
Submitted to:
VPT 2017

c© Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei
This work is licensed under the
Creative Commons Attribution License.

Towards Evaluating Size Reduction Techniques
for Software Model Checking

Gyula Sallai1 Ákos Hajdu1,2 Tamás Tóth1∗ Zoltán Micskei1
1Department of Measurement and Information Systems

Budapest University of Technology and Economics, Budapest, Hungary
2MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary

salla@sch.bme.hu, {hajdua,totht,micskeiz}@mit.bme.hu

Formal verification techniques are widely used for detecting design flaws in software systems. For-
mal verification can be done by transforming an already implemented source code to a formal model
and attempting to prove certain properties of the model (e.g. that no erroneous state can occur during
execution). Unfortunately, transformations from source code to a formal model often yield large and
complex models, making the verification process inefficient and costly. In order to reduce the size
of the resulting model, optimization transformations can be used. Such optimizations include com-
mon algorithms known from compiler design and different program slicing techniques. Our paper
describes a framework for transforming C programs to a formal model, enhanced by various opti-
mizations for size reduction. We evaluate and compare several optimization algorithms regarding
their effect on the size of the model and the efficiency of the verification. Results show that different
optimizations are more suitable for certain models, justifying the need for a framework that includes
several algorithms.

Keywords: size reduction, compiler optimizations, slicing, model checking, CEGAR

1 Introduction

As our reliance upon safety-critical computer systems grows, so does our natural desire for reliable
proofs of their fault-free behavior. Such proofs can be given by formal verification algorithms, such as
model checking. Unlike testing, these are not only able to prove the presence of errors, but their absence
as well, thus they are able to give a satisfactory answer on the safety of a system.

While there are several formal verification techniques available, incorporating them into a develop-
ment workflow can pose a challenge. In model-driven development, we first design a model that describes
our system, then we use formal verification to prove its safety and finally we create an implementation
based on the defined (and safe) model. However, designing and defining a model for a project can be
rather difficult and in many cases the financial and time constraints do not permit it.

A possible solution to overcome this problem is to transform the already implemented source code to
a formal model. However, a drawback of this approach is the large size of the model generated from the
source code. As most verification algorithms have a rather demanding computational complexity (usually
operating in exponential time and beyond), the resulting model may not admit efficient verification. A
way to resolve this issue is to reduce the size of the generated model using optimizing transformations.

This paper describes a framework which implements a transformation workflow from C programs to
a formal model, known as control flow automaton. This process is enhanced by some common optimiza-
tion transformations, usually known from compilers. These simplify the model and reduce its size. Then

∗Partially supported by Gedeon Richter’s Talentum Foundation (Gyömrői út 19-21, 1103 Budapest, Hungary).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Towards Evaluating Size Reduction Techniques for Software Model Checking

the model is split into several smaller, more easily verifiable chunks using program slicing [24]. As a
result, the verification algorithm has to handle several smaller problems instead of a large one.

In this paper, we evaluate effects of such transformations on the size of the model and the efficiency
of verification. We use the compiler optimization algorithms known as constant propagation, constant
folding and dead branch elimination [1]. We also present and compare different program slicing tech-
niques, namely backward slicing [14], thin slicing [22] and value slicing [18]. The models obtained
after these transformation passes are then verified using predicate abstraction in conjunction with the
counterexample-guided abstraction refinement (CEGAR) model checking algorithm. Our results show
that the optimizations may allow significant reduction in the size of the model and the execution time
of the verifier algorithm. However, the relative effectiveness of the algorithms varies between different
input models, which justifies the need for a configurable framework that supports several optimization
and slicing algorithms.

Related work. Predicate abstraction [15], used in conjunction with CEGAR [11] is a widely used
technique for model checking software [2, 6, 13, 10, 7]. However, the performance of these algorithms
greatly depends on the size of the input model and source-to-model transformations tend to produce large
models. Several size reduction methods exist, the most prominent of them is program slicing [24, 14].
Several other variants of slicing have been proposed since then, including thin [22] and value slicing [18].
The software model checking tool SLAB [10] successfully incorporates slicing into its workflow, allow-
ing slicing to be performed on the abstract states. In our tool we handle slicing and verification separately
and use the former as a preprocessing step. There has also been work on evaluating and comparing soft-
ware model checkers [5, 8]. However, these papers target the model checking algorithms, whereas the
primary focus our work is on the size reduction techniques.

2 Background

In this section we give a brief introduction to the theoretical background of formal verification, program
representations, dependency structures and some compiler optimization algorithms used in our work.

2.1 Formal Verification

Model checking is a formal verification technique of mathematically proving correctness or faultiness of
computer programs by systematically exploring their state space. There are several program representa-
tions suitable for model checking. In this paper we use a formalism known as control flow automaton
(CFA) [4]. A CFA is a 4-tuple (L,E, `0, `e), where L = {`0, `1, . . . , `n} is a set of locations representing
program counter values, E = L×Ops×L is a set of directed edges representing possible control flow
paths. The edges are labeled with operations in Ops which get executed when control jumps from one
location to another. The distinguished initial location `0 ∈ L marks the entry point of the program and
the special error location `e ∈ L embodies an undesirable state in the program. In our work, we use `e to
represent failing assertions in a C program.

CEGAR. A typical drawback of using model checking techniques is their high computational com-
plexity. Abstraction-based methods are often used to overcome this issue. However, it is not straight-
forward to find the proper precision of abstraction that is coarse enough to reduce complexity but fine
enough to prove the desired property. Counterexample-Guided Abstraction Refinement (CEGAR) is an



Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei 3

automatic algorithm that starts with a coarse initial abstraction and refines it based on the counterexam-
ples until the proper precision is reached [11]. CEGAR was first described using transition systems and
predicate abstraction, but since then many variants have been developed.

In this work we use our generic CEGAR framework [16] for verification, which incorporates many
variants of the algorithm. The framework explores the abstract state space in a given abstract domain
with a given exploration strategy. Currently, predicate [15] and explicit value [12] domains are sup-
ported with breadth- and depth-first search exploration strategies. The abstract state space is an over-
approximation of the original, therefore if no erroneous abstract state is reachable, the original model is
correct. However, if an abstract counterexample is found, its feasibility in the original model is checked.
A feasible counterexample corresponds to a failure in the original model. On the other hand, if the
counterexample is infeasible (also called spurious), the abstraction is refined. The framework currently
supports refinement based on Craig or sequence interpolation [21, 23] and unsat cores [20]. We first
defined our framework for transition systems [16] but since, the algorithms have been adapted to CFAs.

2.2 Program Representations

In this paper, we focus on the optimization and verification of C programs. In order to do this, we
transform the textual representation into structures more sufficient for dependency analysis, which is
needed for the size reduction transformations.

While the control flow automaton representation of a program is suitable for verification, most anal-
ysis and transformation algorithms are defined over the language-agnostic formalism of control flow
graphs (CFG) [1]. A CFG is a 4-tuple (S,E,s0,sq), where S = {s0,s1, . . . ,sn} is a set of atomic instruc-
tions, E = {(si,s j),(sk,sl), . . .} is a set of directed edges representing possible control flow paths. The
edge (si,s j) ∈ E iff there is a conditional or unconditional jump from si to s j in the program. The distin-
guished s0 ∈ S and sq ∈ S nodes mark the entry and exit points of the program, respectively. As there is
a one-to-one correspondence between CFG nodes and program instructions, we shall use the two terms
interchangeably.

During analysis, it is often useful to know whether an instruction writes variables that are later read
by another instruction. We say instruction s defines v if s assigns a value to v. A definition is a pair
d = (s,v) where s is an instruction and v is the variable defined in s. Given a node t 6= s, d is a reaching
definition for t, if there is a control flow path between s and t, which contains no other definition of v. If
s has a reaching definition for t, then t is said to be flow dependent on s.

This flow dependency information can be stored in a structure known as use-define chain (UD-
chain for short) [1]. Given a program P with the definitions D = {d1,d2, . . . ,dn} and an instruction
set S = {s1,s2, . . . ,sk}, the use-define chain of P is a set of pairs {(s1,D1),(s2,D2), . . . ,(sk,Dk)} where
Di⊆D is the set of definitions reaching si for all 1≤ i≤ k. Given an instruction s, querying the UD-chain
yields all instructions on which s flow depends.

It is also useful to know which instructions decide whether some other instruction gets executed or
not. This information can be obtained by analyzing the post-dominance relations of the program [14]. A
node s post-dominates a node t, if every control flow path between t and sq (the exit location) contains s.
If s 6= t, then s strictly post-dominates t. A node t is control dependent on a node s if there is a path from
s to t where all nodes are post-dominated by t and t does not strictly post-dominate s.

In order to represent these dependency relations of a program, we use a structure known as program
dependence graph (PDG) [14]. A PDG is a triple (S,C,D), where S = {s1, . . . ,sn} is a set of instructions,
C is a set of control dependency edges, and D is a set of data dependency edges. The edge (si,s j) ∈C if
s j control depends on si. The edge (sk,sl) ∈ D if sl flow depends on sk.



4 Towards Evaluating Size Reduction Techniques for Software Model Checking

2.3 Compiler Optimizations

In order to reduce resulting model’s size and complexity, we shall use optimization transformations
usually known from compiler theory [1]. Constant folding finds and evaluates constant expressions in
the program during compile time. Constant propagation substitutes variables having a constant value
with their respective constant literal. As constants can be local or global, both information need to be
propagated. this can be achieved by querying the use-define information of the program. In some cases,
constant propagation and folding are able to replace branching decisions with the literals true or false.
Dead branch elimination examines these branches and removes inviable execution paths (e.g. the true

path of a branch with a condition of the boolean literal false).
For easing interprocedural analysis, we also use a technique known as function inlining. Function

inlining is the procedure of replacing a function call with the callee’s body. In our work, we use it
to obtain more information on the behavior of an interprocedural program, as without more thorough
interprocedural analysis, function calls would act as black boxes. A model checker algorithm may extract
more information from the entire inlined function body than from merely just a function call.

2.4 Program Slicing

Program slicing is a size reduction technique that attempts to remove all nodes irrelevant to a given
instruction and a given set of variables [24]. Let P be an input program, let V be a subset of its variables,
and let s be an instruction in P. A program slice P′ of P with respect to the criterion (s,V ) is a subprogram
of P, which produces the same output and assigns the same values to V as the original program P in its
statement s.

Figure 3a presents an example with a simple C code snippet, which calculates the sum of the natural
numbers less than 11, and asserts that the loop counter and the calculated sum cannot be zero. A slice of
this program with respect to the criterion (9,{i}) is shown in Figure 3b. As it can be observed, the only
statements preserved are those relevant to the criterion instruction.

1 int i = 0;

2 int sum = 0;

3
4 while (i < 11) {

5 sum = sum + i;

6 i = i + 1;

7 }

8
9 assert(i != 0);

10 assert(sum != 0);

(a) A simple C program snippet.

1 int i = 0;

2
3
4 while (i < 11) {

5
6 i = i + 1;

7 }

8
9 assert(i != 0);

10

(b) Slice of (a) with the criterion of (9,{i}).

Figure 1: A slicing example.

As we are using verification for detecting failing assertions, we use program slicing to split a larger
input program into several smaller chunks, with the criteria being the assertion instructions and the
variables they use. This will result in smaller verifiable programs instead of a larger one, more precisely
every assertion of the program gets verified independently. A proof of a slice’s faultiness also indicates
that the original program is faulty. However, if all slices are safe, it means that no assertion in the original
program can fail, meaning that the whole program is also safe.



Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei 5

Several program slicing techniques exist, depending on the use case (model checking, debugging,
test generation, etc.). In our current work, we use three methods, all of which are suitable or especially
tailored for model checking.

Backward slicing. The most commonly used approach for slicing is a technique known as backward
slicing. Backward slicing produces accurate slices, while retaining all instructions which are crucial to
the slicing criterion. The size of the resulting slices are roughly around 30% of the size of the original
program on average [9]. Given a criterion instruction s, backward slicing finds all nodes on which s
data depends transitively. As some branching decisions may affect whether a particular instruction is
reachable or not, these also need to be included in the slice. These branching decisions are the same as
the control dependencies of a given instruction. Of course, these dependencies can have dependencies
which need to be taken into account. Therefore backward slicing is done by retaining all instructions on
which the criterion control or flow depends transitively. This information can be queried from a program
dependence graph.

A backward slicer algorithm marks all nodes which are backwards reachable (walking backwards on
both data and control dependency edges) from the criterion node in the program dependence graph [14].
As the PDG explicitly shows the control and flow dependency relations of every instruction, this method
will include all required nodes in the slice. Figure 2 shows an example of this procedure with the
assertion node being the criterion. Solid lines represent control dependency, dashed lines represent flow
dependency, and filled nodes are those which are backwards reachable from the criterion node.

Figure 2: Slicing on the assert node using a program dependence graph.

While backward slicing is simple and accurate, there are other algorithms that sacrifice faithfulness
for even greater program size reduction. Such algorithms can be rather useful in the context of model
checking. As discussed above, given a slicing criterion γ = (s,V ), backward slicing attempts to find all
transitive control and flow dependencies of γ . In many cases the control dependencies are only required
to keep the structure of the program, their respective branch decisions do not affect γ . This idea serves
as the basis of the slicing techniques described below.

Thin slicing. A technique known as thin slicing [22] aggressively reduces the program size by re-
taining flow dependencies only. All control dependencies are replaced with nondeterministic boolean
predicates (called abstract predicates – we denote such predicates with φ ). This allows an extremely
large reduction, however, verification algorithms may produce many spurious counterexamples on thin



6 Towards Evaluating Size Reduction Techniques for Software Model Checking

slices. Finding whether a counterexample can hold for the original program requires the refinement of
the thin slice (which means the inclusion of previously abstracted control dependencies), and running the
verifier again on the refined slice.

Value slicing. A possible middle ground between thin and backward slices is called value slicing [18].
Value slicing recognizes which control dependencies actually determine the value of the criterion vari-
ables and retains those as well. This results in slightly larger program slices compared to thin slicing.
However, verification algorithms produce less spurious counterexamples on these slices, thus they re-
quire less refinement.

Value and thin slicing may require refinement in order to prove that a counterexample encountered
is not a spurious one. This can be done by selecting an abstract predicate φ from the slice and adding
it to the slicing criterion, then performing slicing again. Note that the slicing algorithm used during the
refinement can be different than the initial slicer. For example, using thin slicing as refinement means
that we are refining the slice with a single abstract predicate each time. On the other hand, using value
slicing as refinement means that the refined slice may include multiple abstract predicates at once.

1 extern int fn1();

2 extern int fn2();

3 extern int fn3(int x, int y);

4
5 int main() {

6 int i = 0, j = 0;

7 int t = fn1();

8 int x = fn3(i, j);

9 int y = 0;

10
11 while (t < 1000) {

12 int s = fn2();

13 if (s == 1) {

14 y = y + x;

15 } else {

16 i = i + 1;

17 j = j + 1;

18 }

19
20 assert(y != 0);

21
22 x = fn3(i, j);

23 t = fn1();

24 }

25
26 return 0;

27 }

(a) Backward slice.

1 // fn1() removed

2 extern int fn2();

3 extern int fn3(int x, int y);

4
5 int main() {

6 int i = 0, j = 0;

7
8 int x = fn3(i, j);

9 int y = 0;

10
11 while (φ) {

12 int s = fn2();

13 if (s == 1) {

14 y = y + x;

15 } else {

16 i = i + 1;

17 j = j + 1;

18 }

19
20 assert(y != 0);

21
22 x = fn3(i, j);

23
24 }

25
26 return 0;

27 }

(b) Value slice.

1 // fn1() removed

2 // fn2() removed

3 extern int fn3(int x, int y);

4
5 int main() {

6 int i = 0, j = 0;

7
8 int x = fn3(i, j);

9 int y = 0;

10
11 while (φ) {

12
13 if (φ) {

14 y = y + x;

15 } else {

16 i = i + 1;

17 j = j + 1;

18 }

19
20 assert(y != 0);

21
22 x = fn3(i, j);

23
24 }

25
26 return 0;

27 }

(c) Thin slice.

Figure 3: An example on backward, value, and thin slices with the criterion (20,{y}).

Figure 3 offers an example (a simplified version of an example in [18]) on the different slicing
methods described above. Suppose fn1, fn2, and fn3 are complex operations with multiple different
computations and all examples are slices on the criterion (20,{y}). As it can be seen in Figure 3a, a
backward slice retains all instructions which are relevant to the given criterion in any way. The thin slice
(shown in Figure 3c) abstracted branch conditions away, by replacing them with φ . Note that because of
the removed branch conditions in line 11 and 13, the calculation of their used variables is also omitted



Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei 7

from the slice. This also allowed the removal of fn1 and fn2. The value slice (Figure 3b) also abstracted
the loop condition in line 11 away, but it kept the condition in line 13. This is because of the fact that the
value of y is actually determined here: if the condition is true, y’s value changes, but if it is false, y stays
the same. Therefore line 13 has an influence on y’s value at line 20. The function fn2 was retained as
well, because line 13 depends on the value of s, which was defined in line 12 by using the value returned
by fn2.

3 Transformation Workflow

In this section we propose a workflow that is able to transform C programs to control flow automata. In
order to reduce the size of the resulting models, we enhance this process with compiler optimizations
and program slicing. The resulting models can then be verified using an arbitrary verification algorithm.
In this paper, we use CEGAR-based algorithms [16] for this purpose.

C code AST CFG CFA

Dominators UD-chains

PDG

Figure 4: Transformation workflow.

An overview of the transformation workflow is shown in Figure 4. First, we take a C source code
file as an input. This source code is then parsed into an abstract syntax tree (AST), which describes the
syntactic structure of the program. The abstract syntax tree is then transformed into a control flow graph.
This CFG is then simplified by the application of compiler optimizations, namely function inlining,
constant propagation, constant folding, and dead branch elimination. For further size reduction, we also
apply program slicing. Several dependency structures are required for these transformations:

• program dependence graphs for slicing,

• dominator relation information for constructing the PDG,

• use-define information (UD-chains) for the PDG and also for constant propagation,

• and call graphs for function inlining.

After running the optimization passes, we perform slicing on the resulting CFG. This operation splits
a single CFG into several smaller ones. Our framework supports all backward, value, and thin slicing.
Currently the slicer criteria are the assertion instructions (calls to the assert function in C) and their
associated variables in the control flow graph, meaning that each assertion gets its own slice. These
slices are then transformed into control flow automata. Due to the slicing criteria, error locations in the
resulting automata represent failing assertions of the original program.

Implementation. We implemented a prototype of our workflow in Java. Figure 5 offers an overview
of the overall architecture, which builds on three loosely dependent components: parser, optimizer and
verifier.



8 Towards Evaluating Size Reduction Techniques for Software Model Checking

Parser Optimizer Verifier

Dependency
analysis

Optimization
algorithms

Figure 5: Architecture of the implementation.

The parser component uses the parsing library of the Eclipse C/C++ Development Tools plug-in
(CDT).1 The CDT parser handles source code lexing and parsing, after which it yields an abstract syntax
tree. This AST is then transformed into a control flow graph. At the current state of the project, only a
restricted set of C language features is supported. The current implementation only allows the usage of
control structures (if-then-else, do-while, while-do, switch, break, continue, goto) and non-recursive
functions. Types are restricted to integers and Booleans only. Arrays and pointers are not supported at
the moment.

The optimizer module performs the optimization transformations. This component is able to run a
configurable number of optimization passes. The implementation currently supports constant propaga-
tion, constant folding, dead branch elimination, and function inlining. Some optimizations may require
certain dependency information of the input program, therefore they need to be able to query this infor-
mation at any time. The optimizer also handles program slicing. The module is able to use an arbitrary
slicing algorithm (which conforms to a given interface per se) to perform slicing. Currently we support
the methods presented in the previous sections, namely traditional backward slicing, thin slicing, and
value slicing. After the acquisition of the smaller program slices from the slicer algorithm, the optimizer
transforms these CFG slices into control flow automata.

These automata are then checked by the verifier component for assertion violations. While this com-
ponent is modular and replaceable, our current implementation focuses solely on predicate abstraction
in conjunction with a CEGAR-based algorithm [16] adapted to CFAs. As refinement may be needed due
to the presence of value and thin slicing, it is possible that the optimizer has to run again and refine the
slice.

4 Evaluation

In this section, we evaluate and compare the effects of optimizations regarding the size of the model
and the efficiency of verification. First we present the programs used and the environment, and then we
discuss the results.

4.1 Objects and Environment

We performed our evaluation on programs from the Competition on Software Verification (SV-Comp) [3]
repertoire. This competition aims to compare the soundness and performance of software verification

1http://www.eclipse.org/cdt/

http://www.eclipse.org/cdt/


Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei 9

tools. In our evaluation we use some of its tasks to compare and evaluate the performance of the different
algorithms implemented in our tool. Other tools are currently not considered as we only aim to evaluate
the different algorithms within our framework. The verification tasks used in our work can be separated
into three main categories, which are described below.

locks This task set consists of small (100-150 LOC) locking mechanisms described with nondeterminis-
tic integers and if-then-else constructs. This category consists of files, which have several assertion
statements within, therefore producing many (10-15) small slices.

eca The ECA (event-condition-action) category describes large (500-600 LOC) event-driven reactive
systems. The events are represented with nondeterministic variables. The files in this category
are special in a sense that one large problem is already split up into several files, with each file
containing a single assertion, hence a single slice.

ssh-simplified These tasks describe large (500-600 LOC) server-client systems. While these systems
are rather complex, verifying the server-client communication is not part of this task, such factors
are abstracted away with nondeterministic variables.

As our framework currently supports slicing on assert instructions, we used slightly modified ver-
sions of the programs listed above. The original competition specifications considered a program faulty
if a particular error function was called. We replaced such calls with an assert(false) instruction so
that the call of the error function will lead to the special error location.

Variables of the evaluation are listed in Table 1 grouped into three main categories: parameters of the
program (input), parameters of the algorithm configuration (input), metrics of the algorithm (output). In
the figures configurations are given by the abbreviation of the possible input options. For example, VFD
denotes value slicing (V), without optimizations (F, false), with DFS search strategy (D).

All measurements were executed on a 64-bit Windows 7 virtual machine with 2 cores (2.50 GHz)
and 16 GB RAM. Each slice was tested with the timeout of 3 minutes. To avoid interprocedural analysis,
function inlining was applied to every input program, regardless of the configuration. In our experiment,
using a thin slicer for refinements was deemed rather unfavorable, because it runs a new iteration for
every abstract predicate. In order mitigate this, we use value slicing as the refinement algorithm for both
the thin and value slicer.

4.2 Results and Discussion

In our experiment, we evaluated 9 input programs (3 from locks, 4 from eca and 2 from ssh). With
slicing, these programs have produced 50 slices. We checked these slices individually and also checked
the original programs without slicing. Given that we have 3 slicing algorithms (+1 for no slicing), 2
search strategies and 2 possible values (true or false) regarding other optimizations, the total number of
configurations is 16. This gives us a total number of 4 ·9+12 ·50 = 636 measurements. For convenience,
from this point forward, we refer to any input model (a whole, unsliced program, or a specific slice) as
”slice”. The number of successful executions (no timeout) is 570, the number of safe results is 484.

Figure 6 gives a high level overview of the distribution and range of output variables, grouped by
task categories. As it can be seen, values for the eca and ssh task sets are on a rather similar scale. The
locks set, however, produces significantly smaller numbers and more outliers. Therefore, we present
those results separately from the other two categories, where this is required. We also found that there
is a strong correlation between the location and edge count of the CFAs (with an R2 value of 0.998),
therefore we only use the former to describe the size of a CFA.



10 Towards Evaluating Size Reduction Techniques for Software Model Checking

Table 1: Variables of the experiment.

Category Name Type Description

Input
(program)

File String Unique name (and path) of the instance.
Slice No. Integer Index of the slice (assertion) being verified. If the pro-

gram is not sliced with a given configuration, this variable
is ignored.

Input
(config.)

Slicer Factor Slicing algorithm. Possible values: NONE, THIN, VALUE,
BACKWARD.

Optimizations Boolean Indicates if constant propagation and dead branch elimi-
nation transformations are used.

Search Factor Search strategy during verification. Possible values: BFS,
DFS (breadth- and depth-first search).

Output
(metrics)

Safe Boolean Verification result, indicates whether the given slice was
deemed safe or unsafe by the verifier.

InitLocs Integer Initial location count in the CFA of the slice.
InitEdges Integer Initial edge count in the CFA of the slice.
ArgSize Integer Number of nodes in the Abstract Reachability Graph

(ARG), i.e., the number of explored abstract states.
EndLocs Integer Final location count in the CFA of the slice.
EndEdges Integer Final edge count in the CFA of the slice.
Optimization time Integer Execution time of the optimizer component (including

optimizations, slicing, and slice refinements), in millisec.
Verification time Integer Execution time of the verification algorithm, in millisec.

eca locks ssh

0

50

100

150

In
itL

oc
s

eca locks ssh

0

5000

10000

15000

O
pt

im
iz

at
io

n.
T

im
e

eca locks ssh

0

40000

80000

120000

V
er

ifi
ca

tio
n.

T
im

e

eca locks ssh

0

1000

2000

3000

4000
A

rg
S

iz
e

Figure 6: Overview of output variables.

4.2.1 Impact of Slicing and Optimizations on CFA Size

An overview of the size reduction effect of the different slicing methods on the initial and final size of
the CFA is shown in Figure 7. It can be seen that all three slicing techniques reduce the size of most
programs significantly compared to the case when no slicing is applied. As it can be seen in the left, thin
and value slicing allow even greater reduction initially, but the plots on the right show that the size of the
final automata (after refinements) becomes roughly the same as in the case of backward slicing.

Figure 8 compares the initial and final size of the CFA for each slice individually. Naturally, no



Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei 11

NONE BACKWARD THIN VALUE

0

50

100

150
In

itL
oc

s

NONE BACKWARD THIN VALUE

0

50

100

150

E
nd

Lo
cs

Figure 7: Comparison of the effect of different slicers on the initial and final CFA size.

difference can occur in initial and final size if we use no slicing. As backward slicing requires no
refinement, size of the backward slices also stays the same. In contrast, value and thin slicing usually
requires refinements, which iteratively increase the size of the CFA.

Curiously, the measurements of the value slicer are same as the thin slicer’s. This is due to the fact
that the value slicer only retains branches that make a choice between the possible values of a variable
required by the criterion node. The SV-Comp task set contains programs with a distinctive artificial
structure and no such branches are present in the given programs, therefore the heuristics used by the
value slicing algorithm could not work in this case.

10

100

10 100

InitLocs

E
nd

Lo
cs

Slicer

NONE

BACKWARD

THIN

VALUE

Figure 8: Overview of the initial and final CFA size with different slicers.

The heat map of the average initial slice sizes is shown in Figure 9. The vertical axis lists the possible
configurations without the search strategy value. For example, NF stands for slicing NONE, optimizations
FALSE. Our calculations showed that the standard deviation of the slice sizes is 5.13 at most, therefore
displaying and evaluating averages has no significant distorting effect. The first row shows CFA sizes
without any slicing and optimization algorithms. Backward slicing reduces the CFA size considerably,
even more so in the programs of the locks category. Value and thin slicing allow even further reductions,
except for the eca category. Since the assertions in the current programs do not contain any variables, the
size of the initial CFAs are the same for both slicers. We can also conclude that compiler optimizations



12 Towards Evaluating Size Reduction Techniques for Software Model Checking

have little to no effect on CFA size. Nevertheless, the simplified expressions built by constant propagation
may still allow some decrease in verification execution time.

108 72 122 88 7 7 7 68 68
109 73 123 89 8 8 8 69 69
108 72 122 88 7 7 7 68 68
109 73 123 89 8 8 8 69 69
109 73 133 99 14 14 15 96 96
109 73 133 99 14 14 15 96 96
134 134 163 163 60 77 82 110 110
134 134 163 163 60 77 82 112 112

VT

VF

TT

TF

BT

BF

NT

NF

ec
a/

ec
a−

pr
ob

le
m

1−
la

be
l0

0_
tr

ue
.c

ec
a/

ec
a−

pr
ob

le
m

1−
la

be
l2

0_
fa

ls
e.

c

ec
a/

ec
a−

pr
ob

le
m

2−
la

be
l0

8_
tr

ue
.c

ec
a/

ec
a−

pr
ob

le
m

2−
la

be
l4

4_
fa

ls
e.

c

lo
ck

s/
lo

ck
s1

1_
tr

ue
.c

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c

ss
h/

ss
h1

_f
al

se
.c

ss
h/

ss
h1

_t
ru

e.
c

File

C
on

fig
ur

at
io

n
40

80

120

160
LocsAvg

Figure 9: Heat map of average initial slice sizes.

4.2.2 Impact of Slicing and Optimization on Verification Performance

Figure 10 shows a heat map of the verification execution time with different input configurations. White
grids represent unsuccessful executions (due to timeouts). The unfilled grids with light gray borders
represent cases where a particular measurement data does not exist, because its corresponding slice has
not been produced by the given slicer setting. Figure 10a depicts results on the locks task set. As it can
be seen, the slices in this category mostly produce rather similar execution times with different slicers.
Without slicing however, the verification execution time is rather large: for example, the locks11_-

true.c ran into a timeout with all configurations that did not use slicing. For sliced programs, the
verification time is rather promising. Timeouts on some slices with the BFS search strategy suggests that
this search method can be inferior to the DFS strategy in a few cases.

The measurements for the ssh and eca categories (presented in Figure 10b) show really diverse
results. In most cases, slicing and optimizations decreased verifier execution time and allowed the verifi-
cation of programs which have ran into timeout previously. However, actual times vary through different
slicing methods and search strategies. For example, the eca-problem1-label00_true.c task per-
formed better with the BFS search strategy in most cases, while eca-problem1-label20_false.c

performed better with DFS. This supports the need for a configurable verification framework – like the
one presented in this paper, that is able to support these different slicing methods and search strategies. It
is also interesting that there was a task (eca-problem2-label08_true.c) that could only be verified
using a single configuration (TTD, i.e., thin slicing with optimizations, DFS search). This case could be
the subject of a more detailed analysis in the future.

We also compared verification time and optimization time. Their comparison, grouped by program
categories is shown in Figure 11a. As it can be seen, optimization takes roughly as much time as veri-



Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei 13

VTD
VTB
VFD
VFB
TTD
TTB
TFD
TFB
BTD
BTB
BFD
BFB
NTD
NTB
NFD
NFB

lo
ck

s/
lo

ck
s1

1_
tr

ue
.c

#0
lo

ck
s/

lo
ck

s1
1_

tr
ue

.c
#1

lo
ck

s/
lo

ck
s1

1_
tr

ue
.c

#1
0

lo
ck

s/
lo

ck
s1

1_
tr

ue
.c

#2
lo

ck
s/

lo
ck

s1
1_

tr
ue

.c
#3

lo
ck

s/
lo

ck
s1

1_
tr

ue
.c

#4
lo

ck
s/

lo
ck

s1
1_

tr
ue

.c
#5

lo
ck

s/
lo

ck
s1

1_
tr

ue
.c

#6
lo

ck
s/

lo
ck

s1
1_

tr
ue

.c
#7

lo
ck

s/
lo

ck
s1

1_
tr

ue
.c

#8
lo

ck
s/

lo
ck

s1
1_

tr
ue

.c
#9

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
0

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
1

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
10

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
11

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
12

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
13

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
14

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
15

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
2

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
3

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
4

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
5

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
6

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
7

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
8

lo
ck

s/
lo

ck
s1

4_
fa

ls
e.

c#
9

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
0

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
1

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
10

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
11

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
12

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
13

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
14

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
15

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
16

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
2

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
3

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
4

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
5

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
6

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
7

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
8

lo
ck

s/
lo

ck
s1

5_
fa

ls
e.

c#
9

Slice

C
on

fig
ur

at
io

n

2000

4000

6000
Verif.Time

(a) Verification time on the locks set.

VTD
VTB
VFD
VFB
TTD
TTB
TFD
TFB
BTD
BTB
BFD
BFB
NTD
NTB
NFD
NFB

ec
a/

ec
a−

pr
ob

le
m

1−
la

be
l0

0_
tr

ue
.c

#0
ec

a/
ec

a−
pr

ob
le

m
1−

la
be

l2
0_

fa
ls

e.
c#

0
ec

a/
ec

a−
pr

ob
le

m
2−

la
be

l0
8_

tr
ue

.c
#0

ec
a/

ec
a−

pr
ob

le
m

2−
la

be
l4

4_
fa

ls
e.

c#
0

ss
h/

ss
h1

_f
al

se
.c

#0
ss

h/
ss

h1
_t

ru
e.

c#
0

Slice

C
on

fig
ur

at
io

n

30000

60000

90000

120000
Verif.Time

(b) Verification time on the
eca/ssh sets.

Figure 10: Heat map of verification time for slices with different configurations.

fication on small programs (from locks). For larger programs however, optimization time is negligible
compared to the verifier’s execution time. Note that optimization time also includes all time spent on
slicing and slice refinement. Figure 11b shows the same comparison grouped by slicer types. We can
conclude that without slicing or with backward slicing, the optimization time is rather fast, especially
when compared to verification time. For value slicing, the optimization time increases significantly due
to the refinements. For thin slicing this time increases slightly further, except for a few exceptions, where
thin slicing produced much greater optimization times.

0

5000

10000

15000

0 40000 80000 120000

Verification.Time

O
pt

im
iz

at
io

n.
T

im
e

Category

eca

locks

ssh

(a) Verification and optimization time by categories.

0

5000

10000

15000

0 40000 80000 120000

Verification.Time

O
pt

im
iz

at
io

n.
T

im
e Slicer

NONE

BACKWARD

THIN

VALUE

(b) Verification and optimization time by slicers.

Figure 11: Comparison of verification time and optimization time.



14 Towards Evaluating Size Reduction Techniques for Software Model Checking

Threats to validity. External validity of our results is currently limited to our tool and the selected
categories of SV-COMP. Selecting more models and tools from different sources could improve external
validity. Internal validity was increased by a fully automated measurement environment but it could also
be improved by for example repeating the same measurements multiple times.

5 Conclusions

In this paper, we have presented and evaluated a framework for transforming C programs to control flow
automata, enhanced by optimization transformations known from compiler design and different program
slicing methods (namely backward, thin, and value slicing). The resulting models are verified using the
CEGAR model checking algorithm. We also performed an experiment by evaluating the performance
of the different slicing methods and verification configurations. Our results show that the effectiveness
of a certain slicing algorithm varies between certain input programs. We also concluded that in some
cases a certain slicing method performs better than the others. All this information supports the need
for a configurable framework – like the one presented in this paper, which includes several slicing and
optimization algorithms.

Future work. Our framework has several opportunities for improvement. The range of supported
features of the C language could be extended with for example arrays, pointers or structs. Other slicing
algorithms could be included in the workflow, such as interprocedural slicing [17]. Adding support for
the LLVM IR [19] would extend the range of supported languages and would also implicitly add multiple
fine-tuned optimizations into the workflow. Moreover, the effects of size reduction could be evaluated on
a wider range of verifier configurations, e.g. using different abstract domains or refinement strategies.

References

[1] Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman (1986): Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[2] Thomas Ball & Sriram K. Rajamani (2002): The SLAM Project: Debugging System Software via Static
Analysis. SIGPLAN Not. 37(1), pp. 1–3, doi:10.1145/565816.503274.

[3] Dirk Beyer (2016): Reliable and Reproducible Competition Results with BenchExec and Witnesses (Report
on SV-COMP 2016). In: Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science 9636, Springer, pp. 887–904, doi:10.1007/978-3-662-49674-9 55.

[4] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu & Roberto Sebastiani (2009): Soft-
ware model checking via large-block encoding. In: Proceedings of the 2009 Conference on Formal Methods
in Computer-Aided Design, IEEE, pp. 25–32, doi:10.1109/FMCAD.2009.5351147.

[5] Dirk Beyer & Matthias Dangl (2016): SMT-based Software Model Checking: An Experimental Comparison
of Four Algorithms. In: Verified Software. Theories, Tools, and Experiments, Lecture Notes in Computer
Science 9971, Springer, pp. 181–198, doi:10.1007/978-3-319-48869-1 14.

[6] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala & Rupak Majumdar (2007): The software model
checker Blast. International Journal on Software Tools for Technology Transfer 9(5), pp. 505–525,
doi:10.1007/s10009-007-0044-z.

[7] Dirk Beyer, Thomas A. Henzinger & Grégory Théoduloz (2007): Configurable Software Verification: Con-
cretizing the Convergence of Model Checking and Program Analysis. In: Computer Aided Verification,
Lecture Notes in Computer Science 4590, Springer, pp. 504–518, doi:10.1007/978-3-540-73368-3 51.

http://dx.doi.org/10.1145/565816.503274
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1109/FMCAD.2009.5351147
http://dx.doi.org/10.1007/978-3-319-48869-1_14
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/978-3-540-73368-3_51


Gy. Sallai, Á. Hajdu, T. Tóth, Z. Micskei 15

[8] Dirk Beyer, Stefan Löwe & Philipp Wendler (2015): Refinement Selection. In: Model Checking Software:
22nd International Symposium, SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015, Proceedings,
Lecture Notes in Computer Science 9232, Springer, pp. 20–38, doi:10.1007/978-3-319-23404-5 3.

[9] David Binkley, Nicolas Gold & Mark Harman (2007): An Empirical Study of Static Program Slice Size.
ACM Transactions on Software Engineering and Methodology 16(2), doi:10.1145/1217295.1217297.

[10] Ingo Brückner, Klaus Dräger, Bernd Finkbeiner & Heike Wehrheim (2008): Slicing Abstractions. Funda-
menta Informaticae 89(4), pp. 369–392.

[11] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu & Helmut Veith (2003): Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the ACM 50(5), pp. 752–794,
doi:10.1145/876638.876643.

[12] Edmund Clarke, Anubhav Gupta & Ofer Strichman (2004): SAT-based counterexample-guided abstraction
refinement. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 23(7), pp. 1113–
1123, doi:10.1109/TCAD.2004.829807.

[13] Edmund Clarke, Daniel Kroening, Natasha Sharygina & Karen Yorav (2005): SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 3440, Springer, pp. 570–574, doi:10.1007/978-3-540-31980-1 40.

[14] Jeanne Ferrante, Karl J. Ottenstein & Joe D. Warren (1987): The Program Dependence Graph and Its Use in
Optimization. ACM Trans. Program. Lang. Syst. 9(3), pp. 319–349, doi:10.1145/24039.24041.

[15] Susanne Graf & Hassen Saidi (1997): Construction of abstract state graphs with PVS. In: Computer Aided
Verification, Lecture Notes in Computer Science 1254, Springer, pp. 72–83, doi:10.1007/3-540-63166-6 10.

[16] Ákos Hajdu, Tamás Tóth, András Vörös & István Majzik (2016): A Configurable CEGAR Framework with
Interpolation-based Refinements. In: Formal Techniques for Distributed Objects, Components and Systems,
Lecture Notes in Computer Science 9688, Springer, pp. 158–174, doi:10.1007/978-3-319-39570-8 11.

[17] Susan Horwitz, Thomas Reps & David Binkley (1990): Interprocedural Slicing Using Dependence Graphs.
ACM Transactions on Programming Languages and Systems 12(1), pp. 26–60, doi:10.1145/77606.77608.

[18] Shrawan Kumar, Amitabha Sanyal & Uday P. Khedker (2015): Value Slice: A New Slicing Concept for
Scalable Property Checking. In: Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 9035, Springer, pp. 101–115, doi:10.1007/978-3-662-46681-0 7.

[19] Chris Lattner & Vikram Adve (2004): LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In: Proceedings of the 2004 International Symposium on Code Generation and Optimiza-
tion, IEEE, pp. 75–86.

[20] Martin Leucker, Grigory Markin & Martin R. Neuhäußer (2015): A New Refinement Strategy for CEGAR-
Based Industrial Model Checking. In: Hardware and Software: Verification and Testing, Lecture Notes in
Computer Science 9434, Springer, pp. 155–170, doi:10.1007/978-3-319-26287-1 10.

[21] Kenneth L. McMillan (2005): Applications of Craig Interpolants in Model Checking. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science 3440, Springer, pp.
1–12, doi:10.1007/978-3-540-31980-1 1.

[22] Manu Sridharan, Stephen J. Fink & Rastislav Bodik (2007): Thin Slicing. In: Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation, ACM, pp. 112–122.

[23] Yakir Vizel & Orna Grumberg (2009): Interpolation-sequence based model checking. In: Pro-
ceedings of the 2009 Conference on Formal Methods in Computer-Aided Design, IEEE, pp. 1–8,
doi:10.1109/FMCAD.2009.5351148.

[24] Mark Weiser (1981): Program Slicing. In: Proceedings of the 5th International Conference on Software
Engineering, IEEE, pp. 439–449.

http://dx.doi.org/10.1007/978-3-319-23404-5_3
http://dx.doi.org/10.1145/1217295.1217297
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1109/TCAD.2004.829807
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-319-39570-8_11
http://dx.doi.org/10.1145/77606.77608
http://dx.doi.org/10.1007/978-3-662-46681-0_7
http://dx.doi.org/10.1007/978-3-319-26287-1_10
http://dx.doi.org/10.1007/978-3-540-31980-1_1
http://dx.doi.org/10.1109/FMCAD.2009.5351148

	Introduction
	Background
	Formal Verification
	Program Representations
	Compiler Optimizations
	Program Slicing

	Transformation Workflow
	Evaluation
	Objects and Environment
	Results and Discussion
	Impact of Slicing and Optimizations on CFA Size
	Impact of Slicing and Optimization on Verification Performance


	Conclusions

