Verifying Programs via Intermediate Interpretation

A. P Lisitsa' A. P. Nemytykh?

"Department of Computer Science
The University of Liverpool

2Program Systems Institute
Russian Academy of Sciences

Workshop on Verification and Program Transformation
Uppsala, 2017

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 1/46



The Verification Problem

Given:
v a partial predicate p defined in a functional language:

p : D — {True, False, .},

i.e., pterminates for any d € D, but may fall into an abnormal
deadlock state L;

A an input subset Init C D.

Does there exist ay € Init such that p(dyp) returns/reaches False? J

That is a (un)reachability problem.

v~ This study focuses on capabilities of automatic recognizing the
safety properties by the unfold-fold program transformation.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 2/46



The Main Observation

Given: a computing system S, a safety property ¢(-) of S
v f(n, X) produces n-th state of S, o is a state of S.

p(o) returns False iff (o) does not hold;
p(o) = True otherwise

A Since p(-) and f(-, -) terminate,
if vn.(N > n> 0) VX € Init = p(f(n, X)) does not return False,
then S is safe whenever it starts from Init. )

v~ This study focuses on capabilities of automatic recognizing such
(un)reachability properties by the unfold-fold program
transformation methods via intermediate interpretation.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 3/46



The Aim

v We explore potential capabilities of an unfold-fold program
specialization method called Turchin’s supercompilation, for
verifying the safety properties of the functional programs modeling
a class of complicated computing systems.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 4/46



The Main Idea / LN 2007

Use supercompilation aiming at moving the safety property hidden in
the program semantics to a simple syntactic property of the residual
program:

@ this syntactic property should be easily recognized;

@ hope the corresponding residual programs will include no operator
“return False;”

v

f(n, X) produces n-th state of a computing system S, +(-) is its safety
property over Init C D: Init > 01 — 02 — ... = 0op

False iff y)(op) does not hold, whenever
p(f(n, X)) returns S starts from Init;
True otherwise

v

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 5/46



The Main Idea / LN 2007

Use supercompilation aiming at moving the safety property hidden in
the program semantics to a simple syntactic property of the residual
program:

@ this syntactic property should be easily recognized;

@ hope the corresponding residual programs will include no operator
“return False;”

v

f(n, X) produces n-th state of a computing system S, v (-) is its safety
property over Init CD: Init> 01 =02 — ... = 0op

Pres(n, X) returns starts from Tt

True otherwise

v

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 6/46



A Class of Non-Deterministic Parameterized Cache Coherence Protocols

Synapse N+1, MSI, MOSI, MESI, MOESI, lllinois University, Berkley
RISC, DEC Firefly, IEEE Futurebus+, Xerox PARC Dragon

Various methods for verification have been tried on the benchmark:
@ J.Esparza, A. Finkel, and R. Mayr, 1999-...;
@ G.Delzanno et al., 2000-.. .;
@ E.Emerson and V. Kahlon, 2003;
@ F. Fioravanti, A. Pettorossi, and M. Proietti, 2007-.. .;
@ A.lLisitsa and A. Nemytykh, 2007-...;

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 7146



Specifying Non-Deterministic Cache Coherence Protocols in Functional
Programming Language: The Main Idea / LN 2007

f(n, X) produces n-th state of a computing system S, v (-) is its safety
property over Init C D: Init > 01 — 00 — ... — op

False iff 1)(op) does not hold, whenever
p(f(n, X)) returns S starts from Init;
True  otherwise

@ Consider the n as a time.
@ The time value is modeled by a finite stream of external events.
@ The time ticks are labeled by the events.

@ The protocol has to react to the external non-deterministic events
by updating its states.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 8/46



The Benchmark

A Class of Non-deterministic Parameterized Cache Coherence Protocols

Synapse N+1, MSI, MOSI, MESI, MOESI, lllinois University, Berkley
RISC, DEC Firefly, IEEE Futurebus+, Xerox PARC Dragon

Early we have verified some safety properties of these protocols, as
well as several other broadcast non-deterministic protocols (LN 2007)

@ specified in terms of a strict functional programming language
@ using the direct verification method described above
@ by means of the supercompiler SCP4

Later this approach was extended by G. W. Hamilton for verifying a
wider class of temporal properties of reactive systems. (2015)

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 9/46



Safety Verification: the Benchmark
A Proof Structure for Safety Verification by SCP4

Two Consumers - Two Producers protocol / Abstract Multithreaded Java Program

Y

VPT 2017 10/46



The Refal Pseudocode £

The Presentation Language £

prog ::
def ::
exp ::

term ::

ps =

A. P. Lisitsa, A. P. Nemytykh

def1 o defn

f(psi )= exps; ...; f(pSn) = expn;

v
term : exp

f( expy, ..., €xpn)
expr ++ expo

[]

s.name

(exp)

a

P1, - Pn
v|s.name:p|(p7) :p2|o:p]| (]

s.name | e.name

Verifying via Intermediate Interpretation

Program

Function Definition
Variable

Cons Application
Function Application
Append Application

Nil

Symbol-Type Variable
Constructor Application
Symbol

Patterns

Variable

VPT 2017 11/46



The Refal Pseudocode £

The Presentation Language £

@ Programs in £ are strict term rewriting systems based on pattern
matching.

@ The rules in the programs are ordered from the top to the bottom
to be matched.
@ Two kinds of variables:

» s.variables range over symbols,
» e.variables range over the whole set of the expressions.

@ For any rule | = r, any variable of r should appear in /.
@ The parenthesis constructor (e) is used without a name.
@ Cons constructor is used in infix notation and may be omitted.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 12/ 46



The Refal Pseudocode £ A Sample Protocol

Parameterized Synapse Cache Coherence Protocol

The initial value of counter invalid is parameterized, the other two
counters are initialized by zero.

(rh) dirty + valid >1 — .
(rm) invalid > 1 — dirty’ = 0, valid’ = valid + 1, invalid’ = invalid + dirty — 1
(wht) dirty >1 — .
(wh2)
)

(wm

valid > 1 — valid’ = 0, dirty’ =1, invalid’ = invalid + dirty + valid — 1
invalid > 1 — valid’ = 0, dirty’ =1, invalid’ = invalid + dirty + valid — 1

Any state reached by the protocol should not satisfy any of the two
following properties:

(1) invalid > 0, dirty > 1, valid > 1;
(2) invalid > 0, dirty > 2, valid > 0.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 13/46



Model of the Synapse Cache Coherence Protocol

Written in the Pseudocode (1)
Main( (e.time): (e.is) ) = Loop( (e.time) : (Invalid I e.is): (Dirty ):(Valid ) );

Loop( ([1) :(Invalid e.is): (Dirty e.ds):(Valid e.vs) )
= Test( (Invalid e.is) : (Dirty e.ds) : (Valid e.vs) );
Loop( (s.t : e.time) : (Invalid e.is): (Dirty e.ds): (Valid e.vs))
= Loop( (e.time) : Event( s.t : (Invalid e.is) : (Dirty e.ds) : (Valid e.vs) ) );

Event( rm : (Invalid I e.is) : (Dirty e.ds): (Valid e.vs) )
= (Invalid Append( (e.ds) : (e.is))) : (Dirty ) :(Valid I e.vs);
Event( wh2 : (Invalid e.is): (Dirty e.ds): (Valid | e.vs))
= (Invalid Append( (e.vs) : (Append( (e.ds) : (e.is))))) : (Dirty I) : (Valid );
Event( wm : (Invalid | e.is): (Dirty e.ds): (Valid e.vs))
= (Invalid Append( (e.vs) : (Append( (e.ds) : (e.is))))) : (Dirty I) : (Valid );
Append( (11):(e.ys) ) = e.ys;
Append( (s.x : e.xs):(e.ys) ) = s.x : Append( (e.xs) : (e.ys));

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 14/ 46



The Refal Pseudocode £ A Sample Protocol

Model of the Synapse Cache Coherence Protocol

Written in a Pseudocode (Il)

Test( (Invalid e.is): (Dirty I e.ds): (Valid I e.vs) ) = False;
Test( (Invalid e.is): (Dirty I I e.ds): (Valid e.vs) ) = False;
Test( (Invalid e.is) : (Dirty e.ds): (Valid e.vs) ) = True;

@ This predicate tests the safety property.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017

15/46



INOIES I The Benchmark(e%)

The Cache Coherence Protocols Executed by Intermediate Interpreters of Turing
Complete Languages (lITCL)

Consider a specializer Spec transforming programs written in a
language L.

Given an interpreter Int y, of a language M and a cache coherence
protocol model specified in M. Let Int, be written in L.
@ Specialization of the following initial configurations is an attempt to
verify the safety property of the protocol model indirectly.
Int( (Call Main e.d), (Prog Synapse) )

where the value of variable e.d is unknown, and Synapse, e.qg.,
stands for the Synapse program model encoded in the data of
language L.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 16 /46



The Cache Coherence Protocols Executed by IITCL-s

Two aims:

@ new powerful methods for the specialization, in order to verify the
safety properties of the indirect models that are much more
complicated as compared with the corresponding direct models;

@ using the specializers for verifying the indirect protocol models
specified in languages, which have no implemented specializers.

v

This report is devoted to these issues in the context of using the
supercompiler SCP4.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 17 /46



The Cache Coherence Protocols Executed by IITCL-s

Using the supercompiler SCP4:

Verified: safety properties of the indirect models using a
self-interpreter Int of a Turing-complete fragment of the
SCP4 object language.

Proved: in an uniform way, several properties of the Int
configurations generated by specilization of Int w.r.t. the
direct models; these properties are crucial for removing
the interpretation overheads.

Verified: safety properties of the indirect models using an
interpreter of the Jones language WHILE.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 18 /46



Verifying Programs via Intermediate Interpretation
Other Approaches

@ In 1998 J. P. Gallagher et al. reported on a language-independent
method for analyzing the imperative programs via intermediate
interpretation by a logic programming language.

@ Our interest in this task is in part inspired by a work done by
De E. Angelis et al. (2014-2015) where this task was studied in
the context of specialization of constraint logic programs.

» They use external satisfiability modulo theories (SMT) solvers.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 19/ 46



Verifying Programs via Intermediate Interpretation
Comparison with the De E. Angelis et al. Approach

De E. Angelis et al.
@ in terms of constraint logic programming;
@ using external satisfiability modulo theories solvers;

@ the presented transformation examples deal with neither function
nor constructor application stack in the interpreted programs;

LN
@ in terms of functional programming;
@ self-sufficient methods for specialization of functional programs;

@ the models include both the function call and constructor
application stacks, the size of the first one is uniformly bounded on
the input parameter while the second one is not;

V.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 20/ 46



Verifying Programs via Intermediate Interpretation
Comparison with the De E. Angelis et al. Approach

The verification system VeriMAP

@ uses nontrivial properties of integers recognized by both CLP
built-in predicates and external SMT solvers.

The supercompiler SCP4
@ uses a nontrivial property of the program configurations

@ the property is the associativity of the built-in append function ++
supported by the supercompiler SCP4 itself, rather than by an
external solver

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 21/46



Indirect Verifying the Cache Coherence Protocol Models
Interpreter Big-Step vs. Direct Model Small-Step

The overhead:

Direct-Conf

t( Direct-Conf,... ) ]

.

The configurations are tried to be generalized
or folded inside this big-step.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 22/ 46




Indirect Verifying the Cache Coherence Protocol Models
The Main Problem

The Interpreting Pattern Matching

It produces many branching vertices.

The configurations in the vertices are subjects to be
» generalized
» folded one by another
If generalization of C; and Cs or folding of C, by C; will happen when

Cq and G are from the same big-step, then a recursive interpretation
overhead appears in the residual program.

There is almost no hope of succeeding the indirect verification.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 23/ 46



Indirect Verifying the Cache Coherence Protocol Models
The Main Problem

The Interpreting Pattern Matching / Fragment

EvalCall(s.f,e.d,(Prog s.n) ) = Matching(F,[1,LookFor( s.f,Prog( s.n) ),e.d);

Matching( F, e.old, ((e.p) :"=" : (e.exp)) : e.def, e.d)
= Matching( Match( e.p, e.d, (1)), e.exp, e.def, e.d);
Matching( (e.env), e.exp, e.def, e.d ) = (e.env) : e.exp;
Match( (Var e’ s.n), e.d, (e.env)) = PutVar((Var ' e’ s.n):e.d, (e.env) );
Match( (Var s’ s.n): e.p, s.x : e.d, (e.env))
= Match( e.p, e.d, PutVar( (Var 's’ s.n) : s.x, (e.env)));
Match( (" =" e.q): e.p, (' ' ex):e.d, (e.env))
= Match( e.p, e.d, Match( e.q, e.x, (e.env)));
Match( s.x : e.p, s.x : e.d, (e.env) ) = Match( e.p, e.d, (e.env));
Match( (1, [1, (e.env)) = (e.env);
Match( e.p, e.d, e.fail ) = F;

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 24/ 46



Indirect Verifying the Cache Coherence Protocol Models
The Main Problem

The Interpreting Pattern Matching

Composition of the Turchin and the Higman-Kruskal relations
@ forces completely unfolding the configurations with Match at the
top of the application stack
» ho generalization
» no folding
inside any single big-step
e —the big-steps’ entry points

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 25/ 46



Indirect Verifying the Cache Coherence Protocol Models
The Main Result

The Intermediate Self-Interpreter / Pattern Matching

Key Proposition
V pattern py s.t. V variable v puy(pp) < 2 and V passive expression d,
the unfold-fold loop,

@ starting off from configuration Match( py, d, (1))

@ and controlled by the Turchin-Higman-Kruskal composition,

results in a tree program s.t. V non-transitive vertex in the tree is
labeled by a config. of the form Match( p;, dj, (env;) ), ....

Where d, d; are partial known data; ([ 1), (env;) — environments.
wyv(exp) denotes the multiplicity of variable v in exp.

@ no generalization
@ no folding

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 26/ 46



Verifying Programs via Intermediate Interpretation Indirect Verifying the Cache Coherence Protocol Models

The Intermediate Self-Interpreter
Internal Big-Step Analysis

Given a big-step of the self-interpreter being specialized w.r.t. any
given cache coherence protocol from the series of interest.

If no generalization was done before this big-step,
then simple corollaries of Key Proposition imply:
@ no generalization
@ no folding
may happen inside this single big-step of the self-interpreter.

That and several additional observations allow us to verify the
safety properties of these indirect protocol models.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 27/ 46



Indirect Verifying the Cache Coherence Protocol Models
The Main Result

Internal Big-Step Analysis

@ Key Proposition
@ the proof of Key Proposition, given in an uniform way

Key Proposition is applied only to the Synapse N+1 protocol, but
can be applied for any protocol from the series of interest.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 28/ 46



Unfolding

[ let e.z = f(e.x) in g(e.z) ]

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation



Folding

[ let e.z = f(e.x) in g(e.z) ]

An intermediate state of an unfold-fold graph: the configuration K still

is not unfolded.
A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 30/46




On Supercompilation Unfold-Fold Program Transformation

The Main Idea behind a Supercompiler

Supervised compilation is a powerful semantic based unfold-fold
program transformation method having a long history well back to the
1960-70s, when it was proposed by V. Turchin.

It observes the behavior of a functional program P running on partially
defined input with the aim to define a program, which would be
equivalent to the original one (on the domain of latter), but having
improved properties.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 31/46



On Supercompilation Unfold-Fold Program Transformation

The Main Idea behind a Supercompiler

A supercompiler
@ unfolds a potentially infinite tree of all possible computations of a
parameterized program P
@ reduces (in the process) the redundancy that could be present in
P
@ folds the tree into a finite graph of states and transitions between
possible (parameterized) configurations of P

@ analyses global properties of the graph and specializes this graph
w.r.t. these properties (without an additional unfolding)

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 32/46



The Well-Quasi-Ordering on the Expression Set E
A Variant of the Higman-Kruskal Relation

The term set T is a subset of E such that term € T iff
term ::= (exp) | s.name | symbol.
Definition
The homeomorphic embedding relation « is the smallest transitive
relation on E satisfying the following properties, where f is an n-arity
function, o, 8, 7,5, t, t4,...,the Eand o, 8,7 € T.

@ if x, y are variables of the same type, then x « y

O [Jxt toxt, toxf(ty, ... »%H....th), tox(t), txa:t;

o if sxtanda xf, then(s) x (t),a:sx 8:t;

oif st thenf(ty, ..., s,....th)oxf(ty, ..., t...;th).

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 33/46



The Well-Quasi-Ordering on the Expression Set E
A Variant of the Higman-Kruskal Relation

@ We use relation < modulo associativity of ++ and the following
equalities: term : exp; = term ++ expy,
exp ++ [1 =exp, [1 ++ exp = exp.

@ An additional restriction separating the basic cases of the
induction from the regular ones:

for any symbol 0. ([1) & (o) and
for any symbol-variable v.([]) % (v)

We impose this restriction on the relation o« modulo the equalities
above and denote the obtained relation as <.

For any infinite sequence of expressions t,.. ., Iy, ... there exist two
relation expressions t;, f; such that t; < t.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 34/ 46



On Supercompilation The Supercompiler SCP4

Configurations

wyv(exp) denotes the multiplicity of variable v in exp.

Definition
A configuration is a finite sequence of the form

let e.h=f/( exps1, ..., &XPim) in ...
let e.h=f( expxs, ..., €xpy) in exppiq

where expp,. 1 is passive, forall i > 1 pgp(fi( ... )) = pen(€xppis) =1,
and pen(fs(...)) = 0; for all i and all j variable e.h does not occur in
any function application being a sub-expression of exp;.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 35/ 46



On Supercompilation The Supercompiler SCP4

Configurations

let e.h=fi/( expss, ..., €XPim) in ...
let e.h=f( expks, ..., €XpPx ) in exPny1

Since the value of e.his reassigned in each let in the stack we use
the following presentation:
f1( exp11, ..., €XPim), ..., fk( €XPx1, ..., €XDki ), €XPpiq

@ e.his replaced with placeholder o
@ the last expression may be omitted if it equals e

Example

fla: exs++eys), g(e++eys, (Varbc), 11),
f(sx:e) sx:e++t(s.x:ezs), e

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 36/ 46



On Supercompilation The Well-Disordering on Timed Configurations

Timed Configurations

[ let e.z = fi(e.x) in gs(e.z)

Cy: fi(e.x)

Ki: g2(e.z)

[ Cer qataex)pete)s |

L ¢
|C3:U6(e.X)7p5(O),f4(o),p2(.)7. ]
\

[ it ps(bex) (o) pe(o) |

Cs: q7(e.x),f(e),p2(e),e

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 37/46



On Supercompilation The Well-Disordering on Timed Configurations

Turchin’s Relation

prefix; context
Cio | ) BN [RGB (), expy
prefix; context
Gl gl () g (), ’ .................. e () g ) expe

°Vs.(0<s</)ff~g; (e, f*=g®),;
@t 1 # T 1;
£l
°ft/, an, t/: = Q;},...,ftf:gg
(e, fl=9g"...and ty =1p,...),where k — | = m— n.

We say that configurations C;, C; are in Turchin’s relation C; <« C;.

For any infinite path Cy, Co, ..., Cp, ... there exist two timed
configurations C;, C; such that i < jand C; <« C;.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017

38 /46




On Supercompilation The Well-Disordering on Timed Configurations

Turchin’s Relation is not Transitive

prefix; context
Cit | f1 )y F1 ) | ), ), expy
prefix; context
Gl £1(...),..., f171(.. ),’ .................. R  FEC), expz

We say that configurations C;, C; are in Turchin’s relation C; <« C;.

The idea:

@ the function applications in the context never took a part in
computing the configuration C;, in this segment of the path;

@ any function applications in the prefix of C; took a part in
computing the configuration C;;

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 39/46



On Supercompilation The Well-Disordering on Timed Configurations

Turchin’s Relation
Example: C; < Cs

[ let e.z = fi(e.x) in go(e.z)

Ki: gz2(e.2)

‘ Co: qg(a:e.x),pg(o\),o
e !

[cszus(e.xxps(-),f4<-),p2(-),- ]

Cj/ [ Ca ps(b:6.X),f4(e),pa(e),0 ]

[+]

Cs: q7(e.x),f4(e),pa(e),e

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 40/ 46



On Supercompilation The Strategy Controlling the Unfolding Loop

A Composition of the Turchin and the Variant of the Higman-Kruskal Relations

Given two timed configurations Cy, Cs in a path.

@ If C; <« G, does not hold, then the unfold-fold loop unfolds the
current configuration C, and goes on.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 41/ 46



On Supercompilation The Strategy Controlling the Unfolding Loop

A Composition of Relations < and <

The Composition < o < is a Well-Disordering

If C; <« G5 holds, Cy, Cs configurations are of the forms:

prefixy contexty
Crz| B FT1 ) [ A B, exps
prefixs contexts
Co £1(..) o A1), ’ .................. A ), exp

Compare the prefixes:

o if 3i.(1<i<N&f(...)%£F(...) then C;is unfolded and the
unfold-fold loop goes on,

@ else C; is decomposed into prefix; and context;.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 42/ 46



On Supercompilation The Strategy Controlling the Unfolding Loop

The Composition < o <

Folding and Generalization

If C; <« Cs holds, Cy, Co configurations are of the forms:

prefix; context,
Coz| f1(.) f ) | ), ), expy
prefixs contexto
G () (), ’ .................. A ), exp

C, is decomposed into prefix; and context;:

@ try to fold prefixo by prefix; and context, by context;;
@ if some of these attempts fail, then generalize the corresponding

configurations.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation

VPT 2017 43 /46




The < o x-Strategy

Definition

A configuration is said to be a transitive configuration if one-step
unfolding of the configuration results in a tree containing only the
vertices with at most one outgoing edge.

For the sake of simplicity, the unfold-fold loop skips all transitive
configurations encountered and removes them from the tree being
unfolded.

@ The unfold-fold loop is controlled by the < o <-strategy.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 44/ 46



On Supercompilation Conclusion

Conclusion

Using the supercompiler SCP4:

Verified: safety properties of the indirect models using a
self-interpreter Int of a Turing-complete fragment of the
SCP4 object language.

Proved: in an uniform way, several properties of the Int
configurations generated by specilization of Int w.r.t. the
direct models; these properties are crucial for removing
the interpretation overheads.

Verified: safety properties of the indirect models using an
interpreter of the Jones language WHILE.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 45/ 46



Thank You

Some problems to investigate:

@ description of suitable properties of interpreters to which our
uniform reasonings demonstrated in this paper might be applied

@ run time analysis

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 46/ 46



	Introduction
	Safety Verification
	Safety Verification: the Benchmark

	The Refal Pseudocode L
	A Sample Protocol

	A Challenge
	The Benchmark(new)
	Verifying Programs via Intermediate Interpretation

	Verifying Programs via Intermediate Interpretation
	Indirect Verifying the Cache Coherence Protocol Models

	On Supercompilation
	Unfold-Fold Program Transformation
	The Well-Quasi-Ordering on the Expression Set E
	The Supercompiler SCP4
	The Well-Disordering on Timed Configurations
	The Strategy Controlling the Unfolding Loop
	Conclusion


