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Introduction



3

Software model checking

 Proving correctness formally

o Problem: state space explosion

Formal model (CFA) Formalized property

Ok Counterexample

Model checker

We focus on 
assertionsSource code
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Motivation

 Integrated, configurable workflow

o From source code to verification results

o Enhanced by size reduction techniques

• Compiler techniques

• Slicing

o Supported by a verification framework

• Based on abstraction and CEGAR

• Highly configurable

 Evaluation

o Impact of size reduction on verification
 ×
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Workflow
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Workflow – Overview

Parsing Size reduction Verification

C code Control
Flow
Graph

Control
Flow
Automata

Refinement
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Size reduction techniques

 Compiler optimizations

o Constant folding and propagation

o Dead branch elimination

o Function inlining

int x = 5 * 2;
int y = x + 2;

int x = 10;
int y = 12;

int add(int x, int y) { return x + y; }

x = add(y, z); x = y + z;

x = false;
if (x) {

...
}

x = false;
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Size reduction techniques

 Program slicing

o Slice: subprogram that produces the same output and 
assigns the same values to a set of variables

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3:   x = x + i;
4:   i = i + 1;

}
5: assert(i != 0);

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3:   x = x + i;
4:   i = i + 1;

}
5: assert(i != 0);

Criterion: value of i at statement 5
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Size reduction techniques

 Backward slicing
o Retain all instructions crucial to criterion

• Data flow and control dependencies

o Accurate slices

 Thin slicing
o Retain data flow dependency only

• Replace control dependencies with abstract predicates

o Spurious counterexample  refinement of slice

 Value slicing
o Middle ground between backward and thin

• Retain variables determining control criterions
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Size reduction techniques

int u = 0;
int t = 0;
int x = 0;
while (t < 1000) {
int s = nondet();
int y;
if (s == 1) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

int u = 0;
int t = 0;
int x = 0;
while (t < 1000) {
int s = nondet();
int y;
if (s == 1) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

int u = 0;
int t = 0;
int x = 0;
while (φ1) {
int s = nondet();
int y;
if (φ2) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

int u = 0;
int t = 0;
int x = 0;
while (φ1) {
int s = nondet();
int y;
if (s == 1) {
y = x * 2;

} else {
y = x - 1;

}
assert(y != 0);
x = x + y;
t = t + 1;
u = u + t;

}
printf("u=%d", u);

Original Backward Thin Value
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Verification

 CEGAR

o Counterexample-Guided Abstraction Refinement

o Configurable framework

Abstractor Refiner

Model, property
Initial precision Abstract

counterexample

Refined precision

Ok Counterexample

Domain
Exploration strategy

Refinement strategy
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Evaluation
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Objects

 Models: SV-COMP examples

o Locks: locking mechanisms

• 100-150 LOC, many smaller slices

o ECA: event-driven systems

• 500-600 LOC, one slice

o SSH-simplified: server-client systems

• 500-600 LOC, one slice

 Requirement: reachability of assertion violation
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Environment

 Algorithms

o Slicing: None / Backward / Value / Thin

o Compiler optimizations: True / False

o Domain: Predicate abstraction

o Refinement: Sequence interpolation

o Exploration strategy: BFS / DFS

 A configuration

o Slicing + optimizations + exploration strategy

o E.g.: BTD  Backward, True, DFS
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Results

 Initial CFA size with different slicing / optimization configurations

Optimizations 
do not give 

large reductions

Backward 
slicing may yield 
large reductions

Thin and value 
slicing allow 
even more 
reductions
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Results

 Effect of slice refinement: initial and final CFA size

No refinement 
is needed

Final CFA size increases 
due to refinements
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Results

 Verification time – locks (ms)

Easy with 
any kind 
of slicing

Infeasible or 
hard without 

slicing
BFS fails 

sometimes
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Results

 Verification time – ECA/SSH (ms)
Diverse results: 

supports the need 
for a configurable 

framework

Verified by a single 
configuration
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Results

 Comparison of verification and optimization time

Optimization time 
is negligible for 
larger programs

Backward slicing is 
quick, thin and value 
requires more time
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Conclusions
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Conclusions

 Workflow for software verification

o Enhanced by size reduction techniques

o Supported by a configurable
verification framework

 Experimental evaluation

o Different configurations are more
suitable for different tasks

 Future work

o Extend supported elements of C

o Interprocedural slicing

o LLVM support

Parsing

Size reduction

Verification

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3:   x = x + i;
4:   i = i + 1;

}
5: assert(i != 0);

hajdua@mit.bme.hu
inf.mit.bme.hu/en/members/hajdua


