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Transformation-based program verification was a very important research topic in early years of
theory of programming. Great computer scientists contributed to these studies: John McCarthy,
Amir Pnueli, Donald Knuth ... Many fascinating examples were examined and resulted in recursion
elimination techniques known as tail-recursion and as co-recursion. In the present paper we examine
another (new we believe) example of recursion elimination via program manipulations and problem
analysis. The recursion pattern of the study example matches neither tail-recursion nor co-recursion
pattern.

1 Introduction

1.1 McCarthy 91 function

Let us start with a short story [7] about the McCarthy 91 function M :N→N, defined by John McCarthy1

as a test case for formal verification. The function is defined recursively as

M(n) =
{

n−10, if n > 100;
M(M(n+11)), if n≤ 100.

The result of evaluating the function are given by

M(n) =
{

n−10, if n > 101;
91, if n≤ 101.

(1)

The function was introduced in papers published by Zohar Manna, Amir Pnueli and John McCarthy
in 1970 [15, 16]. These papers represented early developments towards the application of formal methods
to program verification. The function has a “complex” recursion pattern (contrasted with simple patterns,
such as recurrence, tail-recursion or co-recursion).

Nevertheless the McCarthy 91 function can be computed by an iterative algorithm/program. Really,
let us consider an auxiliary recursive function Maux : N×N→ N

Maux(n,m) =


n, if m = 0;
Maux(n−10, m−1), if n > 100 and m > 0;
Maux(n+11, m+1), if n < 100 and m > 0.

1Maybe the only Turing Laureate that was employed in Soviet Academy of Sciences, namely — in Novosibirsk
Computing Center (http://ershov-arc.iis.nsk.su/archive/eaindex.asp?lang=1&did=20184&_ga=1.44945571.
687493938.1476117474, accessed April 14, 2014).
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Then M(n) = Maux(n,1) because of Maux(n,m) = Mm(n) for all m,n ∈ N (assuming that M0 = (λn ∈
N.n)). Since definition of Maux matches tail-recursion pattern then the McCarthy 91 function can be
computed by an iterative algorithm/program (and even by a very efficient iteration-free algorithm given
by the formula (1)). A formal derivation of an iterative version from the recursive one was given in [20]
in 1980 based on the use of continuations.

As the field of Formal Methods advanced, this example appeared repetitively in the research litera-
ture. In particular, it was viewed as a “challenge problem” for automated program verification. Donald
Knuth generalized the function to include additional parameters [11], formal proofs (using ACL2 theo-
rem prover) that Knuth’s generalized function is total can be found in [4, 5].

1.2 Dropping Bricks from a High Tower

We started with a short story about the McCarthy function because we would like to justify our interest
to study of the following Dropping Bricks Problem (DBP) [18, 19]. (A variant of the problem can be
found in [6]).

Figure 1: DBP

Let us characterize the mechanical stability (strength) of a brick by an
integer h that is equal to the height (in meters) safe for the brick to fall down,
while height (h+ 1) meters is unsafe (i.e. the brick breaks). You have to
determine the stability of bricks of a particular kind by dropping them from
different levels of a tower of H meters. (One may assume that mechanical
stability does not change after a safe fall.) How many times do you need to
drop bricks, if you have 2 bricks in the stock? What is the optimal number
(of droppings) in this case?

Basically, the question is how to compute the optimal number of drop-
pings GH , if the height of the tower is H and you have 2 bricks in the stock. Our purpose is to prove that
the problem is solved by the following simple formula

G(H) = argminn :
n× (n+1)

2
≥ H (2)

that can be implemented as a trivial non-recursive function (i.e. with iterative body) Giter(H : N):
1. var n : N;

2. n := 0;

3. while n×(n+1)
2 < H do n := n+1;

4. Giter := n.

With a purpose to get the above formula (2), let us start with a recursive solution for DBP. This
problem is an example of optimization problems. Any optimal method to define the mechanical stability
should start with some step (command) that prescribes to drop the first brick from some particular (but
optimal) level h. Hence the following equality holds for this particular level h:

GH = 1+max{(h−1),GH−h},

where (in the right-hand side)

1. 1+ corresponds to the first dropping,

2. (h−1) corresponds to the case when the first brick crashes after the first dropping (and we have to
drop the remaining second brick from the levels 1, 2, . . . (h−1) in a row),
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3. GH−h corresponds to the case when the first brick is safe after the first dropping (and we have to
define stability by dropping the pair of bricks from (H−h) levels in [(h+1) . . .H]),

4. ‘max’ corresponds to the worst in two cases above.

Since the particular value h is optimal, and optimality means minimality, the above equality trans-
forms to the following one:

GH = min
1≤h≤H

(1+max{(h−1),GH−h}) = 1+ min
1≤h≤H

max{(h−1),GH−h}.

Besides, we can add one obvious equality G0 = 0.
Remark that the sequence of integers G0, G1, ... GH , ... that meet these two equalities is unique since

G0 is defined explicitly, G1 is defined by G0, G2 is defined by G0 and G1, GH is defined by G0, G1, ...
GH−1. Hence it is possible to move from the sequence G0, G1, ... GH , ..., to a function G : N→ N that
maps every natural x to GH and satisfies the following functional equation for the objective function G:

G(x) = i f x = 0 then 0 else 1+ min
1≤h≤x

max{(h−1),G(x−h)}. (3)

This equation has a unique solution (it follows from the uniqueness of the sequence G0, G1, ... GH , ...).
Thus we prove the following proposition.

Proposition 1 Functional equation (3) has unique solution in NN.

Since the left-hand side of this equation has the most general pattern G(x), the equation can be adopted
as a recursive definition of a function, i.e. a recursive algorithm presented in a functional pseudo-code.

1.3 DBP from Dynamic Programming Perspective

Dynamic Programming was introduced by Richard Bellman in the 1950s [1] to tackle optimal planning
problems. In 1950s the noun programming had nothing in common with more recent computer pro-
gramming and meant planning (compare: linear programming). The adjective dynamic points out that
Dynamic Programming is related to a change of state (compare: dynamic logic, dynamic system). Bell-
man equation is a functional equality for the objective function that expresses the optimal solution at the
“current” state in terms of the optimal solution at next (changed) states. It formalizes a so-called Bellman
Principle of Optimality: an optimal program (or plan) remains optimal at every stage.

After analysis of Bellman equations for particular problems [3] several versions of a (recursive tem-
plate for/of) (descending) dynamic programming were suggested and examined [18, 19], in the present
paper we use the most recent and general one [19]:

G(x) = i f p(x) then f (x) else g
(

x,
{

hi
(
x,G(ti(x))

)
, i ∈ [1..n(x)]

})
. (4)

We consider the template as a recursive program scheme [9, 12, 17], i.e. a recursive control flow structure
with uninterpreted symbols:

• G is the main function symbol representing (after interpretation of ground function and predicate
symbols) the objective function G : X → Y for appropriate X and Y ;

• p is a ground predicate symbol representing (after interpretation) some known2 predicate p⊆ X ;

2 i.e. that we know how to compute
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• f is a ground function symbol representing (after interpretation) some known2 function f : X→Y ;

• g is a ground function symbol representing (after interpretation) some known2 function g : X ×
Z∗→ X for some appropriate Z (with a variable arity n(x) : X → N);

• all hi and ti (i ∈ [1..n(x)]) are ground function symbols representing (after interpretation) some
known2 function hi : X×Y → Z, ti : X → X (i ∈ [1..n(x)]).

In the sequel we do not make an explicit distinction in notation for symbols and interpreted symbols but
just verbal distinction by saying, for example, symbol g and function g.

Equation (3) for Dropping Bricks Problem is a particular example of functional equation that matches
the recursive template for descending dynamic programming (4). In this case we have:

• predicate λx.(x = 0) is interpretation for p,

• constant function λx.0 is interpretation for f ,

• identical function λx.x is interpretation for the arity n,

• for every i ∈ [1..n(x)], function λx.(x− i) is interpretation for ti,

• for every i ∈ [1..n(x)], function λ t.max{(i−1), t} is interpretation for hi,

• function λx.λw1 . . .λwn.(min1≤i≤x wi) is interpretation for g.

A natural question arises: is there a standard scheme [9, 12, 17] (i.e. a flowchart with uninterpreted
predicate and functional symbols instead of predicate and functions) that is functionally equivalent to the
recursive scheme (4)? Unfortunately, in general case the answer is negative according to the following
proposition proved by M.S. Paterson and C.T. Hewitt [12, 17].

Proposition 2 The following special case of the recursive template of descending dynamic programming

F(x) = i f p(x) then x else f (F(g(x)),F(h(x)))

is not equivalent to any standard program scheme (with fix-size static memory).

This proposition does not mean that dynamic memory (i.e. stack or heap) is always required; it just
says that for some interpretations of uninterpreted symbols p, f , g and h the size of required memory
depends on the input data. But if p, f , g and h are interpreted, it may happen that function F can be
computed by an iterative program without dynamic memory. For example, Fibonacci numbers

Fib(n) = i f (n = 0 or n = 1) then 1 else Fib(n−2)+Fib(n−1)

matches the pattern in the proposition 2, but just three integer variables suffice to compute Fibonacci
numbers by an iterative program.

Thus proposition 2 rules out an opportunity to construct an iterative solution for DBP by specializa-
tion [8, 10] of a standard program scheme, but does not prohibit existence of an iterative algorithm for
DBP that uses interpreted functions and predicates.

2 Iterative Algorithm for DBP

2.1 Informal Derivation of Iterative Algorithm

Let us start with a look at fig. 2 that depicts an initial part of the graph of G computed according to (3).
One can observe that G
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Figure 2: First values of G

• is a non-decreasing function

• has no jumps greater than 1.

Basically these properties follow from semantics of the function G as a solution for DBP but we do not
know how to prove them formally from the equation (3).

Then let us exercise recursive algorithm (3) manually and symbolically:

G(x) = 1 + min1≤h≤x max{(h−1), G(x−h)} =

= 1 + min
{

max{0, G(x−1)}, max{1, G(x−2)},
............................

max{(y−2), G(x− y−1)},
max{(y−1), G(x−y)},

max{(y, G(x− y+1)},
............................

max{(x−2), G(1)}, max{(x−1), G(0)}
}

where the line with bold font corresponds to the last value h ∈ [1..x] such that (h−1) ≤ G(x−h). Due
to the monotonicity property we have for this y

G(x) = 1+G(x−y). (5)

Due to monotonicity and jump properties we have

G(x−y) = (y−1) or G(x−y) = y;

let us accept the former option and rule out the late (but we can not prove why we may do it):

G(x−y) = (y−1). (6)

Now, for the technical convenience, let a be (x−y), b — (y−1); then x = (a+b+1) and (according
to (5) and (6))

G(a) = b =⇒ G(a+b+1) = (b+1). (7)

Together with equality G(0) = 0 it leads (by induction) to the following equality

G(
h=n

∑
h=1

h) = n. (8)
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2.2 Proving Optimality

Formula (8) leads to the following procedure Strength(Hight : N) to define mechanical strength of bricks
using 2 identical bricks (referred as the first and the second):

1. var n, step, Current, Next : N;

2. let n := argminn : n×(n+1)
2 ≥ H;

3. let step := n and Current := 0;

4. dropping the first brick:
while Current < Hight and step > 0 do

(a) let Next := min{Hight, (Current + step)}
and drop the first brick from the Next level;

(b) if the drop was unsafe (i.e. the first brick crashes)
then break the loop and go to 5 (dropping the second brick);

(c) let Current := Next and step := (step−1);

5. dropping the second brick:
let Current := (Current +1);

6. while Current < Next do

(a) drop the second brick from the Current level;
(b) if the drop was unsafe (i.e. the second brick crashes)

then break the loop and go to 7 (report the strength);
(c) let Current := (Current +1);

7. report the strength: (Current−1).

To explain the idea of the procedure Strength(H) (where H ∈ N), let us assume that the height the
tower H is exactly the sum of a decrising arithmetic progression n, (n−1), ... 2, 1. Then the procedure
divides the tower onto n layers of heights step1 = n, step2 = (n−1), ... step(n−1) = 2 and stepn = 1. (In
the left part of fig.3 one can see a tower of hight 10 divided on 4 layers of heights 4, 3, 2 and 1.)

The first loop in the procedure body drops the first brick in a sequence (while it is safe) from the (top
of) layers at levels n,

(
n+(n−1)

)
,
((

n+(n−1)
)
+(n−2)

)
, ... until it breaks after dropping from the

top of some layer k≥ 1 from the level
(
. . .
((

n+(n−1)
)
+(n−2)

)
. . .+(n− (k−1))

)
. (In particular,

k = 2 in the right part of fig.3.)
The second loop in the procedure body examines (using the second brick) one by one (while the

brick is safe) all levels

from 1+
(
. . .
((

n+(n−1)
)
+(n−2)

)
. . .+(n− (k−2))

)
to
(
. . .
((

n+(n−1)
)
+(n−2)

)
. . .+(n− (k−1))

)
−1

of the layer k ≥ 1 (from the top of which the first brick fell down and broke). (Two levels 5 and 6 in the
example in the right part of fig.3.)

The mechanical strength of the bricks is the last level from which the second brick was safely
dropped. (Level 5 in the example in fig.3.)
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Figure 3: The layers (left) and an exercise (right) of the procedure Strength for the tower of height 10
and two bricks (F and S) of mechanical strength 5

Optimality (i.e. minimality of droppings) of the procedure Strength can be proved by contradiction.
Really, let us assume in contrary that for some H ∈N another method gives better number m of droppings
in the worst case. Better number this time means that m < n = argminn : n×(n+1)

2 ≥ H. This method
also divide the tower on layers from top of which the first brick have to be dropped (according to the
method): assuming Level0 = 0,

• the top of the first layer is Level1 = Level0 +m1,

• the top of the second layer is Level2 = (Level1 +m2),

• ............................

• the top of the last layer is Levellast = Levellast−1 +mlast = H.

Then we have:

• last ≤ m, because the first brick can survive all m drops;

• m1 ≤ m, because the first brick can break after the first drop;

• m2 ≤ (m−1), because the first brick can break after the second drop;

• ............................

• mk ≤ (m− (k−1)), because the first brick can break after k-th drop, (1≤ k ≤ last);

• ............................

• mlast ≤ (m− (last−1)), because the first brick can break after the last its drop.

Hence we have:

H = m1 + m2 + . . . mlast ≤ m + (m−1) + . . . (m− (last−1)) ≤ ∑
k=m
k=1 k ≤ ∑

k=n
k=1 k;

at the same time (according to choice of n)

n = argminn :
n× (n+1)

2
≥ H;

it implies that m = n. — Contradiction with the assumption m < n. Thus we prove the following
proposition.
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Proposition 3 Procedure Stregth implements an optimal (in sense of number of droppings) method to
define mechanical strength of bricks using 2 bricks: for any given H ∈ N it defines mechanical strength
dropping bricks

argminn :
n× (n+1)

2
≥ H

times at most (and this upper bound is exact).

According to proposition 1, functional equation 3 has unique solution in NN that computes the opti-
mal number of droppings that is sufficient to define mechanical strength; according to proposition 3, this
number is given by formula 2. Thus we prove the following proposition.

Proposition 4 Functional equation (3)

G(x) = i f x = 0 then 0 else 1+ min
1≤h≤x

max{(h−1),G(x−h)}

has unique solution in NN given by

λx ∈ N. argminn :
n× (n+1)

2
≥ x.

3 On Iterative Dynamic Programming

3.1 Template with Associative Array

Let us consider a function G : X → Y that is defined by an interpreted recursive scheme (4) of Dynamic
Programming. Let us define two sets bas(v),spp(v)⊆ X :

• base bas(v) = i f p(v) then /0 else {ti(v) : i ∈ [1..n(v)]} ⊆ X comprises all values that are immedi-
atly needed to compute G(v);

• support spp(v) be the set of all values that appear in the call-tree of G(v).

Remark that bas(v) is always finite and support spp(v) is finite iff G is defined on v; the support may be
computed by the following recursive algorithm:

spp(x) = i f p(x) then {x} else {x}∪ (
⋃

y∈bas(x)

spp(y)). (9)

Some variants of template for iterative ascending dynamic programming were already suggested,
specified and verified in [19]. Let us suggest, specify and verify a new, more concise variant that we call
in this paper iterative template for/of (ascending) dynamic programming:

• Template Applicability Conditions TAC:

1. I is an interpretation for ground symbols in scheme (4);
2. n : X → N is arity function of interpreted g;
3. G : X → Y is the objective function, i.e. a solution of interpreted by I scheme (4);
4. t1, . . . : X → X are functions that computes the base;
5. spp : X → 2X is the support function for G;
6. NiX 6∈ X is the distinguishable indefinite value3 for X ;

3NiX — Non in X , similarly to Non a Number — NaN.
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• Template Pseudo-Code T PC:

1. VAR LUT : Y array o f spp(v);
2. LUT := array f illed by NiX ;
3. f or all u ∈ spp(v) do i f p(u) then LUT [u] := f (u);
4. while LUT [v] = NiX do

let u ∈ spp(v) be any element in spp(v)
such that LUT [u] = NiX and
LUT [ti(u)] 6= NiX f or all i ∈ [1..n(u)]

in LUT [u] := g
(

u,
{

hi
(
u,LUT [ti(u)]

)
, i ∈ [1..n(u)]

})
.

Remark, that the template is not a standard program scheme, but scheme augmented by associative
array LUT of values in Y indexed by values in spp(v).

Proposition 5 Assuming Template Applicability Conditions TAC the following holds for every v ∈ X:

1. if G(v) is defined then interpreted template T PC terminates after |spp(v)| iterations of both loops,
and LUT [v] = G(v) by termination;

2. if G(v) is not defined then interpreted template T PC never terminates.

The proof for all propositions 5 presented here are very easy and almost straightforward. The advantage
of T PC is the use of just one-time allocated associative array instead of a stack required to translate
general recursion.

3.2 Concluding Remarks

Use of arrays for efficient translation of recursive functions of integer argument was suggested first
(up to our knowledge) in [2]. In the cited paper this technique of recursion implementation is called
production mechanism. The essence of the production mechanism consists in support evaluation (that is
a set of integers), array declaration with the index range that subsumes the support, and fill-in this array
in bottom-up (i.e. ascending) manner by values of the recursive function.

Use of auxiliary array has been studied also in [14], and more broadly in [13]. These previous works
do not use template (like the recursive template (4) for dynamic programming) but can save space asymp-
totically over the proposed template. (For example, computing length of longest common subsequence
takes only linear space using the previous method, instead of quadratic space using the template.)

Nevertheless a novelty of our study consists in use of templates (understood as semi-interpreted pro-
gram schemata) and sematic properties that constraint interpretations where recursive programs matching
the template may be computed efficiently by iterative imperative programs (with an associative array).
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