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Puzzles named after Great People 

• Recursive function M91 has the following 
definition: 

n-10, if n>100, 

M91(M91(n+11)) otherwise. 

• It was introduce by John McCarthy, studied by 
him with Zohar Manna and Amir Pnueli, and 
by Donald Knuth. 
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On M91 function 

• But this function can be computed using an 
auxiliary function as M91(n)=Maux(n,1) where 

                          n, if m=0; 

Maux(n, m) =    Maux(n-10, m-1), if n>100, m>0; 

                          Maux(n+11, m+1), if n100, m>0.  
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More on M91 function  

• and even directly 

n-10, if n>101, 

91 otherwise. 
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Dropping Bricks Problem 

You have to define 
stability of bricks by 
dropping them from a 
tower of H meters. 
How many times do 
you need to drop 
bricks, if you have just 
2 bricks? 
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BELLMAN EQUATION FROM 
PROGRAM SCHEMATA PERSPECTIVE 

Part I 
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Descending (top-down)  
Dynamic Programming 

• General pattern of Bellman equation may be 
formalised by the following scheme of 
recursive descending Dynamic Programming:  

G(x) = if p(x) then f(x)  

else g(x, {hi(x, G(ti(x)), i[1..n])}); 

the term is linear in each branch 
 w.r.t. the objective function G 
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Descending (top-down)  
Dynamic Programming (cont.) 

• In this scheme  

–G:XY is a symbol for the objective 
function,  

–p:XBool is a symbol for a known predicate,  

– f:XY is a symbol for a known function,  
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Descending (top-down)  
Dynamic Programming (cont.) 

– g:XZ*Y is a symbol for a known function 
with a variable (but finite) number of 
arguments, 

– all hi:XYZ, i[1..n] are symbols for 
known functions,  

– all ti:XX, i[1..n] are symbols for known 
functions too.  
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Example 1:  
Discrete Knapsack Problem 

• Bellman equation specifies the maximal gross 
price that is possible to collect: 

• MaxP(W, n) =  if n=0 then 0 

else if Wn> W then MaxP(W, n-1)  

else max{MaxP(W, n-1),  

MaxP(W-Wn, n-1)+Pn} 
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Example 1:  
Discrete Knapsack Problem 

• It does not make sense to convert this 
functional program into imperative ascending 
dynamic programming form because a 
complexity to compute the support spp (the 
set of all values used in recursion) has the 
same complexity as computation of MaxP 
itself. 
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Example 2:  
Integer Knapsack Problem 

• But if it is known that knapsack capacity W 
and  weights of all goods are integers (natural 
numbers) then it makes sense to use a trivial 
upper approximation for the support 

SPP(W, N) = [0..W][0..N].  
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Example 3:  
Dropping Bricks Problem 

• In particular, in Dropping Bricks Problem:  

G(H) = if H=0 then 0  

 

else 1+min1≤h≤Hmax{(h-1),G(H-h)}. 

It is p(x). It is f(x). 

It is ti(x). 

It is hi(x). 

It is  g(x, {hi(x, G(ti(x)), i[1..n])}). 

April 29, 2017 14 
N. Shilov: a talk for VPT-2017 workshop, 

Uppsala 



More Examples:  
Factorial and Fibonacci Numbers  

• Fac(n) = if n = 0 then 1else n * Fac(n -1); 

• Fib(n) = if n = 0 or n = 1 then 1  

else Fib(n-2) + Fib(n-1). 
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Observations 

• Discrete Knapsack needs stack or  queue in 
dynamic memory, 

• Integer Knapsack Problem needs array in 
dynamic memory to be allocated just once, 

• Factorial and Fibonacci Numbers just need 
static memory of fixed size. 
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More Observations 

• Surprisingly, but DBP also needs just static 
memory of fix-size, since 

G(H) = min {nN : n(n + 1)/2   H}. 
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DYNAMIC, STATIC  
AND FIX-SIZE MEMORY 

Part II 
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Problem 

• When 

– stack/queue/associative array, 

–one-time allocated array, 

– fix-size static memory 

Is needed/suffice to implement Bellman 
equation? 
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A Need of Dynamic Memory 

• It follows from  

Paterson M.S., Hewitt C.T. Comparative 
Schematology. Proc. of the ACM Conf. on 
Concurrent Systems and Parallel Computation, 
1970, p.119-127. 

that static memory is not sufficient for general 
case of Bellman equation. 
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A Need of Dynamic Memory 

• The following program scheme 

F(x) = if p(x) then x else f(F(g(x)), F(h(x))) 

is not equivalent to any standard program 
scheme : 

for every n>0  

there exists an interpretation Tn 

where any standard program scheme  

needs n variables to compute F. 
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A Need of Dynamic Memory 
(proof) 

Sample Tn: 

• values are terms t as 
shown to the right; 

• p(t) is true, if t is a 
binary tree of    
height n. 

f 

f f 

f f f f 

gk(x) gk-1h ghk-1 hk(x) 
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Support of the Objective Function  

• If G(v) is defined for some argument value v, 
then it is possible to pre-compute the support 
spp(v) , the set of all argument values that 
occur in the computation of G(v)): 

spp(x) = if p(x) then {x}  

else {x}  ( ybas(x)spp(y)). 

• Remark, that for every argument value v, if G(v) 
is defined, then spp(v) is finite. 
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When one-time allocated array 
suffice 

• One-time allocated array suffice for 
computing  

G(x) = if p(x) then f(x)  

else g(x, {hi(x, G(ti(x)), i[1..n])}); 

if all t1, t2, … tn  are interpreted by 
commutative functions. 
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When one-time allocated array 
suffice… 

• It makes sense when  

D1(v) D2(v)… Dn(v) < complexity of spp(v) 

where Di(v) = min { k : p(tk(v)) }. 

• Example: Integer Knapsack Problem, DBP. 

• Counter-example: general case Discrete 
Knapsack Problem (since weights may be non-
commensurable). 
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When fix-size static memory suffice 

• Fix-size static memory suffice for computing  

G(x) = if p(x) then f(x)  

else g(x, {hi(x, G(ti(x)), i[1..n])}); 

if n=const and all t1, t2, ... tn are interpreted so 
that ti=t1

i for all i[1..n]. 

• Examples: Factorial and Fibonacci Numbers. 

• Counter-example: Paterson-Hewitt scheme.  

 

April 29, 2017 26 
N. Shilov: a talk for VPT-2017 workshop, 

Uppsala 



ANALYSIS OF  
DROPPING BRICKS PUZZLE 

Part III 
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Question 

• How to transform recursive program for DBP 

G(H) = if H=0 then 0  

else 1+min1≤h≤Hmax{(h-1),G(H-h)} 

into iterative one? 
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Towards a solution… 

• G(H) = if H=0 then 0  

else 1+min1≤h≤Hmax{(h-1),G(H-h)}. 

Is a monotone function without jumps >1 (see 
next slide). (But why?) 
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Towards a solution… 

G(x) = 1+ 

+ min { max{(1-1), G(x -1)},   

……………………………………… 

max(y-1), G(x-y)}  

………………………………….. 

max{(x-1), G(x-x)} } 

where element in bold is the last such that  

(y-1)G(x-y).  
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Towards a solution… 

• Two possibilities for this y: 

–G(x-y)=y, 

–G(x-y)=(y-1). 

• Let us consider the second option only. (Again, 
why?). 

• If to adopt a= x-y, and b= y-1 then we have 

–G(a) = b, 

–G(a + b + 1) = b + 1. 
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Finally… 

• G(0) = 0, 

• G(1) = G(0+1) = 0+1 = 1, 

• G(3)= G(1+(1+1)) = (1+1) = 2, 

• G(6) = G(3+(2+1)) = (2+1) = 3, 

• ………………………………………….. 

• G((n+1)+n+…+1) = G((n+…+1) + (n+1)) = (n=1); 

• thus G(H) = min {nN : n(n + 1)/2   H}.  
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Further Questions 

• How  to 

–make this program transformation formal? 

– generalize this transformation technique? 
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(Friendly) Questions and Critics 
Welcome! 

• Questions? 

• Comments? 

• Suggestions? 

• Refutations? 
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