
Etude on Recursion Elimination…

Nikolay Shilov
Innopolis University (Russia)

(a talk at workshop on Verification
&Program Transformation VPT-2017)

April 29, 2017 1
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

INTRODUCTION
AND MOTIVATION

Part o

April 29, 2017
N. Shilov: a talk for VPT-2017 workshop,

Uppsala
2

Puzzles named after Great People

• Recursive function M91 has the following
definition:

n-10, if n>100,

M91(M91(n+11)) otherwise.

• It was introduce by John McCarthy, studied by
him with Zohar Manna and Amir Pnueli, and
by Donald Knuth.

April 29, 2017
N. Shilov: a talk for VPT-2017 workshop,

Uppsala
3

M91 (n)=

On M91 function

• But this function can be computed using an
auxiliary function as M91(n)=Maux(n,1) where

 n, if m=0;

Maux(n, m) = Maux(n-10, m-1), if n>100, m>0;

 Maux(n+11, m+1), if n100, m>0.

April 29, 2017
N. Shilov: a talk for VPT-2017 workshop,

Uppsala
4

More on M91 function

• and even directly

n-10, if n>101,

91 otherwise.

April 29, 2017
N. Shilov: a talk for VPT-2017 workshop,

Uppsala
5

M91 (n)=

Dropping Bricks Problem

You have to define
stability of bricks by
dropping them from a
tower of H meters.
How many times do
you need to drop
bricks, if you have just
2 bricks?

April 29, 2017 6
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

BELLMAN EQUATION FROM
PROGRAM SCHEMATA PERSPECTIVE

Part I

April 29, 2017 7
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Descending (top-down)
Dynamic Programming

• General pattern of Bellman equation may be
formalised by the following scheme of
recursive descending Dynamic Programming:

G(x) = if p(x) then f(x)

else g(x, {hi(x, G(ti(x)), i[1..n])});

the term is linear in each branch
 w.r.t. the objective function G

April 29, 2017 8
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Descending (top-down)
Dynamic Programming (cont.)

• In this scheme

–G:XY is a symbol for the objective
function,

–p:XBool is a symbol for a known predicate,

– f:XY is a symbol for a known function,

April 29, 2017 9
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Descending (top-down)
Dynamic Programming (cont.)

– g:XZ*Y is a symbol for a known function
with a variable (but finite) number of
arguments,

– all hi:XYZ, i[1..n] are symbols for
known functions,

– all ti:XX, i[1..n] are symbols for known
functions too.

April 29, 2017 10
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Example 1:
Discrete Knapsack Problem

• Bellman equation specifies the maximal gross
price that is possible to collect:

• MaxP(W, n) = if n=0 then 0

else if Wn> W then MaxP(W, n-1)

else max{MaxP(W, n-1),

MaxP(W-Wn, n-1)+Pn}

April 29, 2017 11
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Example 1:
Discrete Knapsack Problem

• It does not make sense to convert this
functional program into imperative ascending
dynamic programming form because a
complexity to compute the support spp (the
set of all values used in recursion) has the
same complexity as computation of MaxP
itself.

April 29, 2017 12
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Example 2:
Integer Knapsack Problem

• But if it is known that knapsack capacity W
and weights of all goods are integers (natural
numbers) then it makes sense to use a trivial
upper approximation for the support

SPP(W, N) = [0..W][0..N].

April 29, 2017 13
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Example 3:
Dropping Bricks Problem

• In particular, in Dropping Bricks Problem:

G(H) = if H=0 then 0

else 1+min1≤h≤Hmax{(h-1),G(H-h)}.

It is p(x). It is f(x).

It is ti(x).

It is hi(x).

It is g(x, {hi(x, G(ti(x)), i[1..n])}).

April 29, 2017 14
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

More Examples:
Factorial and Fibonacci Numbers

• Fac(n) = if n = 0 then 1else n * Fac(n -1);

• Fib(n) = if n = 0 or n = 1 then 1

else Fib(n-2) + Fib(n-1).

April 29, 2017 15
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Observations

• Discrete Knapsack needs stack or queue in
dynamic memory,

• Integer Knapsack Problem needs array in
dynamic memory to be allocated just once,

• Factorial and Fibonacci Numbers just need
static memory of fixed size.

April 29, 2017 16
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

More Observations

• Surprisingly, but DBP also needs just static
memory of fix-size, since

G(H) = min {nN : n(n + 1)/2  H}.

April 29, 2017 17
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

DYNAMIC, STATIC
AND FIX-SIZE MEMORY

Part II

April 29, 2017
N. Shilov: a talk for VPT-2017 workshop,

Uppsala
18

Problem

• When

– stack/queue/associative array,

–one-time allocated array,

– fix-size static memory

Is needed/suffice to implement Bellman
equation?

April 29, 2017 19
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

A Need of Dynamic Memory

• It follows from

Paterson M.S., Hewitt C.T. Comparative
Schematology. Proc. of the ACM Conf. on
Concurrent Systems and Parallel Computation,
1970, p.119-127.

that static memory is not sufficient for general
case of Bellman equation.

April 29, 2017 20
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

A Need of Dynamic Memory

• The following program scheme

F(x) = if p(x) then x else f(F(g(x)), F(h(x)))

is not equivalent to any standard program
scheme :

for every n>0

there exists an interpretation Tn

where any standard program scheme

needs n variables to compute F.

April 29, 2017 21
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

A Need of Dynamic Memory
(proof)

Sample Tn:

• values are terms t as
shown to the right;

• p(t) is true, if t is a
binary tree of
height n.

f

f f

f f f f

gk(x) gk-1h ghk-1 hk(x)

April 29, 2017 22
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Support of the Objective Function

• If G(v) is defined for some argument value v,
then it is possible to pre-compute the support
spp(v) , the set of all argument values that
occur in the computation of G(v)):

spp(x) = if p(x) then {x}

else {x}  ( ybas(x)spp(y)).

• Remark, that for every argument value v, if G(v)
is defined, then spp(v) is finite.

April 29, 2017 23

N. Shilov: a talk for VPT-2017 workshop,
Uppsala

When one-time allocated array
suffice

• One-time allocated array suffice for
computing

G(x) = if p(x) then f(x)

else g(x, {hi(x, G(ti(x)), i[1..n])});

if all t1, t2, … tn are interpreted by
commutative functions.

April 29, 2017 24
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

When one-time allocated array
suffice…

• It makes sense when

D1(v) D2(v)… Dn(v) < complexity of spp(v)

where Di(v) = min { k : p(tk(v)) }.

• Example: Integer Knapsack Problem, DBP.

• Counter-example: general case Discrete
Knapsack Problem (since weights may be non-
commensurable).

April 29, 2017 25
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

When fix-size static memory suffice

• Fix-size static memory suffice for computing

G(x) = if p(x) then f(x)

else g(x, {hi(x, G(ti(x)), i[1..n])});

if n=const and all t1, t2, ... tn are interpreted so
that ti=t1

i for all i[1..n].

• Examples: Factorial and Fibonacci Numbers.

• Counter-example: Paterson-Hewitt scheme.

April 29, 2017 26
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

ANALYSIS OF
DROPPING BRICKS PUZZLE

Part III

April 29, 2017
N. Shilov: a talk for VPT-2017 workshop,

Uppsala
27

Question

• How to transform recursive program for DBP

G(H) = if H=0 then 0

else 1+min1≤h≤Hmax{(h-1),G(H-h)}

into iterative one?

April 29, 2017 28
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Towards a solution…

• G(H) = if H=0 then 0

else 1+min1≤h≤Hmax{(h-1),G(H-h)}.

Is a monotone function without jumps >1 (see
next slide). (But why?)

April 29, 2017 29
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

1 0,0 2 3 4 5 6 7 8

1

2

3

4

9

Towards a solution…

April 29, 2017 30
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Towards a solution…

G(x) = 1+

+ min { max{(1-1), G(x -1)},

………………………………………

max(y-1), G(x-y)}

…………………………………..

max{(x-1), G(x-x)} }

where element in bold is the last such that

(y-1)G(x-y).

April 29, 2017 31
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Towards a solution…

• Two possibilities for this y:

–G(x-y)=y,

–G(x-y)=(y-1).

• Let us consider the second option only. (Again,
why?).

• If to adopt a= x-y, and b= y-1 then we have

–G(a) = b,

–G(a + b + 1) = b + 1.

April 29, 2017 32
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Finally…

• G(0) = 0,

• G(1) = G(0+1) = 0+1 = 1,

• G(3)= G(1+(1+1)) = (1+1) = 2,

• G(6) = G(3+(2+1)) = (2+1) = 3,

• …………………………………………..

• G((n+1)+n+…+1) = G((n+…+1) + (n+1)) = (n=1);

• thus G(H) = min {nN : n(n + 1)/2  H}.

April 29, 2017 33
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

10

9

8

7

6

5

4

3

2

1

April 29, 2017 34
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

10

9

8

7

6

5

4

3

2

1

F

F

F

X

S

S

S

X

April 29, 2017 35
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

Further Questions

• How to

–make this program transformation formal?

– generalize this transformation technique?

April 29, 2017 36
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

(Friendly) Questions and Critics
Welcome!

• Questions?

• Comments?

• Suggestions?

• Refutations?

April 29, 2017 37
N. Shilov: a talk for VPT-2017 workshop,

Uppsala

