
From Concurrent Programs to Simulating
Sequential Programs: Correctness of a

Transformation

VPT 2017

Allan Blanchard, Frédéric Loulergue, Nikolai Kosmatov

April 29th, 2017



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Table of Contents

1 From Concurrent Programs to Simulating Sequential Programs

2 Correctness of a Transformation

3 Conclusion and Future Work

April 29th, 2017 — N. Kosmatov — p. 2



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Table of Contents

1 From Concurrent Programs to Simulating Sequential Programs

Concurrent Program Analysis

Considered Language

Principle of the Transformation

2 Correctness of a Transformation

3 Conclusion and Future Work

April 29th, 2017 — N. Kosmatov — p. 3



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Dedicated Analysis

Most concurrent program analyzers are dedicated to this task
they implement a specific analysis
they are often hard to design

April 29th, 2017 — N. Kosmatov — p. 4



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Sequential Code Analyzers

Sequential code analyzers work well
How can we bring them to concurrent code analysis?
Especially when we have many of them

The Frama-C code analysis platform (frama-c.com)

Deductive verification (WP)
Abstract Interpretation (Eva)
Runtime assertion checking (E-ACSL)
...

April 29th, 2017 — N. Kosmatov — p. 5



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Simulating Code: Motivation

Idea 1: Intrinsically concurrent analysis tools
better integration
but hard to develop

Idea 2: Simulate concurrent programs by sequential ones
sequential analyzers will be able to treat it

April 29th, 2017 — N. Kosmatov — p. 6



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

A Simple Imperative Language

proc ::= m(x)c m ∈ Name
instr ::= x := e local assignment

| x [y ] := e writing to the heap
| x := y [e] reading from the heap
| while e do c
| if e then c else c
| m(e) procedure call
| atomic(c) atomic block

C 3 c ::= {} | instr ; c

memory ::= [(l1, sizel1); . . . ; (lm, sizelm )]

prog seq ::= proc memory
progpar ::= proc memory mains (where mains : T→ Name)

April 29th, 2017 — N. Kosmatov — p. 7



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

A Simple Imperative Language with Concurrency

proc ::= m(x)c m ∈ Name
instr ::= x := e local assignment

| x [y ] := e writing to the heap
| x := y [e] reading from the heap
| while e do c
| if e then c else c
| m(e) procedure call
| atomic(c) atomic block

C 3 c ::= {} | instr ; c

memory ::= [(l1, sizel1); . . . ; (lm, sizelm )]

prog seq ::= proc memory
progpar ::= proc memory mains (where mains : T→ Name)

April 29th, 2017 — N. Kosmatov — p. 7



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Overview of the Transformation I

Variables

Original heap is kept
Each local variable x is simulated by a heap location &x

Assumption

Static memory allocation

April 29th, 2017 — N. Kosmatov — p. 8



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Overview of the Transformation II

Statements

Maintain a program counter (pct) for each thread
Each statement is simulated by a procedure that

Recieves in parameter the thread (tid) to execute
Executes the same action using simulating variables
Updates the program counter

April 29th, 2017 — N. Kosmatov — p. 9



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Overview of the Transformation III

Procedure calls and returns

For each procedure p, we add a heap location from(p).
It records the program point to return to from p.
Simulating a call of p2 from p1:

Update from(p2) with the next instruction of p1
Place the program counter on the first instruction of p2

Simulating a return from p2 to p1:
Put the program counter on the instruction from(p2)

Assumption

No recursive call

April 29th, 2017 — N. Kosmatov — p. 10



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Overview of the Transformation IV

Main procedure

Initialize program counters
Initialize from() for each main procedure
Loop until each thread has executed all its instructions:

Choose a thread that still has instructions to execute
Resolve its program counter
Execute the corresponding simulating procedure

Assumption

Interleaving semantics

April 29th, 2017 — N. Kosmatov — p. 11



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Statements

Original code

if(x > 0) then
p[0] := x

else
p[0] := 42

Simulating conditional

sim_1(tid){
ptr := &x ;
x := ptr[tid] ;
if(x > 0) then {

ptr := pct ;
ptr[tid] := 2

} else {
ptr := pct ;
ptr[tid] := 4

}
}

April 29th, 2017 — N. Kosmatov — p. 12



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Statements

Original code

if(x > 0) then
p[0] := x

else
p[0] := 42

Simulating memory write

sim_2(tid){
ptr := &x ;
x := ptr[tid] ;
ptr := &p ;
p := ptr[tid] ;
p[0] := x ;

ptr := pct ;
ptr[tid] := 5

}

April 29th, 2017 — N. Kosmatov — p. 13



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Table of Contents

1 From Concurrent Programs to Simulating Sequential Programs

2 Correctness of a Transformation

Bi-simulation Property

Equivalence Relations

Basic Ideas of the Proof

3 Conclusion and Future Work

April 29th, 2017 — N. Kosmatov — p. 14



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property I

Theorem

Let progpar be a safe parallel program, prog sim its simulating pro-
gram, σinit

par (resp. σinit
sim) an initial state of progpar (resp. prog sim).

1. From σinit
sim , we can reach, by the initialization sequence,

σ0
sim equivalent to σinit

par .
2. For all σpar reachable from σinit

par , there exists an equivalent
σsim reachable from σ0

sim with an equivalent trace (Forward
simulation).

3. For all σsim reachable from σ0
sim, there exists an equivalent

σpar reachable from σinit
par with an equivalent trace

(Backward simulation).

April 29th, 2017 — N. Kosmatov — p. 15



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property I

Theorem

Let progpar be a safe parallel program, prog sim its simulating pro-
gram, σinit

par (resp. σinit
sim) an initial state of progpar (resp. prog sim).

1. From σinit
sim , we can reach, by the initialization sequence,

σ0
sim equivalent to σinit

par .
2. For all σpar reachable from σinit

par , there exists an equivalent
σsim reachable from σ0

sim with an equivalent trace (Forward
simulation).

3. For all σsim reachable from σ0
sim, there exists an equivalent

σpar reachable from σinit
par with an equivalent trace

(Backward simulation).

Initialization establishes equivalence

April 29th, 2017 — N. Kosmatov — p. 15



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property I

Theorem

Let progpar be a safe parallel program, prog sim its simulating pro-
gram, σinit

par (resp. σinit
sim) an initial state of progpar (resp. prog sim).

1. From σinit
sim , we can reach, by the initialization sequence,

σ0
sim equivalent to σinit

par .
2. For all σpar reachable from σinit

par , there exists an equivalent
σsim reachable from σ0

sim with an equivalent trace (Forward
simulation).

3. For all σsim reachable from σ0
sim, there exists an equivalent

σpar reachable from σinit
par with an equivalent trace

(Backward simulation).
All existing parallel executions are simulated

April 29th, 2017 — N. Kosmatov — p. 15



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property I

Theorem

Let progpar be a safe parallel program, prog sim its simulating pro-
gram, σinit

par (resp. σinit
sim) an initial state of progpar (resp. prog sim).

1. From σinit
sim , we can reach, by the initialization sequence,

σ0
sim equivalent to σinit

par .
2. For all σpar reachable from σinit

par , there exists an equivalent
σsim reachable from σ0

sim with an equivalent trace (Forward
simulation).

3. For all σsim reachable from σ0
sim, there exists an equivalent

σpar reachable from σinit
par with an equivalent trace

(Backward simulation).

Only existing parallel executions are simulated

April 29th, 2017 — N. Kosmatov — p. 15



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

From σinit
sim ...

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

From σinit
sim ...

... we can reach σ0
sim ...

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

From σinit
sim ...

... we can reach σ0
sim ...

... s.t. σ0
sim ∼ σinit

par

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

Forall σsim ...

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

Forall σsim ...

... reachable from σ0
sim ...

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

Forall σsim ...

... reachable from σ0
sim ...

... their exists σpar reachable from σinit
par

s.t. σsim ∼ σpar

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

Forall σpar ...

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

Forall σpar ...

... reachable from σinit
par ...

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property II

σ′
par

σpar

σinit
par

Original
Program

σ′
sim

σsim

σ0
sim

σinit
sim

Simulating
Program

Forall σpar ...

... reachable from σinit
par ...

... their exists σsim reachable from σ0
sim

s.t. σsim ∼ σpar

April 29th, 2017 — N. Kosmatov — p. 16



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Equivalence Relations

States

The original heap is a subheap of the simulating one
The simulating heap correctly models local variables
The simulating heap correctly models stacks

Traces

All actions involving global memory in the original program must
happen in the same order in the simulation. We also check pro-
cedure calls and return’s.

April 29th, 2017 — N. Kosmatov — p. 17



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Bi-simulation Property III

σ′
par

σpar

σ′
sim

σsim

Select a thread

Simulate its next statement

Check termination

April 29th, 2017 — N. Kosmatov — p. 18



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Basic Ideas of the Proof

By induction

on instructions for the forward simulation
on loop iterations for the backward simulation

What we can notice

Sequential actions are deterministic, their translation too
Thread selection is not determinist,
but we can choose the same thread

April 29th, 2017 — N. Kosmatov — p. 19



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Table of Contents

1 From Concurrent Programs to Simulating Sequential Programs

2 Correctness of a Transformation

3 Conclusion and Future Work

April 29th, 2017 — N. Kosmatov — p. 20



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Let’s Sum Up

Concurrent program analysis by sequential code analyzers
based on a code transformation method
simulation of a concurrent program by a sequential one
implemented in the Conq2Seq plugin of Frama-C

We prove that the simulation is sound if the considered program
is sequentially consistent
does not contain recursion
does not allocate memory dynamically

April 29th, 2017 — N. Kosmatov — p. 21



From Concurrent Programs to Simulating Sequential Programs Correctness of a Transformation Conclusion and Future Work

Ongoing & Future Work

Our formalization is more general than our Frama-C plugin
add function call simulation to Conc2Seq

The proof is currently a pen & paper proof
mechanized proof using Coq is ongoing

April 29th, 2017 — N. Kosmatov — p. 22



Université d’Orléans
Laboratoire d’Informatique Fondamentale d’Orléans — Bâtiment IIIA
Rue Léonard de Vinci
F-45067 ORLÉANS
http://www.univ-orleans.fr/lifo/

http://www.univ-orleans.fr/lifo/

	From Concurrent Programs to Simulating Sequential Programs
	Concurrent Program Analysis
	Considered Language
	Principle of the Transformation

	Correctness of a Transformation
	Bi-simulation Property
	Equivalence Relations
	Basic Ideas of the Proof

	Conclusion and Future Work

