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Loop invariants play a central role in the verification of imperative programs. However, finding
these invariants is often a difficult and time-consuming task for the programmer. We have previously
shown how program transformation can be used to facilitate the verification of functional programs,
but the verification of imperative programs is more challenging due to the need to discover these loop
invariants. In this paper, we describe a technique for automatically discovering loop invariants. Our
approach is similar to the induction-iteration method, but avoids the potentially exponential blow-
up in clauses which can result when using this and other methods. Our approach makes use of the
distillation program transformation to transform clauses into a simplified form which facilitates the
identification of similarities and differences between them and thus discover invariants. We prove
that our technique terminates, and demonstrate its successful application to example programs that
have proven to be problematic using other approaches.

1 Introduction

The verification of imperative programs generally involves annotating programs with assertions, and
then using a theorem prover to check these annotations. Central to this annotation process is the use
of loop invariants which are assertions that are true before and after each iteration of a loop. However,
finding these invariants is a difficult and time-consuming task for the programmer, and they are often
reluctant to do this. In previous work [15], we have shown how to make use of program transformation
in the verification of functional programs. However, the verification of imperative programs is not so
straightforward due to the need to discover these invariants prior to verification. In this paper, we describe
a technique for automatically discovering loop invariants, thus relieving the programmer of this burden.
Our technique relies upon the programmer having provided a postcondition for the program; this is much
less onerous than providing loop invariants as it generally forms part of the specification of the program.

The technique we describe is similar to the induction-iteration method of Suzuki and Ishihata [31],
but we overcome the problems associated with that method which were potential non-termination and
exponential blow-up in the size of clauses. Similarly to the induction-iteration method, our technique
involves working backward through the iterations of a loop and determining the assertions that are true
before each iteration. We use the distillation program transformation [14, 16] to transform assertions into
a simplified form that facilitates the identification of similarities and differences between them. Com-
monalities between these assertions are identified, and they are generalised accordingly to give a putative
loop invariant that can then be verified. We prove that our technique terminates and demonstrate its
successful application to example programs that have proven to be problematic using other approaches.

The remainder of this paper is structured as follows. In Section 2, we describe the simple imperative
language that will be used throughout the paper. In Section 3, we provide some background on the use
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of loop invariants in the verification of programs written in this language. In Section 4, we give a brief
overview of the distillation program transformation algorithm which is used to simplify assertions in
our approach. In Section 5, we describe our technique for the automatic generation of loop invariants,
demonstrate it on some examples, and prove that it terminates. In Section 6, we consider related work
and compare these to our own our technique. Section 7 concludes and considers future work.

2 Language

In this section, we introduce our object language, which is a simple imperative programming language.

Definition 2.1 (Language Syntax) The syntax of our object language is as shown in Figure 1.

S ::= SKIP Do nothing
| V := E Assignment
| S1 ; S2 Sequence
| IF B THEN S1 ELSE S2 Conditional
| BEGIN VAR V1 . . .Vn S END Local block
| WHILE B DO S While loop

Figure 1: Language Syntax

E corresponds to natural number expressions which belong to the following datatype:

Nat ::= Zero | Succ Nat

B corresponds to boolean expressions which belong to the following datatype:

Bool ::= True | False

These expressions are defined in a simple functional language with the following syntax.

Definition 2.2 (Expression Syntax) The syntax of expressions in our language is as shown in Figure 2.

E ::= V Variable
| C E1 . . .Ek Constructor Application
| λV.E λ -Abstraction
| F Function Call
| E0 E1 Application
| CASE E0 of P1→ E1 | · · · | Pk→ Ek Case Expression
| E0 WHERE F1 = E1 . . .Fn = En Local Function Definitions

P ::= C V1 . . .Vk Pattern

Figure 2: Expression Syntax

An expression can be a variable, constructor application, λ -abstraction, function call, application, CASE
or WHERE. Variables introduced by λ -abstractions and CASE patterns are bound; all other variables
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are free. We use f v(E) to denote the free variables of E and write E ≡ E ′ if E and E ′ differ only in the
names of bound variables.

The constructors are those specified above (Zero,Succ,True,False). We assume a number of pre-
defined operators written in this language. For example, for natural number expressions the operators
(+,−,∗,/,%,∧ ) implement natural number addition, subtraction, multiplication, division, modulus and
exponentiation respectively. For boolean expressions the operators (∧,∨,¬,⇒) implement conjunction,
disjunction, negation and implication respectively. The relational operators (<,>,≤,≥,=, 6=) are also
defined.

Definition 2.3 (Substitution) θ = {V1 7→ E1, . . . ,Vn 7→ En} denotes a substitution. If E is an expres-
sion, then Eθ = E{V1 7→ E1, . . . ,Vn 7→ En} is the result of simultaneously substituting the expressions
E1, . . . ,En for the corresponding variables V1, . . . ,Vn, respectively, in the expression E while ensuring that
bound variables are renamed appropriately to avoid name capture.

We reason about the behaviour of our imperative programming language using Floyd-Hoare style logic
[10, 18]. Specifications in this logic take the form of a triple {P} S {Q}, where P and Q are boolean
expressions that denote the pre- and post-conditions respectively for imperative program S i.e. if P is
true, then after execution of S, Q will be true. These are therefore partial correctness specifications, and
do not say anything about the termination of programs.

Definition 2.4 (Floyd-Hoare Logic) The rules and axioms of Floyd-Hoare logic for our imperative lan-
guage are as shown in Figure 3.

{P} SKIP {P} {Q{V := E}} V := E {Q}

{P} S1 {Q}, {Q} S2 {R}
{P} S1;S2 {R}

{P∧B} S1 {Q}, {P∧¬B} S2 {Q}
{P} IF B THEN S1 ELSE S2 {Q}

{P} S {Q}, V1 . . .Vn /∈ f v(P), f v(Q)

{P} BEGIN VAR V1 . . .Vn S END {Q}
{I∧B} S {I}

{I}WHILE B DO S {I∧¬B}

P⇒ P′, {P′} S {Q}
{P} S {Q}

{P} S {Q′}, Q′⇒ Q
{P} S {Q}

Figure 3: Floyd-Hoare Logic

In the rule for the while loop, the assertion I is called the loop invariant.

3 Loop Invariants

A loop invariant is an assertion that is true before and after each iteration of the loop, and usually needs to
be provided by the programmer. A loop which is annotated in this way is denoted by WHILE B DO {I} S

Definition 3.1 (Requirements of Loop Invariants) The three requirements of the invariant I of the loop
{P}WHILE B DO {I} S {Q} are as follows:

1. P⇒ I

2. {I∧B} S {I}
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3. (I∧¬B)⇒ Q
Thus, the precondition P should establish the invariant before executing the loop, the loop body S should
maintain the invariant, and the invariant should be sufficient to establish the postcondition Q after exiting
the loop.

Example 1 Consider the program shown in Figure 4.

{n≥ 0}
x := 0;
y := 1;
WHILE x< n DO
BEGIN
x := x+1;
y := y ∗k

END
{y = k∧n}

Figure 4: Example Program

This program calculates the exponentiation k∧n. Say we wish to construct an invariant for the loop
in this program which will allow it to be verified. In [11] it is observed that the required invariant is
often a weakening of the postcondition for the loop and can be obtained by mutating this postcondition.
The assertion y = k∧x is an invariant for this loop which is a mutation of the postcondition. However,
this invariant is not sufficient to allow verification of this program; the additional invariant x≤ n is also
required. In general, the problem of constructing appropriate invariants which are sufficient to allow
programs to be verified is undecidable [2]. However, in this paper we show how we can automatically
generate invariants which are sufficient to allow a wide range of programs to be verified.

Our approach makes use of the weakest liberal precondition originally proposed by Dijkstra [7].
Definition 3.2 (Weakest Liberal Precondition) We define the weakest liberal precondition for pro-
grams in our language, denoted as WLP(S,Q), where S is a program and Q a postcondition. The result
of our calculation is a set of boolean expressions, which are the conjuncts of the weakest liberal precon-
dition. The condition P =

∧
WLP(S,Q) if Q is true after execution of S, and no condition weaker than P

satisfies this. The key difference of a weakest liberal precondition as opposed to a weakest precondition
is that it does not say anything about the termination of programs. The rules for calculating WLP(S,Q)
for our programming language are as shown in Figure 5.

WLP(SKIP,Q) = {Q}
WLP(V := E,Q) = {Q{V := E}}

WLP(S1;S2,Q) =
⋃
{WLP(S1,P)|P ∈WLP(S2,Q)}

WLP(IF B THEN S1 ELSE S2,Q) = {B⇒ P|P ∈WLP(S1,Q)}∪{¬B⇒ P|P ∈WLP(S2,Q)}
WLP(WHILE B DO {I} S,Q) = {I}∪{(B∧ I)⇒ P|P ∈WLP(S, I)}∪{(¬B∧ I)⇒ Q}

Figure 5: Weakest Liberal Precondition

Note that the weakest liberal precondition calculation for a loop requires that it has already been anno-
tated with its invariant. This implies that we should apply our techniques to inner loops first to determine
their invariant before applying them to outer loops.
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4 Distillation

The predicates produced in our approach are simplified using the distillation transformation [14, 16].
Distillation is a fold/unfold program transformation that builds on top of positive supercompilation [30],
but is more powerful, thus allowing more simplifications to be performed. The main distinguishing char-
acteristic between the two algorithms is that in distillation, generalisation and folding are performed with
respect to recursive terms, while in positive supercompilation they are not. In the work described here, we
transform predicates into a simplified form that facilitates the identification of similarities and differences
between them. In particular, built-in associative operators (such as +,*,∧,∨) are always transformed into
right-associative form.

4.1 Embedding

Generalisation is performed if the predicate obtained from distillation is an embedding of a previously
distilled one. The form of embedding which we use to inform this process is known as homeomor-
phic embedding. The homeomorphic embedding relation was derived from results by Higman [17] and
Kruskal [22] and was defined within term rewriting systems [6] for detecting the possible divergence of
the term rewriting process. Variants of this relation have been used to ensure termination within positive
supercompilation [29], distillation [14, 16], partial evaluation [24] and partial deduction [3, 23].

Definition 4.1 (Expression Embedding) An expression E is embedded in expression E ′ if E E E ′,
where the binary relation E is defined as follows.

V EV ′
∃i ∈ {1 . . .n}.E E Ei

E E φ(E1, . . . ,En)

∀i ∈ {1 . . .n}.Ei E E ′i
φ(E1, . . . ,En)E φ(E ′1, . . . ,E

′
n)

The first rule here is for variables, the second is a diving rule and the third is a coupling rule. Diving
detects a sub-expression embedded in a larger expression, and coupling matches all the sub-expressions
of two expressions which have the same top-level constructor. Bound variables are handled by this
relation by requiring that they have the same de Bruijn indices. We write E � E ′ if expression E is
coupled with expression E ′.

4.2 Generalisation

Definition 4.2 (Generalisation of Expressions) The generalisation of expression E with respect to ex-
pression E ′ (denoted by E u E ′) is defined as shown below.

E uE ′ =



(φ(E ′′1 , . . . ,E
′′
n ),

⋃n
i=1 θi,

⋃n
i=1 θ ′i ), if φ = φ ′

where
E = φ(E1, . . . ,En)
E ′ = φ ′(E ′1, . . . ,E

′
n)

∀i ∈ {1 . . .n}.EiuE ′i = (E ′′i ,θi,θ
′
i )

(V,{V 7→ E},{V 7→ E ′}), otherwise (V is fresh)

The result of this generalisation is a triple (E ′′,θ ,θ ′) where E ′′ is the generalised expression and θ and
θ ′ are substitutions s.t. E ′′θ ≡ E and E ′′θ ′ ≡ E ′. Within these rules, if both expressions have the same
constructor at the outermost level, this is made the outermost constructor of the resulting generalised ex-
pression, and the corresponding sub-expressions within the constructor applications are then generalised.
Otherwise, both expressions are replaced by the same variable.
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Definition 4.3 (Most Specific Generalisation) A most specific generalisation of expressions E and E ′

is an expression E ′′ such that for every other generalisation E ′′′ of E and E ′, there is a substitution θ such
that E ′′θ ≡E ′′′. The most specific generalisation, denoted by E4E ′, of expressions E and E ′ is computed
by exhaustively applying the following rewrite rule to the triple obtained from the generalisation E uE ′: E,

{V1 7→ E ′,V2 7→ E ′}∪θ ,
{V1 7→ E ′′,V2 7→ E ′′}∪θ ′

⇒
 E{V1 7→V2},
{V2 7→ E ′}∪θ ,
{V2 7→ E ′′}∪θ ′


This minimises the substitutions by identifying common substitutions which were previously given dif-
ferent names.

5 Automatic Generation of Loop Invariants

In order to calculate loop invariants, starting from the postcondition, we work our way backwards through
each iteration of the loop generating successive approximations to the loop invariant. If the current
approximation is an embedding of a previous one then it is generalised with respect to this previous
approximation. This process is continued until the current approximation is a renaming of a previous one;
this is then the putative invariant for the loop. If there are a number of different possible paths through the
loop, then a number of possible preconditions will be calculated for it; these are collapsed into a single
precondition by being generalised with respect to each other, thus producing a single approximation for
each loop iteration.

Our algorithm for the automatic generation of an invariant for the loop WHILE B DO S with post-
condition Q is as shown in Figure 6.

f (distill(¬B∧Q)) /0
where
f P φ = if ∃Q ∈ φ s.t. Q≡ P (modulo variable renaming)

then return P
else if ∃Q ∈ φ s.t. Q� P

then f P′ φ where P′ = P4Q
else return f (

a
{distill(B∧P′) | P′ ∈WLP(S,P)}) (φ ∪{P})

Figure 6: Algorithm for Finding Loop Invariants

Here, P is the current predicate (initially equivalent to ¬B∧Q) and φ is the set of previous approxi-
mations to the invariant (initially empty). If P is a renaming of a predicate in φ , then P is returned as the
putative invariant. If there is a predicate Q in φ which is an embedding of P, then P is generalised with
respect to Q, and the algorithm is further applied to this generalisation. Otherwise, the set of new possi-
ble predicates is calculated using WLP(S,P), simplified using distillation, and then generalised together.
The algorithm is then further applied to the resulting generalised predicate with P added to φ .

The generated invariant may contain generalisation variables; inductive definitions for these variables
can be determined using the three requirements for loop invariants (Definition 3.1). We try to find values
for these variables that satisfy each of these requirements using our Poitı́n theorem prover [13]1. If we
are not able to satisfy all three of these requirements, then we have failed in finding a suitable invariant.

1This could also be done using a SAT solver.
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For the loop {P}WHILE B DO {I} S {Q}, the initial value of variable v can be obtained by satisfying
the following predicate for v0 using the first requirement:

P⇒ I{v := v0}

The inductive definition of v can be obtained by satisfying the following predicate for vi+1 using the
second requirement:

{I{v := vi}∧B} S {I{v := vi+1}}

The final value of v can be obtained by satisfying the following predicate for vn using the third require-
ment:

(I{v := vn}∧¬B)⇒ Q

Example 1 We illustrate this algorithm by applying it to the example program in Figure 4.

Firstly, we calculate the logical assertion which is true if the loop is exited:

¬(x< n)∧y = k∧n (1)

This is simplified by distillation to the following2:

x≥ n∧y = k∧n (2)

Then, we calculate the set of logical assertions which can be true before the final execution of the loop
body:

{x< n∧P | P ∈WLP(BEGIN x := x+1;y := y ∗k END,x≥ n∧y = k∧n)} (3)

This gives the following predicate:

x< n∧x+1≥ n∧y ∗k= k∧n (4)

which is simplified to the following by distillation:

x+1= n∧y ∗k= k∧n (5)

This is not an embedding of (2), so the calculation continues. We next calculate the set of logical
assertions which can be true before the penultimate execution of the loop body:

{x< n∧P | P ∈WLP(BEGIN x := x+1;y := y ∗k END,x+1= n∧y ∗k= k∧n)} (6)

This gives the following predicate:

x< n∧ (x+1)+1= n∧ (y ∗k)∗k= k∧n (7)

which is simplified to the following by distillation:

x+2= n∧y ∗ (k∗k) = k∧n (8)

2For this and all following examples, the result of distillation is simplified by folding any instances of the definitions of the
pre-defined operators of our language; the results would be too unwieldy otherwise.
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We can see that (8) is an embedding of (5) (2 is Succ(Succ(Zero)) and is an embedding of 1 which is
Succ(Zero)), so (8) is generalised to produce the following:

x+v = n∧y ∗w = k∧n (9)

where v and w are new generalisation variables. This is not an embedding of (5) or (2), so the set of
logical assertions which are true before execution of the loop body are now re-calculated as follows:

{x< n∧P | P ∈WLP(BEGIN x := x+1;y := y ∗k END,x+v = n∧y ∗w = k∧n)} (10)

This gives the following predicate:

x< n∧ (x+1)+v = n∧ (y ∗k)∗w = k∧n (11)

which is simplified to the following by distillation:

x+(v+1) = n∧y ∗ (k∗w) = k∧n (12)

We can see that (12) is an embedding of (9), so (12) is generalised to produce the following:

x+v′ = n∧y ∗w′ = k∧n (13)

where v′ and w′ are new generalisation variables. We can now see that (13) is a renaming of (9), so (13)
is our putative invariant.

We now try to find inductive definitions for the generalisation variables v′ and w′ from the three re-
quirements of loop invariants given in Definition 3.1, which we do using our theorem prover Poitı́n.

The initial values of the generalisation variables, given by v′0 and w′0, can be determined using the first
invariant requirement as follows:

n≥ 0∧x= 0∧y = 1⇒ x+v′0 = n∧y ∗w′0 = k∧n (14)

The assignments v′0 := n and w′0 := k∧n satisfy this assertion.

The inductive values of the generalisation variables, given by v′i+1 and w′i+1, can be determined using
the second invariant requirement as follows:

x+v′i = n∧y ∗w′i = k∧n∧x< n⇒ (x+1)+v′i+1 = n∧ (y ∗k)∗w′i+1 = k∧n (15)

The assignments v′i+1 := v′i−1 and w′i+1 := w′i/k satisfy this assertion.

The final values of the generalisation variables, given by v′n and w′n, can be determined using the third
invariant requirement as follows:

x+vn = n∧y ∗wn = k∧n∧¬(x< n)⇒ y = k∧n (16)

The assignments vn := 0 and wn = 1 satisfy this assertion.

The discovered invariant is therefore equivalent to the following:

x≤ n∧y = k∧x (17)
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Example 2 Consider the following example program:

{n≥ 0}
x := n;
y := 1;
z := k;
WHILE x> 0 DO
BEGIN
IF x%2 = 1 THEN y := y∗ z ELSE SKIP;
x := x/2;
z := z∗ z

END
{y = k∧n}

This program also calculates the exponentiation k∧n. This example is problematic using other approaches
because of the presence of the conditional inside the loop, which causes an exponential blow-up in the
size of the generated predicates; we show how this blow-up is avoided using our approach. In the fol-
lowing, we use S to denote the body of the loop in the above program. Firstly, we calculate the logical
assertion which is true if the loop is exited:

¬(x> 0)∧y = k∧n (1)

This is simplified by distillation to the following:

x≤ 0∧y = k∧n (2)

Then, we calculate the set of logical assertions which can be true before the final execution of the loop
body:

{x> 0∧P | P ∈WLP(S,x≤ 0∧y = k∧n)} (3)

This gives the following predicates:

x> 0∧x%2= 1⇒ x/2≤ 0∧y ∗ z= k∧n (4)

x> 0∧¬(x%2= 1)⇒ x/2≤ 0∧y = k∧n (5)

(5) is found to be false as a result of distillation, but (4) is simplified to the following:

x= 1∧y ∗ z= k∧n (6)

This is not an embedding of (2), so the calculation continues. We next calculate the set of logical
assertions which can be true before the penultimate execution of the loop body:

{x> 0∧P | P ∈WLP(S,x= 1∧y ∗ z= k∧n)} (7)

This gives the following predicates:

x> 0∧x%2= 1⇒ x/2= 1∧ (y ∗ z)∗ (z∗ z) = k∧n (8)

x> 0∧¬(x%2= 1)⇒ x/2= 1∧y ∗ (z∗ z) = k∧n (9)
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which are simplified to the following by distillation:

x= 3∧y ∗ (z∗ (z∗ z)) = k∧n (10)

x= 2∧y ∗ (z∗ z) = k∧n (11)

These are generalised with respect to each other to give the following:

x= v∧y ∗ (z∗w) = k∧n (12)

where v and w are new generalisation variables. This is not an embedding of (6) or (2), so the set of
logical assertions which are true before execution of the loop body are now re-calculated as follows:

{x> 0∧P | P ∈WLP(S,x= v∧y ∗ (z∗w) = k∧n)} (13)

This gives the following predicates:

x> 0∧x%2= 1⇒ x/2= v∧ (y ∗ z)∗ ((z∗ z)∗w) = k∧n (14)

x> 0∧¬(x%2= 1)⇒ x/2= v∧y ∗ ((z∗ z)∗w) = k∧n (15)

which are simplified to the following by distillation:

x= v ∗2+1∧y ∗ (z∗ (z∗ (z∗w))) = k∧n (16)

x= v ∗2∧y ∗ (z∗ (z∗w)) = k∧n (17)

These are generalised with respect to each other to give the following:

x= v′∧y ∗ (z∗ (z∗w′)) = k∧n (18)

where v′ and w′ are new generalisation variables. We can see that (18) is an embedding of (12), so (18)
is generalised to give the following:

x= v′′∧y ∗ (z∗w′′) = k∧n (19)

where v′′ and w′′ are new generalisation variables. We can now see that (19) is a renaming of (12), so
(19) is our putative invariant.

We now try to find inductive definitions for the generalisation variables v′′ and w′′ from the three re-
quirements of loop invariants given in Definition 3.1, which we do using our theorem prover Poitı́n.

The initial values of the generalisation variables, given by v′′0 and w′′0 , can be determined using the first
invariant requirement as follows:

n≥ 0∧x= n∧y = 1∧ z= k⇒ x= v′′0 ∧y ∗ (z∗w′′0) = k∧n (20)

The assignments v′′0 := n and w′′0 := k∧(n−1) satisfy this assertion.

The inductive values of the generalisation variables, given by v′′i+1 and w′′i+1, can be determined using
the second invariant requirement as follows:

x= v′′i ∧y ∗ (z∗w′′i ) = k∧n∧x> 0∧x%2= 0⇒ x/2= v′′i+1∧ (y ∗ z)∗ ((z∗ z)∗w′′i+1) = k∧n (21)

x= v′′i ∧y ∗ (z∗w′′i ) = k∧n∧x> 0∧¬(x%2= 1)⇒ x/2= v′′i+1∧y ∗ ((z∗ z)∗w′′i+1) = k∧n (22)
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The assignments v′′i+1 := v′′i /2 and w′′i+1 := w′′i /(z ∗ z) satisfy the first assertion and the assignments
v′′i+1 := v′′i /2 and w′′i+1 := w′′i /z satisfy the second assertion.

The final values of the generalisation variables, given by vn and wn, can be determined using the third
invariant requirement as follows:

x= v′′n∧y ∗ (z∗w′′n) = k∧n∧¬(x> 0)⇒ y = k∧n (23)

The assignments v′′n := 0 and w′′n = 1/z satisfy this assertion.

The discovered invariant is therefore equivalent to the following:

x= n/2j∧y = k∧(n%2j) (24)

5.1 Termination

In order to prove that our loop invariant algorithm always terminates, we firstly need to show that in any
infinite sequence of predicates P0,P1, . . . there definitely exists some i < j where Pi � Pj. This amounts
to proving that the embedding relation � is a well-quasi order.

Definition 5.1 (Well-Quasi Order) A well-quasi order on a set S is a reflexive, transitive relation ≤
such that for any infinite sequence s1,s2, . . . of elements from S there are numbers i, j with i < j and
si ≤ s j.

Lemma 5.2 (� is a Well-Quasi Order) The embedding relation � is a well-quasi order on any se-
quence of predicates.

Proof. The proof is similar to that given in [21]. It involves showing that there are a finite number of
functors (function names and constructors) in the language. Applications of different arities are replaced
with separate constructors; we prove that arities are bounded so there are a finite number of these. We also
replace case expressions with constructors. Since bound variables are defined using de Bruijn indices,
each of these are replaced with separate constructors; we also prove that de Bruijn indices are bounded.
The overall number of functors is therefore finite, so Kruskal’s tree theorem can then be applied to show
that � is a well-quasi-order. 2

Theorem 5.3 (Termination of the Loop Invariant Algorithm) The loop invariant algorithm always ter-
minates.

Proof. The proof is by contradiction. If the loop invariant algorithm did not terminate then the set
of invariants generated as successive approximations to the invariant must be infinite. Every new predi-
cate which is added to the set of approximations cannot have any of the previously generated predicates
on this set embedded within it by the homeomorphic embedding relation �, since either generalisation
would have been performed or a renaming encountered and the algorithm terminated. However, this
contradicts the fact that � is a well-quasi-order (Lemma 5.2). 2
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6 Related Work

The main approaches to the automatic generation of loop invariants include abstract interpretation, proof
planning, dynamic methods, using heuristics and the induction-iteration method. The earliest methods
for the automatic generation of loop invariants involved static analysis. Abstract interpretation is a sym-
bolic execution of programs over abstract domains (such as predicate abstraction domains or polyhedral
abstraction domains) that over-approximates the semantics of loop iteration. Predicate abstraction do-
mains [1, 12, 27, 5, 9] replace predicates with variables, which is similar to the generalisation we perform
in our approach. Constraint-based techniques rely on sophisticated decision procedures over non-trivial
mathematical domains (such as polynomials [28] or convex polyhedra [4]) to represent concisely the
semantics of loops with respect to certain properties. Loop invariants in these forms are extremely useful
but rarely sufficient to prove full functional correctness of programs.

In [9], Flanagan and Qadeer describe the use of predicate abstraction to generate loop invariants.
Their approach differs from our own in that predicates are obtained by working forwards from the pre-
condition through successive iterations of the loop, as opposed to backwards from the postcondition in
our approach. A strongest postcondition semantics is therefore used in [9] as opposed to our weakest pre-
condition approach. Loop invariants are computed by iterative approximation. The first approximation is
obtained by abstracting the set of reachable states at loop entry. Each successive approximation enlarges
the current approximation to include the states reachable by executing the loop body once from the states
in the current approximation. The iteration terminates in a loop invariant since the abstract domain is
finite. However, this approach does suffer from the drawback that the approximations can grow exponen-
tially as they are a disjunction of the approximations for all the reachable states. This exponential growth
is avoided in our approach. Also, we argue that working forwards from the precondition makes it harder
to find the required invariant since (as observed in [11]), the required invariant is often a weakening of
the postcondition.

In [20], a proof planning approach is used to synthesise loop invariants. This approach makes use
of failed attempts to prove a putative invariant correct. The proof attempts are applied to the verification
conditions generated for the putative invariant. If these proof attempts fail, the failure is analysed using
proof critics. One such critic is the generalisation critic, which performs generalisation in a similar way
to that described in our work, and is used to update the putative invariant to one which is more likely
to be correct. One drawback of this approach is that the original putative invariant has to be guessed,
although the postcondition is a good first guess. Another drawback is knowing which critics to apply
when, since multiple critics can discover the invariant, but some may do so more efficiently than others.
Also, it is not clear how this method could be applied to nested loops.

In [8], invariants are discovered dynamically. Using this approach, the program is run over a test suite
of inputs. The corresponding outputs are analysed for patterns and relationships among the variables.
Candidate invariants are guessed by trying out a pre-defined set of user-provided templates (including
comparisons between variables, simple inequalities, and simple list comprehensions). These candidate
invariants are then tested against several program runs; the invariants that are not violated in any of the
runs are retained as likely invariants. This inference is not sound and only gives an educated guess.
However, a prototype tool called Daikon was implemented using these techniques, and has worked well
in practice and many of the guessed invariants are sound.

In [11], Furia and Meyer describe the use of heuristics to synthesise loop invariants. This work is
based on the observation that the required invariant is often a weakening of the postcondition for the loop
and can be obtained by mutating this postcondition. The core idea is to generate candidate invariants by
mutating postconditions according to a few commonly recurring patterns. Although this idea works well
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in many cases, it is not capable of generating the required invariant for the example program in Figure 4,
as this requires the addition of an extra clause to the postcondition (y ≤ n), which is not one of described
heuristics.

The previous work which is closest to our own is the induction-iteration method of Suzuki and Ishi-
hata [31]. This method works as follows for the program {P} S1;WHILE B DO S2 {Q} with precondi-
tion P and postcondition Q. Firstly, the logical assertion which is true if the loop is exited is calculated
in a similar way to our technique:

P0 = (¬B⇒ Q)

Then, similarly to our technique, the weakest liberal precondition is used to calculate the logical assertion
which is true before each execution of the loop body (in reverse order):

Pi+1 = (B⇒WLP(S2,Pi)

The weakest liberal precondition of the loop is given by
∞∧

i=0
Pi. In order to calculate this finitely, a number

of successive approximations are calculated for it until one is found that is a loop invariant, where the jth

approximation is given by I j =
j∧

i=0
Pi. It then has to be shown that this approximation is true on entry to

the loop and is also a loop invariant:
P⇒WLP(S1, I j) (1)

(I j ∧B)⇒WLP(S2, I j) (2)

(2) is equivalent to the following:
I j⇒ Pj+1 (3)

This therefore suggests an iterative approach to finding the loop invariant. Successive values for I j can
be computed making use of the previous values. If (3) is satisfied for the current value of I j, then we are
done and I j is the required invariant. If (1) is not satisfied for the current value of I j, then we have failed
to find a suitable invariant. Otherwise, we carry on the iteration to I j+1.

One problem with this approach is that it is not guaranteed to terminate. This is avoided by limiting
the number of iterations. It is found that in practice, for most of the small examples tried, very few
iterations are actually required. Our approach is always guaranteed to terminate, but of course it may not
be able to find a suitable invariant. Another problem with this approach is that there can be an exponential
blow-up in clauses into increasingly larger conjunctions. This is particularly the case for conditionals,
and can degrade I j to such an extent that it never converges to a loop invariant. This problem is avoided
in [31] by cleverly designing the theorem prover to avoid this potential exponential blow-up in clauses.
In our approach, this problem is avoided by combining the conjuncts using generalisation. Finally,
the seminal work in [31] does not show how to deal with nested loops. However, an extension to the
technique which does this is described by Xu et al. [32]. A similar approach can also be used for our
proposed technique to deal with nested loops.

7 Conclusions and Further Work

In this paper we have described a technique for automatically discovering loop invariants. The technique
we describe is similar to the induction-iteration method of Suzuki and Ishihata [31], but we overcome
the problems associated with that method. One of these problems was the potential non-termination
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of the induction-iteration method; our technique is guaranteed to terminate. Another problem with the
induction-iteration method is the potential exponential blow-up in clauses into increasingly larger con-
junctions. Our technique avoids this through the combination of these conjuncts using generalisation.
We have successfully demonstrated our technique on example imperative programs that have proven to
be problematic using other approaches.

There are a number of possible directions for further work. Firstly, we need to extend our techniques
to languages with richer features. For example, we could extend the language to manipulate unbounded
data structures such as arrays. For such constructs, the required loop invariants need to be universally
quantified, but this can be handled by our theorem prover Poitı́n, so should not present a problem for
our technique. Another way in which the language could be extended would be to handle pointers.
Separation logic [25, 26] extends Floyd-Hoare logic to be able to handle pointers, so this seems to be
an obvious basis for the extension of our technique. It has already been shown by Ireland [19] how his
approach to invariant generation can be extended to handle pointers by making use of separation logic.

One other possible direction for further work is extending our technique to deal with the termination
of programs. This would involve calculating the weakest precondition rather than the weakest liberal
precondition as we do here. This would require the generation of a variant in addition to an invariant,
and the refinement of the invariant to show that the variant is decreased on each iteration of the loop.
This appears to be a lot more challenging than the problem which is tackled here.
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