
1
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Towards Evaluating Size Reduction Techniques
for Software Model Checking

Gyula Sallai1, Ákos Hajdu1,2, Tamás Tóth1, Zoltán Micskei1

1Department of Measurement and Information Systems,
Budapest University of Technology and Economics

2MTA-BME Lendület Cyber-Physical Systems Research Group,
Budapest, Hungary

VPT 2017, Uppsala, Sweden, 29.04.2017.

2

Introduction

3

Software model checking

 Proving correctness formally

o Problem: state space explosion

Formal model (CFA) Formalized property

Ok Counterexample

Model checker

We focus on
assertionsSource code

4

Motivation

 Integrated, configurable workflow

o From source code to verification results

o Enhanced by size reduction techniques

• Compiler techniques

• Slicing

o Supported by a verification framework

• Based on abstraction and CEGAR

• Highly configurable

 Evaluation

o Impact of size reduction on verification
 ×

5

Workflow

6

Workflow – Overview

Parsing Size reduction Verification

C code Control
Flow
Graph

Control
Flow
Automata

Refinement

7

Size reduction techniques

 Compiler optimizations

o Constant folding and propagation

o Dead branch elimination

o Function inlining

int x = 5 * 2;
int y = x + 2;

int x = 10;
int y = 12;

int add(int x, int y) { return x + y; }

x = add(y, z); x = y + z;

x = false;
if (x) {

...
}

x = false;

8

Size reduction techniques

 Program slicing

o Slice: subprogram that produces the same output and
assigns the same values to a set of variables

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3: x = x + i;
4: i = i + 1;

}
5: assert(i != 0);

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3: x = x + i;
4: i = i + 1;

}
5: assert(i != 0);

Criterion: value of i at statement 5

9

Size reduction techniques

 Backward slicing
o Retain all instructions crucial to criterion

• Data flow and control dependencies

o Accurate slices

 Thin slicing
o Retain data flow dependency only

• Replace control dependencies with abstract predicates

o Spurious counterexample  refinement of slice

 Value slicing
o Middle ground between backward and thin

• Retain variables determining control criterions

10

Size reduction techniques

int u = 0;
int t = 0;
int x = 0;
while (t < 1000) {
int s = nondet();
int y;
if (s == 1) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

int u = 0;
int t = 0;
int x = 0;
while (t < 1000) {
int s = nondet();
int y;
if (s == 1) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

int u = 0;
int t = 0;
int x = 0;
while (φ1) {
int s = nondet();
int y;
if (φ2) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

int u = 0;
int t = 0;
int x = 0;
while (φ1) {
int s = nondet();
int y;
if (s == 1) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

Original Backward Thin Value

11

Verification

 CEGAR

o Counterexample-Guided Abstraction Refinement

o Configurable framework

Abstractor Refiner

Model, property
Initial precision Abstract

counterexample

Refined precision

Ok Counterexample

Domain
Exploration strategy

Refinement strategy

12

Evaluation

13

Objects

 Models: SV-COMP examples

o Locks: locking mechanisms

• 100-150 LOC, many smaller slices

o ECA: event-driven systems

• 500-600 LOC, one slice

o SSH-simplified: server-client systems

• 500-600 LOC, one slice

 Requirement: reachability of assertion violation

14

Environment

 Algorithms

o Slicing: None / Backward / Value / Thin

o Compiler optimizations: True / False

o Domain: Predicate abstraction

o Refinement: Sequence interpolation

o Exploration strategy: BFS / DFS

 A configuration

o Slicing + optimizations + exploration strategy

o E.g.: BTD  Backward, True, DFS

15

Results

 Initial CFA size with different slicing / optimization configurations

Optimizations
do not give

large reductions

Backward
slicing may yield
large reductions

Thin and value
slicing allow
even more
reductions

16

Results

 Effect of slice refinement: initial and final CFA size

No refinement
is needed

Final CFA size increases
due to refinements

17

Results

 Verification time – locks (ms)

Easy with
any kind
of slicing

Infeasible or
hard without

slicing
BFS fails

sometimes

18

Results

 Verification time – ECA/SSH (ms)
Diverse results:

supports the need
for a configurable

framework

Verified by a single
configuration

19

Results

 Comparison of verification and optimization time

Optimization time
is negligible for
larger programs

Backward slicing is
quick, thin and value
requires more time

20

Conclusions

21

Conclusions

 Workflow for software verification

o Enhanced by size reduction techniques

o Supported by a configurable
verification framework

 Experimental evaluation

o Different configurations are more
suitable for different tasks

 Future work

o Extend supported elements of C

o Interprocedural slicing

o LLVM support

Parsing

Size reduction

Verification

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3: x = x + i;
4: i = i + 1;

}
5: assert(i != 0);

hajdua@mit.bme.hu
inf.mit.bme.hu/en/members/hajdua

