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The Verification Problem

Given:
v a partial predicate p defined in a functional language:

p : D — {True, False, .},

i.e., pterminates for any d € D, but may fall into an abnormal
deadlock state L;

A an input subset Init C D.

Does there exist ay € Init such that p(dyp) returns/reaches False? J

That is a (un)reachability problem.

v~ This study focuses on capabilities of automatic recognizing the
safety properties by the unfold-fold program transformation.
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The Main Observation

Given: a computing system S, a safety property ¢(-) of S
v f(n, X) produces n-th state of S, o is a state of S.

p(o) returns False iff (o) does not hold;
p(o) = True otherwise

A Since p(-) and f(-, -) terminate,
if vn.(N > n> 0) VX € Init = p(f(n, X)) does not return False,
then S is safe whenever it starts from Init. )

v~ This study focuses on capabilities of automatic recognizing such
(un)reachability properties by the unfold-fold program
transformation methods via intermediate interpretation.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 3/46



The Aim

v We explore potential capabilities of an unfold-fold program
specialization method called Turchin’s supercompilation, for
verifying the safety properties of the functional programs modeling
a class of complicated computing systems.
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The Main Idea / LN 2007

Use supercompilation aiming at moving the safety property hidden in
the program semantics to a simple syntactic property of the residual
program:

@ this syntactic property should be easily recognized;

@ hope the corresponding residual programs will include no operator
“return False;”

v

f(n, X) produces n-th state of a computing system S, +(-) is its safety
property over Init C D: Init > 01 — 02 — ... = 0op

False iff y)(op) does not hold, whenever
p(f(n, X)) returns S starts from Init;
True otherwise

v
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The Main Idea / LN 2007

Use supercompilation aiming at moving the safety property hidden in
the program semantics to a simple syntactic property of the residual
program:

@ this syntactic property should be easily recognized;

@ hope the corresponding residual programs will include no operator
“return False;”

v

f(n, X) produces n-th state of a computing system S, v (-) is its safety
property over Init CD: Init> 01 =02 — ... = 0op

Pres(n, X) returns starts from Tt

True otherwise

v
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A Class of Non-Deterministic Parameterized Cache Coherence Protocols

Synapse N+1, MSI, MOSI, MESI, MOESI, lllinois University, Berkley
RISC, DEC Firefly, IEEE Futurebus+, Xerox PARC Dragon

Various methods for verification have been tried on the benchmark:
@ J.Esparza, A. Finkel, and R. Mayr, 1999-...;
@ G.Delzanno et al., 2000-.. .;
@ E.Emerson and V. Kahlon, 2003;
@ F. Fioravanti, A. Pettorossi, and M. Proietti, 2007-.. .;
@ A.lLisitsa and A. Nemytykh, 2007-...;
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Specifying Non-Deterministic Cache Coherence Protocols in Functional
Programming Language: The Main Idea / LN 2007

f(n, X) produces n-th state of a computing system S, v (-) is its safety
property over Init C D: Init > 01 — 00 — ... — op

False iff 1)(op) does not hold, whenever
p(f(n, X)) returns S starts from Init;
True  otherwise

@ Consider the n as a time.
@ The time value is modeled by a finite stream of external events.
@ The time ticks are labeled by the events.

@ The protocol has to react to the external non-deterministic events
by updating its states.
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The Benchmark

A Class of Non-deterministic Parameterized Cache Coherence Protocols

Synapse N+1, MSI, MOSI, MESI, MOESI, lllinois University, Berkley
RISC, DEC Firefly, IEEE Futurebus+, Xerox PARC Dragon

Early we have verified some safety properties of these protocols, as
well as several other broadcast non-deterministic protocols (LN 2007)

@ specified in terms of a strict functional programming language
@ using the direct verification method described above
@ by means of the supercompiler SCP4

Later this approach was extended by G. W. Hamilton for verifying a
wider class of temporal properties of reactive systems. (2015)
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Safety Verification: the Benchmark
A Proof Structure for Safety Verification by SCP4

Two Consumers - Two Producers protocol / Abstract Multithreaded Java Program

Y
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The Refal Pseudocode £

The Presentation Language £

prog ::
def ::
exp ::

term ::

ps =

A. P. Lisitsa, A. P. Nemytykh

def1 o defn

f(psi )= exps; ...; f(pSn) = expn;

v
term : exp

f( expy, ..., €xpn)
expr ++ expo

[]

s.name

(exp)

a

P1, - Pn
v|s.name:p|(p7) :p2|o:p]| (]

s.name | e.name

Verifying via Intermediate Interpretation

Program

Function Definition
Variable

Cons Application
Function Application
Append Application

Nil

Symbol-Type Variable
Constructor Application
Symbol

Patterns

Variable
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The Refal Pseudocode £

The Presentation Language £

@ Programs in £ are strict term rewriting systems based on pattern
matching.

@ The rules in the programs are ordered from the top to the bottom
to be matched.
@ Two kinds of variables:

» s.variables range over symbols,
» e.variables range over the whole set of the expressions.

@ For any rule | = r, any variable of r should appear in /.
@ The parenthesis constructor (e) is used without a name.
@ Cons constructor is used in infix notation and may be omitted.
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The Refal Pseudocode £ A Sample Protocol

Parameterized Synapse Cache Coherence Protocol

The initial value of counter invalid is parameterized, the other two
counters are initialized by zero.

(rh) dirty + valid >1 — .
(rm) invalid > 1 — dirty’ = 0, valid’ = valid + 1, invalid’ = invalid + dirty — 1
(wht) dirty >1 — .
(wh2)
)

(wm

valid > 1 — valid’ = 0, dirty’ =1, invalid’ = invalid + dirty + valid — 1
invalid > 1 — valid’ = 0, dirty’ =1, invalid’ = invalid + dirty + valid — 1

Any state reached by the protocol should not satisfy any of the two
following properties:

(1) invalid > 0, dirty > 1, valid > 1;
(2) invalid > 0, dirty > 2, valid > 0.
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Model of the Synapse Cache Coherence Protocol

Written in the Pseudocode (1)
Main( (e.time): (e.is) ) = Loop( (e.time) : (Invalid I e.is): (Dirty ):(Valid ) );

Loop( ([1) :(Invalid e.is): (Dirty e.ds):(Valid e.vs) )
= Test( (Invalid e.is) : (Dirty e.ds) : (Valid e.vs) );
Loop( (s.t : e.time) : (Invalid e.is): (Dirty e.ds): (Valid e.vs))
= Loop( (e.time) : Event( s.t : (Invalid e.is) : (Dirty e.ds) : (Valid e.vs) ) );

Event( rm : (Invalid I e.is) : (Dirty e.ds): (Valid e.vs) )
= (Invalid Append( (e.ds) : (e.is))) : (Dirty ) :(Valid I e.vs);
Event( wh2 : (Invalid e.is): (Dirty e.ds): (Valid | e.vs))
= (Invalid Append( (e.vs) : (Append( (e.ds) : (e.is))))) : (Dirty I) : (Valid );
Event( wm : (Invalid | e.is): (Dirty e.ds): (Valid e.vs))
= (Invalid Append( (e.vs) : (Append( (e.ds) : (e.is))))) : (Dirty I) : (Valid );
Append( (11):(e.ys) ) = e.ys;
Append( (s.x : e.xs):(e.ys) ) = s.x : Append( (e.xs) : (e.ys));
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The Refal Pseudocode £ A Sample Protocol

Model of the Synapse Cache Coherence Protocol

Written in a Pseudocode (Il)

Test( (Invalid e.is): (Dirty I e.ds): (Valid I e.vs) ) = False;
Test( (Invalid e.is): (Dirty I I e.ds): (Valid e.vs) ) = False;
Test( (Invalid e.is) : (Dirty e.ds): (Valid e.vs) ) = True;

@ This predicate tests the safety property.
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INOIES I The Benchmark(e%)

The Cache Coherence Protocols Executed by Intermediate Interpreters of Turing
Complete Languages (lITCL)

Consider a specializer Spec transforming programs written in a
language L.

Given an interpreter Int y, of a language M and a cache coherence
protocol model specified in M. Let Int, be written in L.
@ Specialization of the following initial configurations is an attempt to
verify the safety property of the protocol model indirectly.
Int( (Call Main e.d), (Prog Synapse) )

where the value of variable e.d is unknown, and Synapse, e.qg.,
stands for the Synapse program model encoded in the data of
language L.
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The Cache Coherence Protocols Executed by IITCL-s

Two aims:

@ new powerful methods for the specialization, in order to verify the
safety properties of the indirect models that are much more
complicated as compared with the corresponding direct models;

@ using the specializers for verifying the indirect protocol models
specified in languages, which have no implemented specializers.

v

This report is devoted to these issues in the context of using the
supercompiler SCP4.
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The Cache Coherence Protocols Executed by IITCL-s

Using the supercompiler SCP4:

Verified: safety properties of the indirect models using a
self-interpreter Int of a Turing-complete fragment of the
SCP4 object language.

Proved: in an uniform way, several properties of the Int
configurations generated by specilization of Int w.r.t. the
direct models; these properties are crucial for removing
the interpretation overheads.

Verified: safety properties of the indirect models using an
interpreter of the Jones language WHILE.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 18 /46



Verifying Programs via Intermediate Interpretation
Other Approaches

@ In 1998 J. P. Gallagher et al. reported on a language-independent
method for analyzing the imperative programs via intermediate
interpretation by a logic programming language.

@ Our interest in this task is in part inspired by a work done by
De E. Angelis et al. (2014-2015) where this task was studied in
the context of specialization of constraint logic programs.

» They use external satisfiability modulo theories (SMT) solvers.
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Verifying Programs via Intermediate Interpretation
Comparison with the De E. Angelis et al. Approach

De E. Angelis et al.
@ in terms of constraint logic programming;
@ using external satisfiability modulo theories solvers;

@ the presented transformation examples deal with neither function
nor constructor application stack in the interpreted programs;

LN
@ in terms of functional programming;
@ self-sufficient methods for specialization of functional programs;

@ the models include both the function call and constructor
application stacks, the size of the first one is uniformly bounded on
the input parameter while the second one is not;

V.
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Verifying Programs via Intermediate Interpretation
Comparison with the De E. Angelis et al. Approach

The verification system VeriMAP

@ uses nontrivial properties of integers recognized by both CLP
built-in predicates and external SMT solvers.

The supercompiler SCP4
@ uses a nontrivial property of the program configurations

@ the property is the associativity of the built-in append function ++
supported by the supercompiler SCP4 itself, rather than by an
external solver
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Indirect Verifying the Cache Coherence Protocol Models
Interpreter Big-Step vs. Direct Model Small-Step

The overhead:

Direct-Conf

t( Direct-Conf,... ) ]

.

The configurations are tried to be generalized
or folded inside this big-step.
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Indirect Verifying the Cache Coherence Protocol Models
The Main Problem

The Interpreting Pattern Matching

It produces many branching vertices.

The configurations in the vertices are subjects to be
» generalized
» folded one by another
If generalization of C; and Cs or folding of C, by C; will happen when

Cq and G are from the same big-step, then a recursive interpretation
overhead appears in the residual program.

There is almost no hope of succeeding the indirect verification.
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Indirect Verifying the Cache Coherence Protocol Models
The Main Problem

The Interpreting Pattern Matching / Fragment

EvalCall(s.f,e.d,(Prog s.n) ) = Matching(F,[1,LookFor( s.f,Prog( s.n) ),e.d);

Matching( F, e.old, ((e.p) :"=" : (e.exp)) : e.def, e.d)
= Matching( Match( e.p, e.d, (1)), e.exp, e.def, e.d);
Matching( (e.env), e.exp, e.def, e.d ) = (e.env) : e.exp;
Match( (Var e’ s.n), e.d, (e.env)) = PutVar((Var ' e’ s.n):e.d, (e.env) );
Match( (Var s’ s.n): e.p, s.x : e.d, (e.env))
= Match( e.p, e.d, PutVar( (Var 's’ s.n) : s.x, (e.env)));
Match( (" =" e.q): e.p, (' ' ex):e.d, (e.env))
= Match( e.p, e.d, Match( e.q, e.x, (e.env)));
Match( s.x : e.p, s.x : e.d, (e.env) ) = Match( e.p, e.d, (e.env));
Match( (1, [1, (e.env)) = (e.env);
Match( e.p, e.d, e.fail ) = F;
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Indirect Verifying the Cache Coherence Protocol Models
The Main Problem

The Interpreting Pattern Matching

Composition of the Turchin and the Higman-Kruskal relations
@ forces completely unfolding the configurations with Match at the
top of the application stack
» ho generalization
» no folding
inside any single big-step
e —the big-steps’ entry points
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Indirect Verifying the Cache Coherence Protocol Models
The Main Result

The Intermediate Self-Interpreter / Pattern Matching

Key Proposition
V pattern py s.t. V variable v puy(pp) < 2 and V passive expression d,
the unfold-fold loop,

@ starting off from configuration Match( py, d, (1))

@ and controlled by the Turchin-Higman-Kruskal composition,

results in a tree program s.t. V non-transitive vertex in the tree is
labeled by a config. of the form Match( p;, dj, (env;) ), ....

Where d, d; are partial known data; ([ 1), (env;) — environments.
wyv(exp) denotes the multiplicity of variable v in exp.

@ no generalization
@ no folding
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Verifying Programs via Intermediate Interpretation Indirect Verifying the Cache Coherence Protocol Models

The Intermediate Self-Interpreter
Internal Big-Step Analysis

Given a big-step of the self-interpreter being specialized w.r.t. any
given cache coherence protocol from the series of interest.

If no generalization was done before this big-step,
then simple corollaries of Key Proposition imply:
@ no generalization
@ no folding
may happen inside this single big-step of the self-interpreter.

That and several additional observations allow us to verify the
safety properties of these indirect protocol models.

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 27/ 46



Indirect Verifying the Cache Coherence Protocol Models
The Main Result

Internal Big-Step Analysis

@ Key Proposition
@ the proof of Key Proposition, given in an uniform way

Key Proposition is applied only to the Synapse N+1 protocol, but
can be applied for any protocol from the series of interest.
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Unfolding

[ let e.z = f(e.x) in g(e.z) ]
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Folding

[ let e.z = f(e.x) in g(e.z) ]

An intermediate state of an unfold-fold graph: the configuration K still

is not unfolded.
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On Supercompilation Unfold-Fold Program Transformation

The Main Idea behind a Supercompiler

Supervised compilation is a powerful semantic based unfold-fold
program transformation method having a long history well back to the
1960-70s, when it was proposed by V. Turchin.

It observes the behavior of a functional program P running on partially
defined input with the aim to define a program, which would be
equivalent to the original one (on the domain of latter), but having
improved properties.
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On Supercompilation Unfold-Fold Program Transformation

The Main Idea behind a Supercompiler

A supercompiler
@ unfolds a potentially infinite tree of all possible computations of a
parameterized program P
@ reduces (in the process) the redundancy that could be present in
P
@ folds the tree into a finite graph of states and transitions between
possible (parameterized) configurations of P

@ analyses global properties of the graph and specializes this graph
w.r.t. these properties (without an additional unfolding)
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The Well-Quasi-Ordering on the Expression Set E
A Variant of the Higman-Kruskal Relation

The term set T is a subset of E such that term € T iff
term ::= (exp) | s.name | symbol.
Definition
The homeomorphic embedding relation « is the smallest transitive
relation on E satisfying the following properties, where f is an n-arity
function, o, 8, 7,5, t, t4,...,the Eand o, 8,7 € T.

@ if x, y are variables of the same type, then x « y

O [Jxt toxt, toxf(ty, ... »%H....th), tox(t), txa:t;

o if sxtanda xf, then(s) x (t),a:sx 8:t;

oif st thenf(ty, ..., s,....th)oxf(ty, ..., t...;th).
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The Well-Quasi-Ordering on the Expression Set E
A Variant of the Higman-Kruskal Relation

@ We use relation < modulo associativity of ++ and the following
equalities: term : exp; = term ++ expy,
exp ++ [1 =exp, [1 ++ exp = exp.

@ An additional restriction separating the basic cases of the
induction from the regular ones:

for any symbol 0. ([1) & (o) and
for any symbol-variable v.([]) % (v)

We impose this restriction on the relation o« modulo the equalities
above and denote the obtained relation as <.

For any infinite sequence of expressions t,.. ., Iy, ... there exist two
relation expressions t;, f; such that t; < t.
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On Supercompilation The Supercompiler SCP4

Configurations

wyv(exp) denotes the multiplicity of variable v in exp.

Definition
A configuration is a finite sequence of the form

let e.h=f/( exps1, ..., &XPim) in ...
let e.h=f( expxs, ..., €xpy) in exppiq

where expp,. 1 is passive, forall i > 1 pgp(fi( ... )) = pen(€xppis) =1,
and pen(fs(...)) = 0; for all i and all j variable e.h does not occur in
any function application being a sub-expression of exp;.
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On Supercompilation The Supercompiler SCP4

Configurations

let e.h=fi/( expss, ..., €XPim) in ...
let e.h=f( expks, ..., €XpPx ) in exPny1

Since the value of e.his reassigned in each let in the stack we use
the following presentation:
f1( exp11, ..., €XPim), ..., fk( €XPx1, ..., €XDki ), €XPpiq

@ e.his replaced with placeholder o
@ the last expression may be omitted if it equals e

Example

fla: exs++eys), g(e++eys, (Varbc), 11),
f(sx:e) sx:e++t(s.x:ezs), e
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On Supercompilation The Well-Disordering on Timed Configurations

Timed Configurations

[ let e.z = fi(e.x) in gs(e.z)

Cy: fi(e.x)

Ki: g2(e.z)

[ Cer qataex)pete)s |

L ¢
|C3:U6(e.X)7p5(O),f4(o),p2(.)7. ]
\

[ it ps(bex) (o) pe(o) |

Cs: q7(e.x),f(e),p2(e),e

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 37/46



On Supercompilation The Well-Disordering on Timed Configurations

Turchin’s Relation

prefix; context
Cio | ) BN [RGB (), expy
prefix; context
Gl gl () g (), ’ .................. e () g ) expe

°Vs.(0<s</)ff~g; (e, f*=g®),;
@t 1 # T 1;
£l
°ft/, an, t/: = Q;},...,ftf:gg
(e, fl=9g"...and ty =1p,...),where k — | = m— n.

We say that configurations C;, C; are in Turchin’s relation C; <« C;.

For any infinite path Cy, Co, ..., Cp, ... there exist two timed
configurations C;, C; such that i < jand C; <« C;.
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On Supercompilation The Well-Disordering on Timed Configurations

Turchin’s Relation is not Transitive

prefix; context
Cit | f1 )y F1 ) | ), ), expy
prefix; context
Gl £1(...),..., f171(.. ),’ .................. R  FEC), expz

We say that configurations C;, C; are in Turchin’s relation C; <« C;.

The idea:

@ the function applications in the context never took a part in
computing the configuration C;, in this segment of the path;

@ any function applications in the prefix of C; took a part in
computing the configuration C;;

A. P. Lisitsa, A. P. Nemytykh Verifying via Intermediate Interpretation VPT 2017 39/46



On Supercompilation The Well-Disordering on Timed Configurations

Turchin’s Relation
Example: C; < Cs

[ let e.z = fi(e.x) in go(e.z)

Ki: gz2(e.2)

‘ Co: qg(a:e.x),pg(o\),o
e !

[cszus(e.xxps(-),f4<-),p2(-),- ]

Cj/ [ Ca ps(b:6.X),f4(e),pa(e),0 ]

[+]

Cs: q7(e.x),f4(e),pa(e),e
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On Supercompilation The Strategy Controlling the Unfolding Loop

A Composition of the Turchin and the Variant of the Higman-Kruskal Relations

Given two timed configurations Cy, Cs in a path.

@ If C; <« G, does not hold, then the unfold-fold loop unfolds the
current configuration C, and goes on.
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On Supercompilation The Strategy Controlling the Unfolding Loop

A Composition of Relations < and <

The Composition < o < is a Well-Disordering

If C; <« G5 holds, Cy, Cs configurations are of the forms:

prefixy contexty
Crz| B FT1 ) [ A B, exps
prefixs contexts
Co £1(..) o A1), ’ .................. A ), exp

Compare the prefixes:

o if 3i.(1<i<N&f(...)%£F(...) then C;is unfolded and the
unfold-fold loop goes on,

@ else C; is decomposed into prefix; and context;.
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On Supercompilation The Strategy Controlling the Unfolding Loop

The Composition < o <

Folding and Generalization

If C; <« Cs holds, Cy, Co configurations are of the forms:

prefix; context,
Coz| f1(.) f ) | ), ), expy
prefixs contexto
G () (), ’ .................. A ), exp

C, is decomposed into prefix; and context;:

@ try to fold prefixo by prefix; and context, by context;;
@ if some of these attempts fail, then generalize the corresponding

configurations.
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The < o x-Strategy

Definition

A configuration is said to be a transitive configuration if one-step
unfolding of the configuration results in a tree containing only the
vertices with at most one outgoing edge.

For the sake of simplicity, the unfold-fold loop skips all transitive
configurations encountered and removes them from the tree being
unfolded.

@ The unfold-fold loop is controlled by the < o <-strategy.
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On Supercompilation Conclusion

Conclusion

Using the supercompiler SCP4:

Verified: safety properties of the indirect models using a
self-interpreter Int of a Turing-complete fragment of the
SCP4 object language.

Proved: in an uniform way, several properties of the Int
configurations generated by specilization of Int w.r.t. the
direct models; these properties are crucial for removing
the interpretation overheads.

Verified: safety properties of the indirect models using an
interpreter of the Jones language WHILE.
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Thank You

Some problems to investigate:

@ description of suitable properties of interpreters to which our
uniform reasonings demonstrated in this paper might be applied

@ run time analysis
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