS-17

 compiles without warning using CAESAR.ADT and
then "gcc –Wall"
 passes tests of ISO 8730, Annexes E.3.4 and E.4

LNT-17
 compiles without warning using LNT2LOTOS, then
CAESAR.ADT, then "gcc –Wall"
 especially, LNT2LOTOS reports no unused variable,
 no useless assignment, etc.
 passes tests of ISO 8730, Annexes E3, E.3.4, and E.4
 and ISO 8731-2, Annex A

32

Performance improvements
1990: handwritten Miranda code derived from VDM-90

 60 seconds to process an 84-block message
 480 seconds to process a 588-block message

Today: C code generated from LOTOS-17
 0.37 second to process a 1,000,000-block message

Today: C code generated from LNT-17
 0.65 second to process a 1,000,000-block message
 (a bit slower than LOTOS since LNT-17 contains many assertions)

"formal" and "executable" are no longer exclusive
33

Errors found in ISO standards

34

Errata: ISO-8730:1990, Annex E.2

35

Errata: ISO-8730:1990, Annex E.3, E.4

36

Errata: ISO-8731-2:1992, Annex A
Incorrect test vectors given for function PAT
[Davies-Clayden-88, Table 3] and [ISO 8732-2:1992, Table A.3]

37

should be replaced with:

Conclusion

38

Conclusion
MAA:

 a pioneering algorithm in cryptography (80s)
 an early application of formal methods (90s)
 contributions: 2 new MAA models (LOTOS-17, LNT-17)
 a 9th MAA model in preparation: VDM-18 [Nick Battle]

LNT:
 the "great unification" between imperative, functional,
and process-algebraic languages?
 solves many pitfalls of traditional formal methods
 also suitable for non-concurrent (i.e. sequential) code

39

