Etude on Recursion Elimination...

Nikolay Shilov
Innopolis University (Russia)

(a talk at workshop on Verification
&Program Transformation VPT-2017)

N. Shilov: a talk for VPT-2017 workshop,

April 29, 2017 Uppsala

INTRODUCTION
AND MOTIVATION

Puzzles named after Great People

* Recursive function My, has the following

definition:
M. (1) {n-lo, if n>100,
n =
o1 M,,(M,,(n+11)) otherwise.

* |t was introduce by John McCarthy, studied by
nim with Zohar Manna and Amir Pnueli, and
oy Donald Knuth.

On My, function

* But this function can be computed using an
auxiliary function as Mg, (n)=M,_,(n,1) where

aux
" n, if m=0;
(n-10, m-1), if n>100, m>0;

(n+11, m+1), if n<100, m>0.

(n,m)=1 M

aux aux

aux

More on Mg, function

e and even directly
n-10, if n>101,
My, (n)=]
91 otherwise.

Dropping Bricks Problem

You have to define
stability of bricks by
dropping them from a
tower of H meters.
How many times do
you need to drop

bricks, if you have just
2 bricks?

N. Shilov: a talk for VPT-2017 workshop,

i 201
April 29, 2017 Uppsala

BELLMAN EQUATION FROM
PROGRAM SCHEMATA PERSPECTIVE

Descending (top-down)
Dynamic Programming

* General pattern of Bellman equation may be
formalised by the following scheme of
recursive descending Dynamic Programming:

G(x) = if p(x) then f(x)
else\g(x, {hi(x, G(t.(x)), ie[l..n])})};
|

the term is linear in each branch
w.r.t. the objective function G

Descending (top-down)
Dynamic Programming (cont.)

* |n this scheme

—G:X—>Y is a symbol for the objective
function,

—p:X—>Bool is a symbol for a known predicate,
—f:X—>Y is a symbol for a known function,

Descending (top-down)
Dynamic Programming (cont.)

—g:XxZ*—>Y is a symbol for a known function
with a variable (but finite) number of
arguments,

—all h;:XxY—Z, i€[1..n] are symbols for
known functions,

—all t:X—X, i€[1..n] are symbols for known
functions too.

Example 1:
Discrete Knapsack Problem

* Bellman equation specifies the maximal gross
price that is possible to collect:

e MaxP(W, n) = if n=0then O
else if W > W then MaxP(W, n-1)
else max{MaxP(W, n-1),
MaxP(W-W , n-1)+P }

Example 1:
Discrete Knapsack Problem

* |t does not make sense to convert this
functional program into imperative ascending
dynamic programming form because a
complexity to compute the support spp (the
set of all values used in recursion) has the
same complexity as computation of MaxP
itself.

Example 2:
Integer Knapsack Problem

e Butifitis known that knapsack capacity W
and weights of all goods are integers (natural
numbers) then it makes sense to use a trivial
upper approximation for the support

SPP(W, N) = [0..W]x[0..N].

Example 3:
Dropping Bricks Problem

* |n particular, in Dropping Bricks Problem:

G(H) = if H=0 then O

ltisp(x). Itisf(x). It is hi(x).

else 1+minlshsk/'max{(h-l),G(H-h)\}.

\ It is t,(x). /

Itis g(x, {hi(x, G(t.(x)), ie[1..n])}).

More Examples:
Factorial and Fibonacci Numbers
* Fac(n) =if n =0 then lelse n * Fac(n -1);
* Fib(n)=ifn=0orn=1then1
else Fib(n-2) + Fib(n-1).

Observations

* Discrete Knapsack needs stack or queue in
dynamic memory,

* Integer Knapsack Problem needs array in
dynamic memory to be allocated just once,

* Factorial and Fibonacci Numbers just need
static memory of fixed size.

More Observations

* Surprisingly, but DBP also needs just static
memory of fix-size, since

G(H) = min {neN : nx(n +1)/2 > H}.

DYNAMIC, STATIC
AND FIX-SIZE MEMORY

Problem

When

—stack/queue/associative array,
—one-time allocated array,
—fix-size static memory

Is needed/suffice to implement Bellman
equation?

A Need of Dynamic Memory

e |t follows from

Paterson M.S., Hewitt C.T. Comparative
Schematology. Proc. of the ACM Conf. on
Concurrent Systems and Parallel Computation,
1970, p.119-127.

that static memory is not sufficient for general
case of Bellman equation.

A Need of Dynamic Memory

* The following program scheme
F(x) = if p(x) then x else f(F(g(x)), F(h(x)))
is not equivalent to any standard program
scheme :
for every n>0
there exists an interpretation T,
where any standard program scheme
needs n variables to compute F.

A Need of Dynamic Memory

(proof)
Sample T.:

* values are terms t as
shown to the right;

e p(t)istrue,iftisa
binary tree of
height n.

April 29, 2017 N. Shilov: a talk for VPT-2017 workshop,
Uppsala

22

Support of the Objective Function

e |f G(v) is defined for some argument value v,
then it is possible to pre-compute the support
spp(v) , the set of all argument values that
occur in the computation of G(v)):

spp(x) = if p(x) then {x}
else {x} U (U, _pasSPRY)).

* Remark, that for every argument value v, if G(v)
is defined, then spp(v) is finite.

When one-time allocated array
suffice
* One-time allocated array suffice for
computing
G(x) = if p(x) then f(x)
else g(x, {hi(x, G(t.(x)), ie[1..n])});

ifallt,, t,, ... t, are interpreted by
commutative functions.

When one-time allocated array
suffice...

* |t makes sense when
D,(v)x D,(v)x... D, (v)x < complexity of spp(v)
where D,(v) = min { k : p(t*(v)) }.
 Example: Integer Knapsack Problem, DBP.

* Counter-example: general case Discrete
Knapsack Problem (since weights may be non-
commensurable).

When fix-size static memory suffice

* Fix-size static memory suffice for computing
G(x) = if p(x) then f(x)
else g(x, {h(x, G(t,(x)), ie[1..n])});

if n=const and all t,, t,, ... t, are interpreted so
that t=t,' for allie[1..n].

 Examples: Factorial and Fibonacci Numbers.
* Counter-example: Paterson-Hewitt scheme.

ANALYSIS OF
DROPPING BRICKS PUZZLE

Question

* How to transform recursive program for DBP
G(H) =if H=0 then O
else 1+min,_, . ,max{(h-1),G(H-h)}

into iterative one?

Towards a solution...

e G(H) =if H=0then O
else 1+min,_,,max{(h-1),G(H-h)}.

Is @ monotone function without jumps >1 (see
next slide). (But why?)

Towards a solution...

April 29, 2017

N. Shilov: a talk for VPT-2017 workshop,
Uppsala

30

Towards a solution...

G(x) = 1+
+ min { max{(1-1), G(x -1)},

max(y-1), G(x-y)}
max{(x-1), G(x-x)} }
where element in bold is the last such that
(y-1)<G(x-y).

Towards a solution...

* Two possibilities for this y:
—G(X'y)zy,
—G(x-y)=(y-1).

e Let us consider the second option only. (Again,
why?).

* |f to adopt a= x-y, and b=y-1 then we have
—G(a) = Db,
—G(a+b+1)=b+1.

Finally...

* G(0) =0,

e G(1)=G(0+1)=0+1=1,

* G(3)=G(1+(1+1)) =(1+1) = 2,

* G(6) = G(3+(2+1)) = (2+1) = 3,

* G((n+1)+n+...+1) = G((n+...4+1) + (n+1)) = (n=1);
* thus G(H) = min{neN : nx(n+1)/2 > H}.

10

RN W PO | O] O

April 29, 2017

N. Shilov: a talk for VPT-2017 workshop,
Uppsala

34

X

10

S

RN W PO | O] O

April 29, 2017

N. Shilov: a talk for VPT-2017 workshop,

Uppsala

35

Further Questions

* How to
— make this program transformation formal?
—generalize this transformation technique?

(Friendly) Questions and Critics
Welcome!

* Questions?
* Comments?
e Suggestions?
e Refutations?

