
DRAFT April 14, 2017

Transforming Coroutining Logic Programs into Equivalent
CHR Programs

Vincent Nys∗

Department of Computer Science
KU Leuven

Leuven, Belgium
vincent.nys@kuleuven.be

Danny De Schreye
Department of Computer Science

KU Leuven
Leuven, Belgium

danny.deschreye@kuleuven.be

We extend a technique called Compiling Control. The technique transforms coroutining logic pro-
grams into logic programs that, when executed under the standard left-to-right selection rule (and not
using any delay features) have the same computational behavior as the coroutining program. In re-
cent work, we revised Compiling Control and reformulated it as an instance of Abstract Conjunctive
Partial Deduction. This work was mostly focused on the program analysis performed in Compiling
Control. In the current paper, we focus on the synthesis of the transformed program. Instead of syn-
thesizing a new logic program, we synthesize a CHR(Prolog) program which mimics the coroutining
program. The synthesis to CHR has the advantage of yielding much more compact and readable
programs. In addition, it can be used to port coroutining logic programs to CHR implementations
embedded in other languages.

1 Introduction

Compiling Control (CC for short) is a program transformation technique proposed 30 years ago in [3],
[4] and [5]. The technique aims to compile the runtime behavior of pure logic programs executed under
a non-standard computation rule to equivalent logic programs that perform the same computations under
the standard, left-to-right computation rule of Prolog. The motivation for the technique was efficiency.

The technique is designed to work in two phases. In a first phase, the computation flow of the
program, executed under the non-standard rule, is analyzed, resulting in a symbolic evaluation tree that
captures the entire flow. In a second phase, from the symbolic evaluation tree, a new logic program is
synthesized, that performs that same computation under the left-to-right computation rule.

The technique had some drawbacks. For completeness of the analysis phase, some very complex
and technical conditions had to be satisfied. The synthesis phase produced very complex logic programs.
It introduced new predicates that represent entire computation states (goals) observed in the symbolic
evaluation tree and synthesized all transitions from each state to a next state.

Recently, in [7] and [14], we revisited the CC technique. Our motivation was not efficiency, but
program analysis: Coroutining computations — the main type of computations dealt with by CC — are
notoriously difficult to analyze. Many types of analyses of logic programs, such as termination analysis
[6], have been developed for logic programs executed under the standard computation rule. It is hard
to adapt these techniques to a non-standard computation rule. We aim to lift such analyses to programs
with non-standard computation rules by revisiting CC.

In [7], our work focused on the analysis phase of CC. We showed that the analysis could be refor-
mulated and formalized using Abstract Conjunctive Partial Deduction (ACPD for short), a framework

∗Vincent Nys is supported by FWO Flanders under research contract G088414N.

2 Transforming Coroutining Logic Programs into Equivalent CHR Programs

proposed by Leuschel in [11]. In addition, we proposed a new abstraction, multi, to analyze computations
with unboundedly growing goals. This allowed us to analyze a diverse set of well-known coroutining
programs and to compile these into programs executed under the standard computation rule.

In the current paper, we focus on the synthesis phase of CC. Both in the original approach [3] and
in our revisited approach [7], the transformed program is a logic program, without delays or other non-
declarative constructs.

However, the synthesis has some disadvantages. First, the analysis phase analyzes the computational
behavior of conjunctions of atoms. Our instance of ACPD builds abstract derivation trees with conjunc-
tions of (abstract) atoms in their roots and leaves. To synthesize the branches of such trees into new
clauses, renaming schemes are necessary to convert the conjunctions into atoms, so that they are then
allowed to occur in the head of the Prolog clause. If we compiled to a language with multi-headed rules,
this complexity could be avoided. CHR [8] is one such language.

Second, as mentioned above, the synthesis of a branch in the derivation tree compiles how some state
in the computation is resolved to produce a new state. As Prolog does not have a notion of “state”, we
need to encode entire states, both root states and those represented in the leaves, into new predicates.
This produces very complex predicates. Their use could be avoided if we compiled to a language that
keeps track of the current state for us, and only requires us to express what changes with respect to the
root state. Again, CHR has a store that supports precisely this.

In this paper, we show how both these complexities can be overcome by synthesizing the resulting
programs for the CC transformation in CHR, instead of Prolog. The new synthesis has a number of
advantages, including added insight into the computational process and more readable transformed code.
While we will assume the compilation target to be CHR(SWI-Prolog) for the sake of illustration, this
new technique also facilitates porting logic programs to CHR systems in other languages, such as JCHR
for Java or HaskellCHR for Haskell. This work is ongoing and we do not yet have an automated system
that synthesizes the CHR programs1, but we aim to fully automate the transformation.

In what follows, we will assume the reader to be familiar with the basic concepts of partial deduction
[13], logic programming [12] and CHR implementations [16]. Some familiarity with abstract interpreta-
tion [2] will be helpful, but it is not strictly required.

2 An initial example: permutation sort

As in [7], we illustrate a use case of our technique by means of the permutation sort algorithm. Listing
1 shows a naive version of this algorithm. While we will retain the declarative perspective on sorting as
creating an ordered permutation, we would like to improve its implementation, by using a computation
rule that interleaves calls to perm/2 and ord/1, so that ordering checks for elements of the permutation
take place as soon as two list elements become ground. Note that, in SWI-Prolog, select/3 is a built-in.

We briefly recall some key aspects of the CC transformation based on ACPD from [7] and [14]. In
the analysis phase, ACPD is applied with a specific abstract domain. This abstract domain contains two
collections of abstract variables {ai|i∈N0} and {g j| j ∈N0}. The abstract variables g j, j ∈N0, represent
ground terms in the concrete domain. The variables ai, i∈N0, represent any term of the concrete domain,
including concrete variables. If an abstract term, atom or conjunction of atoms contains some ai or g j

several times (with the same index), then the represented concrete terms, atoms or conjunctions of atoms
all contain the same subterm at every position corresponding to the positions of the ai or g j. This

1An automated system which performs the analysis phase is available at https://perswww.kuleuven.be/~u0055408/

https://perswww.kuleuven.be/~u0055408/

Vincent Nys & Danny De Schreye 3

Listing 1 Naive implementation of permutation sort in Prolog
1 permsort(X,Y) :-

2 perm(X,Y),

3 ord(Y).

4

5 perm([],[]).

6 perm([X|Y],[U|V]) :-

7 select(U,[X|Y],W),

8 perm(W,V).

1 ord([]).

2 ord([X]).

3 ord([X,Y|Z]) :-

4 X =< Y,

5 ord([Y|Z]).

represents aliasing between corresponding concrete terms. Note that two variables ai and gi, with the
same subscript, are not considered to be aliased.

We also include concrete program constants in the abstract domain, such as the empty list, []. We
treat these as 0-arity functors. This is different from [7], but it changes nothing about the procedure.

The desired computation rule is formalized by establishing a strict partial order on abstract atoms
which occur during the analysis phase. For permutation sort, the order consists of the pairs perm(g1,a1)<
ord(a1), perm(g1,a1)< ord([g1|a1]) and ord([g1,g2|a1])< perm(g1,a1). We leave the details for the next
section and restrict ourselves to saying that, if an abstract conjunction containing (a renamed variant of)
a left-hand atom and (a renamed variant of) a right-hand atom from one of these pairs is encountered, the
left-hand one will take precedence. For instance, perm(g1,a1) would take precedence over ord(a1), but
ord([g1,g2|a1]) would take precedence over perm(g1,a1). There are some additional details for compu-
tation rules, but we will postpone those until the next section. Note that, if the desired computation rule
cannot be expressed as a strict partial order, our current technique cannot be used.

The transformation requires a top level abstract goal, for which the analysis and transformation are
performed. For permutation sort, let permsort(g1,a1) be that goal.

The analysis phase constructs a number of abstract derivation trees for a set A of abstract conjunc-
tions. In the example, permsort(g1,a1) is the first of these conjunctions. Starting from this goal, the
analysis constructs the abstract trees in Figures 1 and 2. The set A consists of all the root nodes in
these trees, so A = {permsort(g1,a1),∧(perm(g1,a1),ord([g2|a1]))}. The set A , with corresponding
abstract trees, is said to be A -closed, meaning that all the leaves in the trees are either success nodes,
or are more specific than some element of A . Here, “more specific” is defined using an order on the
abstract domain, consistent with set inclusion of the represented concrete terms, atoms and conjunctions.

In Figures 1 and 2, underlined atoms are the atoms that are selected by the (non-standard) computa-
tion rule. Atoms underlined twice are not only selected, but are also completely executed using abstract
interpretation over the domain. In the child node, these atoms have disappeared and any abstract bindings
that the abstract interpretation of the abstract atom has produced are applied to the remaining atoms of
the conjunction. This feature is used for built-ins, but also for user-defined atoms that we do not want to
transform (because their evaluation is not interleaved with that of the analyzed coroutines). In the trans-
formed program, we will simply rely on the original predicate definitions to solve such atoms. Atoms
underlined twice also bypass the strict partial order. They could be included in the strict partial order, but
to do so would complicate our representations of computation rules and would not provide us with any
needed flexibility. Instead, they are simply evaluated as soon as possible in left-to-right order.

After the analysis, the synthesis phase of [7] starts by building a concrete derivation tree for every
abstract tree in the analysis phase. For the example, these trees are shown in Figures 3 and 4. The
root of these trees is obtained from the root of the corresponding abstract tree by replacing ai and g j

4 Transforming Coroutining Logic Programs into Equivalent CHR Programs

permsort(g1,a1)

perm(g1,a1),ord(a1)

select(a2, [g2|g3],a4),
perm(a4,a3),ord([a2|a3])

perm(g5,a3),ord([g4|a3])

a2 = g4

a4 = g5

ord([])

�

a1 = []

g1 = []

g1 = [g2|g3]

a1 = [a2|a3]

Figure 1: Abstract tree for permsort(g1,a1)

perm(g1,a1),ord([g2|a1])

select(a2, [g3|g4],a4),
perm(a4,a3),ord([g2,a2|a3])

perm(g6,a3),ord([g2,g5|a3])

perm(g6,a3),g2 ≤ g5,ord([g5|a3])

perm(g6,a3),ord([g5|a3])

a2 = g5

a4 = g6

ord([g2])

�

a1 = []

g1 = []

g1 = [g3|g4]

a1 = [a2|a3]

Figure 2: Abstract tree for perm(g1,a1),ord([g2|a1])

permsort(X ,Y)

perm(X ,Y),ord(Y)

select(C, [A|B],E),
perm(E,D),ord([C|D])

perm(E,D),ord([C|D])

ord([])

�

X = []

Y = []

X = [A|B]
Y = [C|D]

Figure 3: Concrete tree for permsort(X ,Y)

perm(E,D),ord([C|D])

select(H, [F |G],J),
perm(J, I),ord([C,H|I])

perm(J, I),ord([C,H|I])

perm(J, I),C ≤ H,ord([H|I])

perm(J, I),ord([H|I])

ord([C])

�

D = []

E = []

E = [F |G]

D = [H|I]

Figure 4: Concrete tree for perm(E,D),ord([C|D])

Vincent Nys & Danny De Schreye 5

symbols by concrete variables. The remainder of the trees is obtained by mimicking, over the concrete
domain, the abstract resolution steps performed in the abstract tree, using the same clauses from the
initial program. In the concrete trees, atoms corresponding to atoms underlined twice in the abstract tree
are not unfolded. The bindings that they create are applied, the atoms are removed from the goal and are
considered residual. This is also indicated by underlining these atoms twice. A formal explanation of
how concrete analysis trees are derived from abstract analysis trees can be found in [14].

Then, the actual (Prolog) code generation is performed. For any non-failing branch of a concrete tree,
a resultant is derived. The head of the resultant is the conjunction in the root of the tree, with all bindings
computed in the derivation applied to it. The body is the leaf of the branch, preceded by all residual
atoms on the branch. In other words, it contains all atoms that correspond to double underlined abstract
atoms, in addition to a conjunction that was not unfolded any further in this tree. Note that the resultants
are not necessarily Horn clauses: they can be multi-headed. As an example, perm([], [])∧ord([C])← true
is obtained from the leftmost branch of Figure 4.

Finally, conjunctions of atoms occurring in the heads of resultants are renamed to new predicates.
The same renaming is applied to their occurrences in the bodies of rules. The resulting new clauses for
permutation sort are shown in Listing 2. Note how the meta-predicate p1/2 is used to group perm/2 and
ord/1 atoms. Also note that redundant structure could be removed from p1/2 as described in [10], but
we have not done so to keep the mapping from the concrete trees to Listing 2 as transparent as possible.

Listing 2 Prolog synthesis of permutation sort
1 permsort([],[]).

2 permsort([A|B],[C|D]) :-

3 select(C,[A|B],E),

4 p1(perm(E,D),ord([C|D])).

1 p1(perm([],[]),ord([C])).

2 p1(perm([F|G],[H|I]),ord([C,H|I])) :-

3 select(H,[F|G],J),

4 C =< H,

5 p1(perm(J,I),ord([H|I])).

In the current paper, we propose a new synthesis technique. This new technique generates a CHR
program which, under the refined operational semantics of CHR (used by implementations) produces
equivalent answers to the original program. It also evaluates constraints in the same order in which the
abstract analysis evaluates corresponding abstract atoms. An advantage of synthesizing to CHR is that
conjunctions in A do not need to be renamed if they are independent. We say that conjunctions A and B
are independent if the intersection of the concrete instances of A and the concrete instances of B is empty.

For permutation sort, the synthesized CHR rules are in Listing 3. The procedure for generating the
CHR program is the following: First, the non-built-in predicates of the initial program are partitioned
into two sets: those that will be CHR constraints in the synthesized program and those that will be built-in
constraints (in the terminology of CHR, this means that they will remain Prolog predicates which may or
may not be user-defined). The partitioning criterion is easy: Predicates that are fully abstractly evaluated
in the abstract trees are built-in constraints, those that are abstractly unfolded in the trees become CHR
constraints. We require the abstract analysis to be consistent in the choice between these two options.
For permutation sort, all user-defined predicates become CHR constraints.

Next, for every non-failing branch in a (concrete) derivation tree, we synthesize one simplification
rule. The head of this rule consists of all atoms in the root of the tree that are unfolded in the branch,
after applying a subset of the unifications performed along the branch. The body of the rule consists of
residual atoms evaluated along the branch, the remaining unifications performed along the branch and all
the atoms in the leaf of the branch which are newly introduced with respect to the root. Precisely which
unifications are applied to the head and in the body is determined as follows: For every binding in the

6 Transforming Coroutining Logic Programs into Equivalent CHR Programs

derivation that binds a variable in an unfolded atom of the root, we check the corresponding abstract tree
to see whether applying the concrete binding could further instantiate the concrete term. If so, we add the
binding as an explicit unification in the body of the rule. If not, we apply the binding to the head of the
CHR rule. The reason for this distinction is that CHR programs, unlike Prolog programs, use one-way
unification. In other words, a rule can only fire if its head is at least as general as the set of constraints
which causes the rule to fire2. In permutation sort, this gives the rules in Listing 3.

Finally, we order the generated CHR rules, using the strict partial order on abstract atoms mentioned
earlier. If a CHR rule contains a head constraint, such that the corresponding abstract atom in the abstract
tree it was generated from takes precedence over the abstract atoms (concretized as constraints) in the
head of another rule, then the former rule must precede the latter. If both rule heads concretize the same
top-priority abstract atom, the abstract atom with the second highest priority is considered, etc. This
ensures that the priority of unfolding atoms, expressed in the computation rule, is maintained in the CHR
program. For permutation sort, all orderings of the rules lead to an equivalent program.

Listing 3 CHR permutation sort
1 permsort([],X) <=> X = [].

2 permsort([A|B],Y) <=>

3 Y = [C|D],

4 select(C,[A|B],E),

5 perm(E,D),

6 ord([C|D]).

1 perm([],D), ord([C|D]) <=> D = [].

2 perm([F|G],D), ord([C|D]) <=>

3 D = [H|I],

4 select(H,[F|G],J),

5 C =< H,

6 perm(J,I),

7 ord([H|I]).

Comparing Listing 2 with Listing 3, permutation sort already allows us to draw some conclusions in
comparing the two synthesis approaches. First, there is no more need to rename conjunctions of atoms
to a new predicate, in order to obtain the clause format.

The second improvement is that, where the Prolog synthesis needs to represent transitions of a com-
plete goal (conjunction) in the root of a tree to the complete goal in the leaf of the tree, the CHR synthesis
only needs to focus on the unfolded atoms of the root. For permutation sort, however, the Prolog and
CHR syntheses are very similar, because all constraints are rewritten simultaneously. Our second exam-
ple will highlight both advantages.

3 Incorporating the multi abstraction: confused queens

Permutation sort is a very easy example for CC. For most other coroutining programs, compiling them
with the CC transformation involves an extra abstraction. We call this the multi abstraction [7]. In
this section, we study the transformation again, and in particular the synthesis to CHR, but for a more
representative example, requiring the multi abstraction: the confused queens problem.

We will first formalize the computation rule, so that we can precisely express the unfoldings per-
formed in our analysis of confused queens without showing every abstract analysis tree. We will then
apply the transformation. We will see that it needs some refinements, which will be introduced in Section
4.

2We could therefore also move all unifications to the rule body, synthesizing CHR rules in head normal form, but we prefer
our rules to be as concise as possible.

Vincent Nys & Danny De Schreye 7

We begin by briefly introducing some core concepts. If a concept related to the abstract domain
ADomP is not specified, the reader should assume that it is analogous to its counterpart in the concrete
domain DomP. For a complete formalization, see [14]. The abstract domain contains the two aforemen-
tioned sets of abstract variables, whose union is denoted AVarP. Based on these, there is a corresponding
set of abstract terms, ATermP, which consists of the terms constructed from AVarP and function symbols
and constant symbols occurring in the concrete program P. AAtomP denotes the set of abstract atoms,
i.e. the atoms which can be constructed from ATermP and predicate symbols occurring in P. AConAtomP

denotes the set of conjunctions of elements of AAtomP. Let AAtomP/≈ and AConAtomP/≈ denote equiv-
alence classes of abstract atoms and conjunctions, respectively. Two abstract atoms (or conjunctions) A
and B are equivalent, denoted A ≈ B, if and only if there are abstract substitutions θ1 and θ2 such that
Aθ1 = B and Bθ2 = A. For instance, p1(g1,a1)≈ p1(g2,a2), but f (g1,a1) 6≈ f (g2,g3). In what follows,
we will often use an abstract atom as a representative of its equivalence class. We assume the meaning of
any overloaded concepts related to abstract atoms and equivalence classes to be clear from the context.

Finally, let γ : ADomP→ 2DomP be the concretization function, which maps elements of the abstract
domain to their concrete denotation.

Definition 1 (Instantiation-based computation rule). An instantiation-based computation rule for a pro-
gram P is a strict partial order < (“is less than”) on AAtomP/≈, such that γ(s1)⊂ γ(s2) implies s2 ≮ s1,
where ⊂ denotes strict set inclusion.

An instantiation-based computation rule expresses which atom is selected from an abstract conjunc-
tion, either for expansion or full evaluation. Our technique requires that an instantiation-based computa-
tion rule can specify the desired control flow.

Definition 2 (Selection by an instantiation-based computation rule). Let A∈AConP/≈. Then, the abstract
atom selected from A by < is the leftmost atom b, such that ∀c ∈ A : c 6≈ b⇒ b < c. If there is no such
atom b, no atom is selected from A.

To formalize certain properties of a computation rule, we require the notion of a reachable state.
Strictly speaking, a reachable state is an equivalence class of abstract conjunctions. We will define it as
a representative A. The reachable state proper is then its equivalence class.

Definition 3 (Representative of a reachable state). An abstract conjunction A is a representative of a
reachable state under the computation rule < for the program P with initial query q if either:

• A = q;

• A is the abstract resolvent of b in B with AC, where B is a reachable state, AC is an abstraction of
a Horn clause in P and b is the atom selected by < from B;

• A = c1, . . . ,ci−1,ci+1, . . . ,cmθ , where:

– a representative of a reachable state B = c1, . . . ,ci−1,ci,ci+1, . . . ,cm exists;
– ci is the atom selected by < from B;
– ci is fully abstractly evaluated in P, yielding the abstract unifier θ .

A computation rule is complete if it selects an abstract atom in every reachable state. We require
that the computation rule to be analyzed is complete. We do not, however, expect users to supply a
formal, complete computation rule before beginning the program analysis. Instead, we use Algorithm 1
to construct a set of partial ordering pairs, CR, during program analysis:

For the sake of brevity, we will not list the entire rule. Instead, we will list a generating set. Finally,
we assume that fully evaluated atoms are dealt with in left-to-right order, before unfolded atoms.

8 Transforming Coroutining Logic Programs into Equivalent CHR Programs

Algorithm 1 Constructing a complete computation rule
CR← /0
loop

let c1, . . . ,cn be the next goal in the analysis tree
if CR, Definition 1 and Definition 2 restrict the choice to a single ci, i ∈ {1, . . . ,n} then

proceed without asking for user input
else

let the user select an atom c j from c1, . . . ,cn

if the user’s selection is consistent with CR, Definition 1 and Definition 2 then
CR← CR∪{c j < ck|k ∈ {1, . . . ,n},c j is not equivalent to ck}

else
reject the selection of c j

end if
end if

end loop

We are now ready to introduce the confused queens problem and the computation rule that we use
to analyze it. The confused queens problem is a variation on the well-known N-queens problem. Like
in N-queens, the goal is to arrange N queens on a chess board of size N×N. Unlike in the N-queens
problem, for confused queens, every pair of queens should be on the same row or on the same diagonal.
Each piece is still placed in a different column, which is implicit in the use of a list data structure. Prolog
code for the program (using a standard computation rule) is shown in Listing 4.

The aspect that makes permutation sort easy with respect to CC is that the number of abstract atoms
in any node of any abstract derivation tree is bounded (at most three). For confused queens, and most
other examples, there is no such bound. Of course, in any concrete evaluation of cqueens(N,D), with N
a natural number, the number of atoms that can appear in a goal is bounded. But that bound increases
with N, so that for an ACPD analysis in the style of Section 2, which is a safe approximation of every
concrete computation, there cannot be a bound. To deal with this, [7] introduces the multi abstraction.

We analyze the program for the abstract goal cqueens(g1,a1). The generating set for the rule is:

{(attack all(g1,g2, [g3|a1]),attack all(g1,g2,a1)),(attack all(g1,g2, [g3|a1]),confused([g1|a1])),
(attack all(g1,g2, [g3|a1]),draw(g1,g2,a1)),(confused([g1]),attack all(g1,g2, [])),
(confused([g1,g2|a1]),attack all(g1,g2, [g3|a1])),(confused([g1,g2|a1]),draw(g1,g2,a1)),
(draw(g1,g2,a1),confused(a1)),(draw(g1,g2,a1),confused([g1|a1])),
(draw(g1,g2,a1),attack all(g1,g2,a1))}

Consider the following abstract goals that occur in the abstract trees built for this top level goal using
the given computation rule:

• draw(g1,g2,a1),attack all(g4,g5,a1),attack all(g6,g7, [g3|a1]),confused([g3|a1])

• draw(g1,g2,a1),attack all(g4,g5,a1),attack all(g8,g9,a1),attack all(g6,g7, [g3|a1]),
confused([g3|a1])

• draw(g1,g2,a1),attack all(g4,g5,a1),attack all(g8,g11,a1),attack all(g6,g7, [g3|a1]),
attack all(g10,g11, [g3|a1]),confused([g3|a1])

Vincent Nys & Danny De Schreye 9

Listing 4 Prolog implementation of confused queens
1 cqueens(N,D) :-

2 genlist(N,L),

3 draw(N,L,D),

4 confused(D).

5

6 genlist(N,L) :-

7 N >= 1,

8 genlist_acc(N,[],L).

9 genlist_acc(N,Acc,L) :-

10 N > 1,

11 Nmin is N-1,

12 genlist_acc(Nmin,[N|Acc],L).

13 genlist_acc(1,Acc,[1|Acc]).

14

15 draw(0,_,[]).

16 draw(N,L,[E|R]) :-

17 N > 0,

18 Nmin is N - 1,

19 member(E,L),

20 draw(Nmin,L,R).

1 confused([]).

2 confused([_X]).

3 confused([A,B|C]) :-

4 attack_all(A,1,[B|C]),

5 confused([B|C]).

6

7 attack_all(_,_,[]).

8 attack_all(A,Off,[B|C]) :-

9 Offplus is Off + 1,

10 attack(A,Off,B),

11 attack_all(A,Offplus,C).

12

13 attack(A,_,A).

14 attack(A,Off,B) :-

15 Diff is A - B,

16 abs(Diff,Off).

These three abstract goals are very similar. They have identical draw/2 and confused/1 abstract
atoms. They all have two types of attack all/3 abstract atoms: one type with an a1 as the third argument
and another with [g4|a1] as the third argument. The difference between the three abstract goals is the
number of abstract atoms of each type which each goal contains: 1 and 1 for the first goal, 2 and 1 for
the second, 2 and 2 for the third.

In [7], we introduced a new abstraction, multi. This new abstraction makes it possible to generalize
the three goals above to the following new abstract goal: draw(g1,g2,a1),multi(attack all(gi,g j,a1)),
multi(attack all(gk,gl, [g4|a1])),confused([g4|a1])

3.
The semantics of multi(attack all(gi,g j,a1)) is as follows: the abstraction represents all conjunctions

of one or more attack all(gi,g j,a1) abstract atoms, where the first arguments of consecutive conjuncts
are not aliased, where the same holds for the second arguments, but in each represented conjunct, the last
argument is identical. The multi abstraction is included in ADomP.

We refer to [14] for a more formal account of multi and the operations which can be applied to it:
generalization and unfolding. A simplified and informal description of these operations will do for the
current discussion, as the synthesis — not the analysis — is the focus of the current work. Generalization
can take two forms. The first form replaces an abstract conjunction, or several syntactically consecutive,
equivalent abstract conjunctions. Their replacement is a multi abstraction whose argument has the form
of a renamed variant of the abstracted conjunction(s), but which may use symbolic subscripts to indicate
that abstract variables occurring in consecutive conjunctions are not aliased. In this way, the conjunction
containing the multi abstraction represents all abstract goals with one or more of such conjunctions in
the syntactic position of the multi abstraction. The second form removes a single renamed variant of the

3Note that we use a more lightweight notation here than in [7] for the sake of presentation. For confused queens, the
lightweight notation is sufficient.

10 Transforming Coroutining Logic Programs into Equivalent CHR Programs

argument of an existing, syntactically adjacent multi abstraction. This should be understood as a gener-
alization from “two or more” equivalent abstract conjunctions to “one or more” equivalent conjunctions.
For example, atom(g1,a1),multi(atom(gi,a j)) can be generalized to multi(atom(gi,a j)).

In this work, we simply assume that generalization is applied in such a way that A can be closed.
Until recently, this meant performing part of the analysis manually and grouping equivalent subconjunc-
tions. In an upcoming release of the implementation, we exploit the fact that these subconjunctions are
introduced by evaluating certain abstract atoms recursively, but not tail-recursively, under the computa-
tion rule. Subconjunctions which are grouped are then unfinished computations indirectly introduced by
a single, top-level, recursive abstract atom. We leave the details of this analysis for future work.

Unfold of multi describes what it means for an atom in a multi to be selected and unfolded. It
makes a case split. Either the multi represents one abstract conjunction, or it represents more than one
abstract conjunction. In the first case, the multi disappears from the goal and is replaced by a conjunction
equivalent to the argument of the multi (with symbolic indices replaced by fresh indices). In the second,
the multi remains in the abstract goal, but one extra conjunction, again equivalent to the argument of the
multi but without symbolic indices, is added to the goal. In both cases, atoms from the newly introduced
abstract conjunction can then be unfolded.

The trees in Figures 5, 6 and 7 show the first, second and third abstract derivation trees built for
the ACPD analysis for cqueens(g1,a1). The remaining abstract trees, for an A -closed ACPD analysis
for cqueens(g1,a1) are provided in appendix. They can also be reproduced using the strict partial order
given above. All concrete trees are also in appendix. After generating the concrete trees, resultants for
the branches can be computed. The resultants for Figures 5 through 7 are as follows (with attack all
renamed to atk all for layout purposes):

• cqueens(0, []).

• cqueens(A, [D|E])←
genlist(A,C),A > 0,F is A−1,member(D,C),draw(F,C,E),confused([D|E]).

• draw(0,X , []),confused([Y]).

• draw(A,B, [E|F]),confused([D,E|F])←
A≥ 0,G is A−1,member(E,B),draw(G,B,F),multi([atk all(D,1, [E|F])]),confused([E|F]).

• draw(A,B,C),multi([atk all(D,E, [F |C])]),confused([F |C])←
H is E +1,attack(D,E,F),draw(A,B,C),multi([atk all(D,H,C)|I]),confused([F |C])

• draw(A,B,C),multi([atk all(D,E, [F |C]),atk all(H, I, [F |C])|J)]),confused([F |C])←
K is E +1,attack(D,E,F),draw(A,B,C),multi([atk all(D,K,C)|L]),
multi([atk all(H, I, [F |C])|J]),confused([F |C])

Finally, when all resultants of all trees have been computed, renaming transformations are applied
to obtain Prolog clauses. This also ensures independence of the concrete goals. The resulting clauses
corresponding to the resultants for the first three trees are shown in Listing 5. The full synthesized Prolog
program is in appendix.

Note that these clauses become rather complex. They explicitly describe every possible transition
from one concrete goal corresponding to an element of A to another. This obscures the actual logic
behind the transition, i.e. the change that occurs between two states. We are now in a position to show
that the synthesis to CHR, as described in Section 2, expresses this logic more clearly.

From the first branch in Figure 5, we generate:
cqueens(0,B) <=> genlist(0,C), B = [], lock. (1)

Vincent Nys & Danny De Schreye 11

cqueens(g1,a1)

genlist(g1,a2),draw(g1,a2,a1),

confused(a1)

draw(g1,g2,a1),confused(a1)

g1 > 0,a5 is g1−1,member(a3,g2),

draw(a5,g2,a4),confused([a3|a4])

a5 is g1−1,member(a3,g2),

draw(a5,g2,a4),confused([a3|a4])

member(a3,g2),

draw(g3,g2,a4),confused([a3|a4])

draw(g3,g2,a4),confused([g4|a4])

a3 = g4

a5 = g3

confused([])

�

g1 = 0
a1 = [] a1 = [a3|a4]

a2 = g2

Figure 5: First abstract tree for cqueens(g1,a1).

draw(g1,g2,a1),confused([g3|a1])

g1 > 0,a4 is g1−1,member(a2,g2),

draw(a4,g2,a3),confused([g3,a2|a3])

a4 is g1−1,member(a2,g2),

draw(a4,g2,a3),confused([g3,a2|a3])

member(a2,g2),

draw(a4,g2,a3),confused([g3,a2|a3])

draw(g4,g2,a3),confused([g3,g5|a3])

draw(g4,g2,a3),attack all(g3,g6, [g5|a3]),
confused([g5|a3])

draw(g4,g2,a3),multi(attack all(g3,g6, [g5|a3])),
confused([g5|a3])

generalize

a2 = g5

a4 = g4

confused([g3])

�

a1 = []
g1 = 0 a1 = [a2|a3]

Figure 6: Second abstract tree for cqueens(g1,a1).

draw(g1,g2,a1),multi(attack all(gi,g j, [g3|a1])),confused([g3|a1])

draw(g1,g2,a1),attack all(g4,g5, [g3|a1]),
multi(attack all(gi,g j, [g3|a1])),confused([g3|a1])

draw(g1,g2,a1),a2 is g5 +1,attack(g4,g5,g3),attack all(g4,a2,a1),

multi(attack all(gi,g j, [g3|a1])),confused([g3|a1])

draw(g1,g2,a1),attack(g4,g5,g3),attack all(g4,g6,a1),

multi(attack all(gi,g j, [g3|a1])),confused([g3|a1])

draw(g1,g2,a1),attack all(g4,g6,a1),
multi(attack all(gi,g j, [g3|a1])),confused([g3|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
multi(attack all(gi,g j, [g3|a1])),confused([g3|a1])

generalize

a2 = g6

draw(g1,g2,a1),attack all(g4,g511, [g3|a1]),confused([g3|a1])

draw(g1,g2,a1),a2 is g511+1,attack(g4,g511,g3),
attack all(g4,a2,a1),confused([g3|a1])

draw(g1,g2,a1),attack(g4,g511,g3),
attack all(g4,g6,a1),confused([g3|a1])

draw(g1,g2,a1),attack all(g4,g6,a1),confused([g3|a1])

draw(g1,g2,a1),multi(attack all(gi,g j,a1)),confused([g3|a1])

generalize

a2 = g6

case: one case: many

Figure 7: Third abstract tree for cqueens(g1,a1).

12 Transforming Coroutining Logic Programs into Equivalent CHR Programs

Listing 5 Renamed clauses for the first six resultants of confused queens
1 cqueens(0,[]).

2 cqueens(A,[D|E]) :-

3 genlist(A,C),

4 A > 0,

5 F is A - 1,

6 member(D,C),

7 a(draw(F,C,E),

8 confused([D|E])).

9 a(draw(0,_,[]),confused([_])).

10 a(draw(A,B,[E|F]),

11 confused([D,E|F])) :-

12 A >= 0,

13 G is A - 1,

14 member(E,B),

15 b(draw(G,B,F),

16 multi([attack_all(D,1,[E|F])]),

17 confused([E|F])).

1 b(draw(A,B,C),

2 multi([attack_all(D,E,[F|C])]),

3 confused([F|C])) :-

4 H is E + 1,

5 attack(D,E,F),

6 c(draw(A,B,C),

7 multi([attack_all(D,H,C)]),

8 confused([F|C])).

9 b(draw(A,B,C),

10 multi([attack_all(D,E,[F|C]),

11 attack_all(H,I,[F|C])|J]),

12 confused([F|C])) :-

13 K is E + 1,

14 attack(D,E,F),

15 d(draw(A,B,C),

16 multi([attack_all(D,K,C)]),

17 multi([attack_all(H,I,[F|C])|J]),

18 confused([F|C])).

From the second branch:
cqueens(A, B) <=> B = [E|F], genlist(A,C), A > 0, D is A-1, member(E,C),

draw(D,C,F), confused([E|F]), lock.

(2)

The purpose of the lock constraint is to prevent a transition from firing at certain points during
program execution. The refined operational semantics of CHR dictates that atoms are evaluated and
constraints are added to the store from left to right. This means that a rule could fire while another rule
is being applied, raising an issue for our transformation: rules represent transitions between instances
of abstract states in A . Thus, they should only fire when the contents of the store are an instance of
an abstract state in A . The lock/0 ensures that new rules only fire when an entire new state is reached,
because it is always required for a state transition and because it is always added last.

The left branch of the tree in Figure 6 yields:

draw(0,B,C), confused([D|C]), lock <=> C = [], lock. (3)

The right branch yields:

draw(A,B,C), confused([D|C]), lock <=> C = [E|F], A>0, G is A-1,

member(E,B), draw(G,B,F), attack_all(D,1,[E|F]), confused([E|F]), lock.

(4)

From the left branch of the tree in Figure 7, we generate the following rule:

lock, attack_all(D,E,[F|C]) <=>

H is E + 1, attack(D,E,F), attack_all(D,H,C), lock.

(5)

For the right branch of the tree in Figure 7, the generated rule is identical. There are two leaf nodes
in the abstract tree, but this is only due to the case split on multi. The unfoldings and full evaluations of
abstract atoms required to go from the root to a leaf node are identical for both branches. In the CHR
synthesis, there is no case split: a specific number of concrete instances of attack all(gi,g j, [g4|a1]) is in
the constraint store. Therefore, it is not necessary to add an additional rule to the synthesized program.

Vincent Nys & Danny De Schreye 13

In the Prolog synthesis, we do get a different synthesized clause for each of these branches, because
the context of the derivation is different in each branch and the Prolog synthesis encodes the context in
its new predicates. Because rules do not need to be repeated and because they only express the change
between states, the CHR synthesis is significantly more parsimonious than the Prolog synthesis. In fact,
several more branches in the full program analysis generate rule (5).

As a result, only the following new rule is synthesized from the remaining trees:

attack_all(X,Y,[]), lock <=> lock. (6)

Finally, a housekeeping rule is required:
lock <=> true. (7)

We always add rule (7) at the end of a synthesized program so that the lock/0 constraint is discarded
in an otherwise empty state.

After synthesizing all the rules, we order them based on the strict partial ordering on abstract atoms
as before. The resulting program works as intended for the expected queries. A full source code listing
is provided in appendix. The complete Prolog program contains nearly twice as many lines, and the lines
themselves are significantly longer.

4 A more refined synthesis

The CHR program synthesized in Section 3 for confused queens compiles the coroutines correctly for
all top level queries cqueens(x,y), where x is an integer and y a free variable. Unfortunately, there are
instances of the abstract atom cqueens(g1,a1) which show that the transformation is unsound. Further-
more, while our synthesis of permutation sort is sound, a different — but valid — abstract analysis would
also have led to an unsound synthesis.

The lack of soundness can be demonstrated as follows: for queries such as cqueens(4, [X ,Y,Z,T]),
where we partially instantiate the output, the CHR program ends with a run-time error. The reason is that
we rely on the CHR matching mechanism to identify whether a constraint attack all/3 has a sufficiently
instantiated third argument to activate rule (5). If the output argument in cqueens is a variable, then a
sufficiently instantiated third argument will have a ground value for its first list member. But if the output
argument is given the required list structure from the start, then CHR is unable to distinguish between
attack all atoms that have a value ready for use, and those that have the structure, but not the value of the
first member.

A trivial way to solve this is to add a guard condition ground(B) to rule (5). This will provide a
correct synthesis for all intended queries. However, this defeats the purpose of the transformation, as
we are then explicitly encoding a kind of “delay” in the CHR program, while the aim is to eliminate
the delays or freezes from the Prolog program. Furthermore, this approach prevents portability to CHR
implementations not based on Prolog.

Fortunately, the abstract analysis provides us with a guarantee of when an attack all/3 atom’s first list
element will be instantiated. This information can be encoded into the constraints, so that it is available
to the matching mechanism. In the conjunctions in the analysis, there are two multi-constructs. One with
attack all/3 atoms that are sufficiently instantiated, the other with such atoms that are not yet sufficiently
instantiated. In our synthesis, we can take advantage of this information and add guarantees about the
instantiation level of the final argument to each attack all/3, making it an attack all/4 constraint. More
generally, for every CHR constraint (except for the lock/0), we add an additional list argument. For every
element in the original list of arguments, we add a list element representing the guaranteed instantiation

14 Transforming Coroutining Logic Programs into Equivalent CHR Programs

of that element to the new argument. For instance, if an attack all constraint is sufficiently instantiated
for rewriting, its added fourth argument will be [g,g, [g|a]].

This mainly affects the rules (4) and (5), although it also requires trivial modifications in other rules,
as the arity of coroutining constraints increases everywhere and as the instantiation argument must be
kept consistent with the abstract analysis. In rule (5), the newly generated attack all is not sufficiently
instantiated. So the rule becomes:

lock, attack_all(D,E,[F|C],[g,g,[g|a]]) <=>

H is E + 1, attack(D,E,F), attack_all(D,E,C,[g,g,a]), lock.

In rule (4) the newly generated attack all is sufficiently instantiated. So the rule becomes:

draw(A,B,C), confused([D|C],[g|a]), lock <=> C = [E|F], A>0, G is A-1,

member(E,B), draw(G,B,F,[g,g,a]), attack_all(D,1,[E|F],[g,g,[g|a]]),

confused([E|F],[g|a]), lock.

However, in the abstract analysis we see that in the branches corresponding to this rule, all attack all/3
atoms that were not sufficiently instantiated become sufficiently instantiated. If a single specific con-
straint was modified, it could be rewritten directly. Due to the use of multi, however, the instantiation
information cannot be updated for all affected constraints directly. Therefore, we introduce a new con-
straint, rename/0, in the body of the rule, resulting in:

draw(A,B,C), confused([D|C],[g|a]), lock <=> C = [E|F], A>0, G is A-1,

member(E,B), draw(G,B,F,[g,g,a]), rename, attack_all(D,1,[E|F],[g,g,[g|a]]),

confused([E|F],[g|a]), lock.

In addition, we add the following rules for rename/0:

lock, rename, attack_all(A,B,C,[g,g,a]) <=>

attack_all(A,B,C,[g,g,[g|a]]), rename,lock.

lock, rename <=> lock.

This will transform all attack all/4 constraints labelled as insufficiently instantiated into constraints
labelled as sufficiently instantiated. The resulting program is in appendix.

This program correctly compiles the coroutine for any query in the concretization of cqueens(g1,a1).
More generally, the technique illustrated above can be proven to be sound and we have successfully
applied it to several well-known problems, notably the standard N-queens problem, the graph coloring
problem, the sieve of Eratosthenes and the sameleaves problem.

5 Conclusions

We have presented a new application of Compiling Control, which allows coroutining logic programs
to be compiled to concise CHR programs. One could argue that a Prolog program with delays of freeze
predicates is also a concise representation. However, the CHR rules explicitly describe the procedural
transitions, which are much harder to see in a Prolog program with delays.

The resulting CHR programs are slower than their Prolog counterparts — benchmarks are provided
in appendix — but they are far more readable: They express only the changes that take place between
two states in A , they do not require conjunctions to be renamed using meta-predicates, and they do not
require a concrete representation of the multi abstraction.

Vincent Nys & Danny De Schreye 15

The synthesized CHR programs also provide a new target for further program analysis. Our eventual
goal is to apply techniques such as termination analysis [15] or automatic complexity analysis [9] to the
resulting programs. As a final advantage, our syntheses can be ported to CHR implementations not based
on Prolog, such as JCHR or HaskellCHR, provided counterparts to built-in constraints are available.

References
[1] Maria Garcia de la Banda & Enrico Pontelli, editors (2008): Logic Programming, 24th International Confer-

ence, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings. Lecture Notes in Computer Science 5366,
Springer. Available at http://dx.doi.org/10.1007/978-3-540-89982-2.

[2] Maurice Bruynooghe (1991): A Practical Framework for the Abstract Interpretation of Logic Programs. The
Journal of Logic Programming 10(2), pp. 91–124.

[3] Maurice Bruynooghe, Danny De Schreye & Bruno Krekels (1986): Compiling Control. In: Proceedings of
the 1986 Symposium on Logic Programming, IEEE Society Press, Salt Lake City, pp. 70–77.

[4] Maurice Bruynooghe, Danny De Schreye & Bruno Krekels (1989): Compiling Control. The Journal of
Logic Programming 6(1&2), pp. 135–162. Available at http://dx.doi.org/10.1016/0743-1066(89)
90033-2.

[5] Danny De Schreye & Maurice Bruynooghe (1989): On the Transformation of Logic Programs with In-
stantiation Based Computation Rules. Journal of Symbolic Computation 7(2), pp. 125–154. Available at
http://dx.doi.org/10.1016/S0747-7171(89)80046-X.

[6] Danny De Schreye & Stefaan Decorte (1994): Termination of Logic Programs: The Never-Ending Story. The
Journal of Logic Programming 19/20, pp. 199–260.

[7] Danny De Schreye, Vincent Nys & Colin J. Nicholson (2014): Analysing and Compiling Coroutines with
Abstract Conjunctive Partial Deduction. In: Logic-Based Program Synthesis and Transformation - 24th
International Symposium, LOPSTR 2014, Canterbury, UK, September 9-11, 2014. Revised Selected Papers,
pp. 21–38.

[8] Thom W. Frühwirth (1998): Theory and Practice of Constraint Handling Rules. The Journal of Logic Pro-
gramming 37(1-3), pp. 95–138. Available at http://dx.doi.org/10.1016/S0743-1066(98)10005-5.

[9] Thom W. Frühwirth (2002): As Time Goes by: Automatic Complexity Analysis of Simplified Rules. In Di-
eter Fensel, Fausto Giunchiglia, Deborah L. McGuinness & Mary-Anne Williams, editors: Proceedings of
the Eights International Conference on Principles and Knowledge Representation and Reasoning (KR-02),
Toulouse, France, April 22-25, 2002, Morgan Kaufmann, pp. 547–557.

[10] John Gallagher & Maurice Bruynooghe (1990): Some low-level source transformations for logic programs.
Proceedings Meta 90, pp. 229–244.

[11] Michael Leuschel (2004): A Framework for the Integration of Partial Evaluation and Abstract Interpretation
of Logic Programs. ACM Transactions on Programming Languages and Systems 26(3), pp. 413–463.

[12] John Lloyd (1987): Foundations of Logic Programming. Berlin: Springer-Verlag.
[13] John W. Lloyd & John C Shepherdson (1991): Partial Evaluation in Logic Programming. The Journal of

Logic Programming 11(3), pp. 217–242.
[14] Vincent Nys & Danny De Schreye (2017): Abstract conjunctive partial deduction for the analysis and com-

pilation of coroutines. Formal Asp. Comput. 29(1), pp. 125–153. Available at http://dx.doi.org/10.
1007/s00165-016-0389-8.

[15] Paolo Pilozzi & Danny De Schreye (2008): Termination Analysis of CHR Revisited. In de la Banda & Pontelli
[1], pp. 501–515. Available at http://dx.doi.org/10.1007/978-3-540-89982-2_43.

[16] Tom Schrijvers (2008): Constraint Handling Rules. In de la Banda & Pontelli [1], pp. 9–10. Available at
http://dx.doi.org/10.1007/978-3-540-89982-2_3.

http://dx.doi.org/10.1007/978-3-540-89982-2
http://dx.doi.org/10.1016/0743-1066(89)90033-2
http://dx.doi.org/10.1016/0743-1066(89)90033-2
http://dx.doi.org/10.1016/S0747-7171(89)80046-X
http://dx.doi.org/10.1016/S0743-1066(98)10005-5
http://dx.doi.org/10.1007/s00165-016-0389-8
http://dx.doi.org/10.1007/s00165-016-0389-8
http://dx.doi.org/10.1007/978-3-540-89982-2_43
http://dx.doi.org/10.1007/978-3-540-89982-2_3

16 Transforming Coroutining Logic Programs into Equivalent CHR Programs

A Synthesized programs

Listing 6 CHR code for permutation sort, with guaranteed levels of instantiation

1 :- use_module(library(chr)).

2 :- chr_constraint permsort/3.

3 :- chr_constraint perm/3.

4 :- chr_constraint ord/2.

5 permsort([],X,[g,a]) <=> X = [].

6 permsort([A|B],Y,[g,a]) <=>

7 Y = [C|D],

8 select(C,[A|B],E),

9 perm(E,D,[g,a]),

10 ord([C|D],[g|a]).

11 perm([],D,[g,a]), ord([C|D],[g|a]) <=> D = [].

12 perm([F|G],D,[g,a]), ord([C|D],[g|a]) <=>

13 D = [H|I],

14 select(H,[F|G],J),

15 C =< H,

16 perm(J,I,[g,a]),

17 ord([H|I],[g|a]).

Listing 6 shows alternative code for permutation sort, as it would be generated by a fully automated
system. Listings 7 and 8 show a Prolog synthesis of the confused queens problem. Listing 9 shows a
CHR synthesis of the confused queens problem which triggers an instantiation error when the top-level
goal is more instantiated than what is assumed during the analysis. Finally, Listing 10 shows a CHR
synthesis of the confused queens problem which can deal with more instantiated top-level goals.

B Performance

Table 1 shows a performance comparison between the (SWI-)Prolog synthesis and the CHR synthesis
of permutation sort, both with optimization flags. For each list size from 1 to 20, we generated 10 lists
of random elements between 1 and 10 and computed the average time required to generate all solutions.
The fifth and sixth columns shows the relative increase in the number of inferences from the problem
size on the next line with respect to the problem size on the current line. Larger problem sizes could
not be analyzed on commodity hardware, but the data strongly suggest both syntheses have the same
(exponential) asymptotic complexity, with the CHR version being slower by a factor of less than 4. A
slowdown is to be expected, as CHR uses Prolog as a host language.

Table 2 shows a performance comparison between the syntheses of confused queens. Here, there is
no need to determine the average number of inferences, as the solutions depend solely on the number of
queens. The data suggest both syntheses have the same (exponential) asymptotic complexity, though the
Prolog ratio moves towards the asymptotic ratio slightly more quickly. To illustrate this, we have added
a column, rratio, which shows how the increase over the previous CHR reading relates to that over the
previous Prolog reading. This number seems to be moving towards 1.00. Because it goes down slowly,
however, the CHR synthesis has a much larger constant factor.

Vincent Nys & Danny De Schreye 17

list size Inferences (Prolog) inferences(CHR) CHR / Prolog ratio Prolog ratio CHR
1 21.30 57.50 2.70 1.13 2.75
2 24.00 158.00 6.58 2.11 2.66
3 50.60 420.80 8.32 2.18 2.11
4 110.20 889.80 8.07 2.42 2.28
5 266.20 2,032.30 7.63 2.45 2.27
6 652.00 4,604.70 7.06 2.57 2.40
7 1,676.60 11,032.40 6.58 2.45 2.28
8 4,112.40 25,124.80 6.11 3.01 2.91
9 12,380.20 73,165.20 5.91 2.85 2.74
10 35,319.60 200,775.20 5.68 3.94 4.02
11 139,226.20 806,299.20 5.79 1.62 1.42
12 225,767.60 1,145,682.60 5.07 2.74 2.61
13 618,544.20 2,985,476.80 4.83 3.33 3.31
14 2,057,996.00 9,875,311.00 4.80 4.77 5.05
15 9,818,654.20 49,859,217.20 5.08 2.75 2.55
16 27,045,593.20 127,279,040.20 4.71 1.92 1.79
17 51,887,553.80 228,101,140.80 4.40 3.79 3.73
18 196,899,172.00 850,395,879.00 4.32 1.26 1.17
19 247,625,162.20 992,932,189.20 4.01 4.08 4.02
20 1,010,709,846.00 3,996,547,817.00 3.95

Table 1: Performance comparison for permutation sort

C Abstract analysis of confused queens

Figures 8, 9 and 10 show the remaining abstract analysis trees for confused queens.

18 Transforming Coroutining Logic Programs into Equivalent CHR Programs

Queens Inferences (Prolog) Inferences (CHR) CHR/Prolog ratio Prolog ratio CHR rratio
5 15705 55057 3.51 1.80 12.41 6.90
10 28261 683233 24.18 4.00 4.79 1.20
15 113081 3275297 28.96 2.75 3.17 1.16
20 310581 10390703 33.46 2.22 2.51 1.13
25 690251 26037492 37.72 1.94 2.15 1.11
30 1337851 55953873 41.82 1.76 1.93 1.10
35 2355371 107889137 45.81 1.64 1.78 1.08
40 3861071 191885243 49.70 1.55 1.67 1.08
45 5989441 320557732 53.52 1.48 1.59 1.07
50 8891241 509377313 57.29 1.43 1.53 1.07
55 12733461 776950777 61.02 1.39 1.47 1.06
60 17699361 1145302583 64.71 1.36 1.43 1.06
65 23988431 1640155772 68.37 1.33 1.40 1.05
70 31816431 2291213553 72.01 1.30 1.37 1.05
75 41415351 3132440217 75.63 1.28 1.34 1.05
80 53033451 4202342723 79.24 1.26 1.32 1.05
85 66935221 5544251612 82.83 1.25 1.30 1.04
90 83401421 7206602593 86.41 1.23 1.28 1.04
95 102729041 9243217457 89.98 1.22 1.27 1.04
100 125231341 11713585663 93.54 1.21 1.25 1.04
105 151237811 14683145252 97.09 1.20 1.24 1.04
110 181094211 18223564433 100.63 1.19 1.23 1.04
115 215162531 22413022497 104.17 1.18 1.22 1.03
120 253821031 27336491403 107.70 1.17 1.21 1.03
125 297464201 33086016692 111.23 1.16 1.20 1.03
130 346502801 39760999073 114.75 1.16 1.19 1.03
135 401363821 47468475337 118.27 1.15 1.19 1.03
140 462490521 56323399943 121.78 1.15 1.18 1.03
145 530342391 66448925932 125.29 1.14 1.17 1.03
150 605408035 77976686518 128.80

Table 2: Performance comparison for confused queens

Vincent Nys & Danny De Schreye 19

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
multi(attack all(gi,g j, [g4|a1])),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),attack all(g10,g11, [g4|a1]),
multi(attack all(gi,g j, [g4|a1])),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
a2 is g11 +1,attack(g10,g11,g4),attack all(g10,a2,a1),

multi(attack all(gi,g j, [g4|a1])),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
attack(g10,g11,g4),attack all(g10,g12,a1),

multi(attack all(gi,g j, [g4|a1])),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
multi(attack all(gi,g j, [g4|a1])),confused([g4|a1])

generalize

a2 = g12

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
attack all(g10,g11, [g4|a1]),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),a2 is g11 +1,
attack(g10,g11,g4),attack all(g10,a2,a1),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
attack(g10,g11,g4),attack all(g10,g12,a1),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),
attack all(g10,g12,a1),confused([g4|a1])

draw(g1,g2,a1),multi(attack all(gk,gl,a1)),confused([g4|a1])

generalize

a2 = g12

case: one case: many

Figure 8: Fourth abstract tree in the analysis of cqueens(g1,a1).

D Concrete analysis of confused queens

Figures 11 through 16 show the concrete trees for the confused queens problem.

20 Transforming Coroutining Logic Programs into Equivalent CHR Programs

draw(g1,g2,a1),
multi(attack all(g20,g21,a1)),

confused([g4|a1])

g1 > 0,a5 is g1−1,member(a3,g2),
draw(a5,g2,a4),multi(attack all(g20,g21, [a3|a4])),

confused([g4,a3|a4])

a5 is g1−1,member(a3,g2),
draw(a5,g2,a4),multi(attack all(g20,g21, [a3|a4])),

confused([g4,a3|a4])

member(a3,g2),
draw(g5,g2,a4),multi(attack all(g20,g21, [a3|a4])),

confused([g4,a3|a4])

draw(g5,g2,a4),multi(attack all(g20,g21, [g6|a4])),
confused([g4,g6|a4])

draw(g5,g2,a4),multi(attack all(g20,g21, [g6|a4])),
attack all(g4,g7, [g6|a4]),confused([g6|a4])

draw(g5,g2,a4),
multi(attack all(g20,g21, [g6|a4])),

confused([g6|a4])

generalize

a3 = g6

a5 = g5

multi(attack all(g20,g21, [])),
confused([g4])

multi(attack all(g20,g21, []))

g1 = 0
a1 = [] a1 = [a3|a4]

Figure 9: Fifth abstract tree in the analysis of cqueens(g1,a1).

multi(attack all(g20,g21, []))

attack all(g20,g21, []),
multi(attack all(g30,g31, []))

multi(attack all(g30,g31, []))

attack all(g20,g21, [])

�

unfoldcase : one case: many

Figure 10: Sixth abstract tree in the analysis of cqueens(g1,a1).

Vincent Nys & Danny De Schreye 21

Listing 7 Prolog synthesis of confused queens, part 1

1 genlist(N,L) :- N >= 1, genlist_acc(N,[],L).

2 genlist_acc(N,Acc,L) :- N > 1, Nmin is N-1, genlist_acc(Nmin,[N|Acc],L).

3 genlist_acc(N,Acc,[1|Acc]) :- N is 1.

4

5 attack(A,_,A).

6 attack(A,Offset,B) :-

7 Diff is A - B,

8 abs(Diff,Offset).

9

10 queens(0,[]).

11 queens(A,[D|E]) :-

12 genlist(A,C),

13 A > 0,

14 F is A - 1,

15 member(D,C),

16 a(draw(F,C,E),confused([D|E])).

17

18 a(draw(0,_,[]),confused([_])).

19 a(draw(A,B,[E|F]),confused([D,E|F])) :-

20 A >= 0,

21 G is A - 1,

22 member(E,B),

23 b(draw(G,B,F),

24 multi([attack_all(D,1,[E|F])]),

25 confused([E|F])).

26

27 b(draw(A,B,C),multi([attack_all(D,E,[F|C])]),confused([F|C])) :-

28 H is E + 1,

29 attack(D,E,F),

30 c(draw(A,B,C),

31 multi([attack_all(D,H,C)]),

32 confused([F|C])).

33 b(draw(A,B,C),multi([attack_all(D,E,[F|C]),

34 attack_all(H,I,[F|C])|J]),confused([F|C])) :-

35 K is E + 1,

36 attack(D,E,F),

37 d(draw(A,B,C),multi([attack_all(D,K,C)]),

38 multi([attack_all(H,I,[F|C])|J]),confused([F|C])).

22 Transforming Coroutining Logic Programs into Equivalent CHR Programs

Listing 8 Prolog synthesis of confused queens, part 2

39 d(draw(A,B,C),multi([attack_all(D,E,C)|F]),

40 multi([attack_all(G,H,[I|C])]),confused([I|C])) :-

41 K is H + 1,

42 attack(G,H,I),

43 append([attack_all(D,E,C)|F],[attack_all(G,K,C)],

44 Appended),

45 c(draw(A,B,C),multi(Appended),confused([I|C])).

46 d(draw(A,B,C),multi([attack_all(D,E,C)|F]),

47 multi([attack_all(G,H,[I|C]),attack_all(K,L,[I|C])|M]),

48 confused([I|C])) :-

49 N is H + 1,

50 attack(G,H,I),

51 append([attack_all(D,E,C)|F],[attack_all(G,N,C)],

52 Appended),

53 d(draw(A,B,C),multi(Appended),

54 multi([attack_all(K,L,[I|C])|M]),confused([I|C])).

55

56 c(draw(0,B,[]),multi([attack_all(D,E,[])|F]),confused([G])) :-

57 e(multi([attack_all(D,E,[])|F]),confused([G])).

58 c(draw(A,B,[H|I]),multi([attack_all(D,E,[H|I])|F]),confused([G,H|I])) :-

59 A > 0,

60 J is A - 1,

61 member(H,B),

62 append([attack_all(D,E,[H|I])|F],

63 [attack_all(G,1,[H|I])],Appended),

64 b(draw(J,B,I),multi(Appended),confused([H|I])).

65

66 e(multi([attack_all(A,B,[])]),confused([Z])).

67 e(multi([attack_all(A,B,[]),

68 attack_all(C,D,[])|E]),confused([Z])) :-

69 e(multi([attack_all(C,D,[])|E]),confused([Z])).

Vincent Nys & Danny De Schreye 23

Listing 9 CHR code for confused queens, without encoding of instantiation

1 :- use_module(library(chr)).

2 :- chr_constraint cqueens/2, draw/3, confused/1, attack_all/3, lock/0.

3 genlist(N,L) :- N >= 1, genlist_acc(N,[],L).

4 genlist_acc(N,Acc,L) :- N > 1, Nmin is N-1, genlist_acc(Nmin,[N|Acc],L).

5 genlist_acc(N,Acc,[1|Acc]) :- N is 1.

6

7 attack(A,_,A).

8 attack(A,Offset,B) :- Diff is A - B, abs(Diff,Offset).

9

10 cqueens(0, B) <=> genlist(0,C), B = [].

11 cqueens(A, B) <=>

12 B = [E|F],

13 genlist(A,C),

14 A > 0,

15 D is A-1,

16 member(E,C),

17 draw(D,C,F),

18 confused([E|F]),

19 lock.

20

21 attack_all(A,Of,[B|C]), lock <=>

22 Of1 is Of + 1,

23 attack(A,Of,B),

24 attack_all(A, Of1, C), lock.

25 attack_all(X,Y,[]), lock <=> lock.

26

27 draw(0,B,C), confused([D|C]), lock <=> C = [], lock.

28 draw(A,B,C), confused([D|C]), lock <=>

29 C = [E|F],

30 A>0,

31 G is A-1,

32 member(E,B),

33 draw(G,B,F),

34 attack_all(D,1,[E|F]),

35 confused([E|F]),

36 lock.

37

38 lock <=> true.

24 Transforming Coroutining Logic Programs into Equivalent CHR Programs

Listing 10 CHR code for confused queens, with guaranteed levels of instantiation

1 :- use_module(library(chr)).

2 :- chr_constraint cqueens/3, draw/4, confused/2, attack_all/4, rename/0, lock/0.

3

4 genlist(N,L) :- N >= 1, genlist_acc(N,[],L).

5 genlist_acc(N,Acc,L) :- N > 1, Nmin is N-1, genlist_acc(Nmin,[N|Acc],L).

6 genlist_acc(N,Acc,[1|Acc]) :- N is 1.

7

8 attack(A,_,A).

9 attack(A,Offset,B) :- Diff is A - B, abs(Diff,Offset).

10

11 lock, rename, attack_all(A,B,C,[g,g,a]) <=> attack_all(A,B,C,[g,g,[g|a]]), rename, lock.

12 lock, rename <=> lock.

13

14 cqueens(0,B,[g,a]) <=> genlist(0,C), B = [].

15 cqueens(A,B,[g,a]) <=>

16 B = [E|F],

17 genlist(A,C),

18 A > 0,

19 D is A-1,

20 member(E,C),

21 draw(D,C,F,[g,g,a]),

22 confused([E|F],[g|a]),

23 lock.

24

25 attack_all(A,Of,[B|C],[g,g,[g|a]]), lock <=>

26 Of1 is Of + 1,

27 attack(A,Of,B),

28 attack_all(A,Of1,C,[g,g,a]), lock.

29 attack_all(X,Y,[],_), lock <=> lock.

30

31 draw(0,B,C,[g,g,a]), confused([D|C],[g|a]), lock <=> C = [], lock.

32 draw(A,B,C,[g,g,a]), confused([D|C],[g|a]), lock <=>

33 C = [E|F],

34 A>0,

35 G is A-1,

36 member(E,B),

37 draw(G,B,F,[g,g,a]),

38 rename,

39 attack_all(D,1,[E|F],[g,g,[g|a]]),

40 confused([E|F],[g|a]),

41 lock.

42

43 lock <=> true.

Vincent Nys & Danny De Schreye 25

cqueens(A,B)

genlist(A,C),draw(A,C,B),confused(B)

draw(A,C,B),confused(B)

A > 0,F is A−1,member(D,C),
draw(F,C,E),confused([D|E])

A : draw(F,C,E),confused([D|E])

confused([])

�

A = 0
B = [] B = [D|E]

Figure 11: Concrete tree corresponding to Figure 5.

A : draw(A,B,C),confused([D|C])

A≥ 0,G is A−1,member(E,B),draw(G,B,F),confused([D,E|F])

draw(G,B,F),confused([D,E|F])

draw(G,B,F),attack all(D,1, [E|F]),confused([E|F])

B : draw(G,B,F),multi([attack all(D,H, [E|F])|I]),confused([E|F])

generalize

confused([D])

�

A = 0C = [] C = [E|F]

Figure 12: Concrete tree corresponding to Figure 6.

B : draw(A,B,C),
multi([attack all(D,E, [F |C])|G]),

confused([F |C])

draw(A,B,C),attack all(D,E, [F |C]),
multi([attack all(H, I, [F |C])|J]),

confused([F |C])

draw(A,B,C),K is E +1,attack(D,E,F),
attack all(D,K,C),multi([attack all(H, I, [F |C])|J]),confused([F |C])

draw(A,B,C),attack all(D,K,C),
multi([attack all(H, I, [F |C])|J]),confused([F |C])

D : draw(A,B,C),multi([attack all(D,K,C)|L]),
multi([attack all(H, I, [F |C])|J]),confused([F |C])

generalize

draw(A,B,C),attack all(D,E, [F |C]),confused([F |C])

draw(A,B,C),H is E +1,attack(D,E,F),
attack all(D,H,C),confused([F |C])

draw(A,B,C),attack all(D,H,C),confused([F |C])

C : draw(A,B,C),multi([attack all(D,H,C)|I]),
confused([F |C])

generalize

G = [] G = [attack all(H, I, [F |C])|J]

Figure 13: Concrete tree corresponding to Figure 7.

26 Transforming Coroutining Logic Programs into Equivalent CHR Programs

D : draw(A,B,C),multi([attack all(D,E,C)|F]),
multi([attack all(G,H, [I|C])|J]),confused([I|C])

draw(A,B,C),multi([attack all(D,E,C)|F]),
attack all(G,H, [I|C]),multi([attack all(K,L, [I|C])|M]),

confused([I|C])

draw(A,B,C),multi([attack all(D,E,C)|F]),
N is H +1,attack(G,H, I),attack all(G,N,C),

multi([attack all([K,L, [I|C])|M]),confused([I|C])

D : draw(A,B,C),multi([attack all(D,E,C)|O]),
multi([attack all(K,L, [I|C])]),confused([I|C])

generalize

draw(A,B,C),multi([attack all(D,E,C)|F]),
attack all(G,H, [I|C]),confused([I|C])

draw(A,B,C),multi([attack all(D,E,C)|F]),K is H +1,
attack(G,H, I),attack all(G,K,C),confused([I|C])

draw(A,B,C),multi([attack all(D,E,C)|F]),
attack all(G,K,C),confused([I|C])

C : draw(A,B,C),multi([attack all(D,E,C)|L]),
confused([I|C])

generalize

J=[] J = [attack all(K,L, [I|C])|M]

Figure 14: Concrete tree corresponding to Figure 8.

C : draw(A,B,C),multi([attack all(D,E,C)|F]),
confused([G|C])

A > 0,J = A−1,member(H,B),
draw(J,B, I),multi([attack all(D,E, [H|I])|F]),confused([G,H|I])

draw(J,B, I),multi([attack all(D,E, [H|I])|F]),confused([G,H|I])

draw(J,B, I),multi([attack all(D,E, [H|I])|F]),
attack all(G,1, [H|I]),confused([H|I])

B : draw(J,B, I),multi([attack all(D,E, [H|I])|K]),
confused([H|I])

generalize

multi([attack all(D,E, [])|F]),
confused([G])

E : multi([attack all(D,E, [])|F])

C = []A = 0 C = [H|I]

Figure 15: Concrete tree corresponding to Figure 9.

E : multi([attack all(A,B, [])|D])

attack all(A,B, []),multi([attack all(F,G, [])|H]),
confused([E])

E : multi([attack all(F,G, [])|H]),confused([E])

attack all(A,B, [])

�

D = [] D = [attack all(F,G, [])|H]

Figure 16: Concrete tree corresponding to Figure 10.

	Introduction
	An initial example: permutation sort
	Incorporating the multi abstraction: confused queens
	A more refined synthesis
	Conclusions
	Synthesized programs
	Performance
	Abstract analysis of confused queens
	Concrete analysis of confused queens

