
Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Generating Loop Invariants for Program
Verification by Transformation

G.W. Hamilton

School of Computing
Dublin City University

Dublin 9, Ireland
hamilton@computing.dcu.ie

VPT 2017

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Outline

1 Introduction

2 Language

3 Loop Invariants

4 Distillation

5 Our Approach

6 Examples

7 Conclusions

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Introduction

The verification of imperative programs generally involves
annotating the program with assertions.

A theorem prover can be used to check these.

Central to this annotation process is the use of loop
invariants.

These are assertions that are true before and after each
iteration of a loop.

Finding these invariants is a difficult and time-consuming
task.

Programmers are therefore reluctant to do this.

We present a technique for automatically discovering loop
invariants using program transformation.

Avoids the possible exponential blow-up in the size of the
assertions produced by other techniques.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Language

Syntax

S ::= SKIP Do nothing
| V := E Assignment
| S1 ; S2 Sequence
| IF B THEN S1 ELSE S2 Conditional
| BEGIN VAR V1 . . .Vn S END Local block
| WHILE B DO S While loop

E ::= V Variable
| C E1 . . .Ek Constructor Application
| λV .E λ-Abstraction
| F Function Call
| E0 E1 Application
| case E0 of P1 → E1 | · · · | Pk → Ek Case Expression
| E0 where F1 = E1 . . .Fn = En Local Function Definitions

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Language

E corresponds to natural number expressions which belong to the
following datatype:

Nat ::= Zero | Succ Nat

B corresponds to boolean expressions which belong to the
following datatype:

Bool ::= True | False

We assume a number of pre-defined operators written in this
language; these definitions are unfolded and folded during
transformation:

Arithmetic operators: +,−, ∗, /,%, ∧

Boolean operators: ∧,∨,¬,⇒
Relational operators: <,>,≤,≥,=, 6=

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Partial Correctness

Floyd-Hoare Logic

{P} SKIP {P} {Q{V := E}} V := E {Q}

{P} S1 {Q}, {Q} S2 {R}
{P} S1; S2 {R}

{P ∧ B} S1 {Q}, {P ∧ ¬B} S2 {Q}
{P} IF B THEN S1 ELSE S2 {Q}

{P} S {Q}, V1 . . .Vn /∈ fv(P), fv(Q)

{P} BEGIN VAR V1 . . .Vn S END {Q}
{I ∧ B} S {I}

{I} WHILE B DO S {I ∧ ¬B}

P ⇒ P′, {P′} S {Q}
{P} S {Q}

{P} S {Q′}, Q′ ⇒ Q

{P} S {Q}

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Loop Invariants

A loop invariant is an assertion that is true before and after
each iteration of the loop.

Usually needs to be provided by the programmer.

A program which is annotated in this way will have the form:
{P} WHILE B DO {I} S {Q}
The three requirements of the invariant I are as follows:

1 P ⇒ I
2 {I ∧ B} S {I}
3 (I ∧ ¬B)⇒ Q

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

{n ≥ 0}
x := 0;
y := 1;
WHILE x < n DO

BEGIN
x := x + 1;
y := y ∗ k

END
{y = k∧n}

Invariant is often a
weakening of the
postcondition.

For example: y = k∧x

This does not satisfy the
third requirement for an
invariant:
y = k∧x ∧ ¬(x < n)⇒
y = k∧n

The additional invariant
x ≤ n is also required.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

{n ≥ 0}
x := 0;
y := 1;
WHILE x < n DO

BEGIN
x := x + 1;
y := y ∗ k

END
{y = k∧n}

Invariant is often a
weakening of the
postcondition.

For example: y = k∧x

This does not satisfy the
third requirement for an
invariant:
y = k∧x ∧ ¬(x < n)⇒
y = k∧n

The additional invariant
x ≤ n is also required.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

{n ≥ 0}
x := 0;
y := 1;
WHILE x < n DO

BEGIN
x := x + 1;
y := y ∗ k

END
{y = k∧n}

Invariant is often a
weakening of the
postcondition.

For example: y = k∧x

This does not satisfy the
third requirement for an
invariant:
y = k∧x ∧ ¬(x < n)⇒
y = k∧n

The additional invariant
x ≤ n is also required.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

{n ≥ 0}
x := 0;
y := 1;
WHILE x < n DO

BEGIN
x := x + 1;
y := y ∗ k

END
{y = k∧n}

Invariant is often a
weakening of the
postcondition.

For example: y = k∧x

This does not satisfy the
third requirement for an
invariant:
y = k∧x ∧ ¬(x < n)⇒
y = k∧n

The additional invariant
x ≤ n is also required.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

{n ≥ 0}
x := 0;
y := 1;
WHILE x < n DO

BEGIN
x := x + 1;
y := y ∗ k

END
{y = k∧n}

Invariant is often a
weakening of the
postcondition.

For example: y = k∧x

This does not satisfy the
third requirement for an
invariant:
y = k∧x ∧ ¬(x < n)⇒
y = k∧n

The additional invariant
x ≤ n is also required.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Weakest Liberal Precondition

We make use of the weakest liberal precondition originally
proposed by Dijkstra.

This is denoted as WLP(S ,Q), where S is a program and Q
is a postcondition.

The condition P = WLP(S ,Q) if Q is true after execution of
S , and no condition weaker than P satisfies this.

The rules for calculating WLP(S ,Q) for our programming
language are as follows:

WLP(SKIP,Q)=Q
WLP(V := E ,Q)=Q{V := E}
WLP(S1; S2,Q)=WLP(S1,WLP(S2,Q))

WLP(IF B THEN S1 ELSE S2,Q)=(B ⇒ WLP(S1,Q)) ∧ (¬B ⇒ WLP(S2,Q))
WLP(BEGIN VAR V1 . . .Vn S END,Q)=WLP(S ,Q), where V1 . . .Vn /∈ fv(Q)

WLP(WHILE B DO {I} S ,Q)=I ∧ ((B ∧ I) ⇒ WLP(S , I)) ∧ ((¬B ∧ I) ⇒ Q)

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Distillation

We also make use of the distillation program transformation
algorithm.

Unfold/fold program transformation that builds on top of
positive supercompilation and is strictly more powerful.

Extra power is due to generalisation and folding being
performed with respect to recursive terms.

Terms are transformed into a normalised form called distilled
form that makes it easier to identify similarities and
differences between terms.

Built-in associative operators (such as +,∗,∧,∨) are always
transformed into right-associative form.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Embedding

Generalisation is performed if the expression obtained from
distillation is an embedding of a previously distilled one.

The form of embedding we use is known as homeomorphic
embedding.

An expression E is embedded in expression E ′ if E E E ′.

V E V ′
∃i ∈ {1 . . . n}.E E Ei

E E φ(E1, . . . ,En)

∀i ∈ {1 . . . n}.Ei E E ′
i

φ(E1, . . . ,En) E φ(E ′
1, . . . ,E

′
n)

We write E � E ′ if expression E is coupled with expression E ′

using the third rule above.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Generalisation

The generalisation of expression E with respect to expression
E ′ (denoted by E u E ′) is defined as follows:

E u E ′ =



(φ(E ′′
1 , . . . ,E

′′
n),

⋃n
i=1 θi ,

⋃n
i=1 θ

′
i), if φ = φ′

where
E = φ(E1, . . . ,En)
E ′ = φ′(E ′

1, . . . ,E
′
n)

∀i ∈ {1 . . . n}.Ei u E ′
i = (E ′′

i , θi , θ
′
i)

(V , {V 7→ E}, {V 7→ E ′}), otherwise (V is fresh)

The result of this generalisation is a triple (E ′′, θ, θ′) where E ′′

is the generalised expression and θ and θ′ are substitutions s.t.
E ′′θ ≡ E and E ′′θ′ ≡ E ′.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Most Specific Generalisation

The most specific generalisation of expressions E and E ′ is an
expression E ′′ such that for every other generalisation E ′′′ of
E and E ′, there is a substitution θ such that E ′′θ ≡ E ′′′.

The most specific generalisation of expressions E and E ′

(denoted by E4E ′) is computed by exhaustively applying the
following rewrite rule to the triple obtained from the
generalisation E u E ′:

 E ,
{V1 7→ E ′,V2 7→ E ′} ∪ θ,
{V1 7→ E ′′,V2 7→ E ′′} ∪ θ′

 ⇒
 E{V1 7→ V2},
{V2 7→ E ′} ∪ θ,
{V2 7→ E ′′} ∪ θ′



G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

The Induction-Iteration Method

First proposed by Suzuki and Ishihata, 1977

For the annotated program {P} WHILE B DO S {Q}, the
logical assertion which is true if the loop is exited is calculated
as follows:

P0 = (¬B ⇒ Q)

Then, the weakest liberal precondition is used to calculate the
logical assertion which is true before each execution of the
loop body (in reverse order):

Pi+1 = (B ⇒WLP(S ,Pi))

The weakest liberal precondition of the loop is given by
∞∧
i=0

Pi .

Successive approximations Ij =
j∧

i=0
Pi are calculated until one

is found that is a loop invariant.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

The Induction-Iteration Method

There are a few drawbacks to this approach:

It is not guaranteed to terminate.
This is avoided by limiting the number of iterations.
It is found that in practice very few iterations are actually
required.

There can be an exponential blow-up in clauses into
increasingly larger conjunctions.

This is particularly the case for conditionals, which double the
number of possible paths through the loop body.
This is also a problem for other approaches that work forwards
from the precondition using a strongest postcondition
semantics.

It still requires that the programmer provides the
postcondition.

This is much less onerous than providing loop invariants and
generally forms part of the specification of the program.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Our Approach

To avoid exponential blow-up in clauses:

Conjuncts of clauses are simplified using distillation.

Resulting conjuncts are combined using generalisation.

Conjuncts for different paths through loop body are often
minor variations of each other due to effects of distillation.

To ensure termination:

If the current approximation is an embedding of a previous
one then it is generalised with respect to this previous
approximation.

This process is continued until the current approximation is a
renaming of a previous one; this is then the putative invariant
for the loop.

Guaranteed to terminate since embedding relation is a
well-quasi order.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Our Approach

Our algorithm for the automatic generation of an invariant for the
loop WHILE B DO S with postcondition Q is as follows:

f (distill(¬B ∧ Q)) ∅
where
f P φ = if ∃Q ∈ φ s.t. Q ≡ P (modulo variable renaming)

then return P
else if ∃Q ∈ φ s.t. Q � P

then f P ′ φ where P ′ = P4Q
else return f (4n

i=1{distill(B ∧ Pi)) (φ ∪ {P})

where WLP(S ,P) =
n∧

i=1

Pi

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Our Approach

The generated invariant may contain generalisation variables.

We try to find values for these variables that satisfy each of
the three requirements for loop invariants using our Poit́ın
theorem prover (this could also be done using a SAT solver).

For the annotated program {P} WHILE B DO {I} S {Q},
the initial value of variable v can be obtained by satisfying the
following predicate for v0 using the first requirement:

P ⇒ I{v := v0}
The inductive definition of v can be obtained by satisfying the
following predicate for vi+1 using the second requirement:

I{v := vi} ∧ B ⇒WLP(S , I{v := vi+1})
The final value of v can be obtained by satisfying the
following predicate for vn using the third requirement:

(I{v := vn} ∧ ¬B)⇒ Q

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

Consider again the previous example program:

{n ≥ 0}
x := 0;
y := 1;
WHILE x < n DO

BEGIN
x := x + 1;
y := y ∗ k

END
{y = k∧n}

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

We calculate the logical assertion which is true if the loop is exited:

¬(x < n) ∧ y = k∧n

This is simplified by distillation to the following:

x ≥ n ∧ y = k∧n (1)

Then, we calculate the logical assertion which is true before the
final execution of the loop body:

WLP(BEGIN x := x + 1; y := y ∗ k END, x ≥ n ∧ y = k∧n)
= x + 1 ≥ n ∧ y ∗ k = k∧n

In conjunction with the loop condition (x < n), this is simplified to
the following by distillation:

x + 1 = n ∧ y ∗ k = k∧n (2)

This is not an embedding of (1), so the calculation continues.
G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

We next calculate the logical assertion which is true before the
penultimate execution of the loop body:

WLP(BEGIN x := x + 1; y := y ∗ k END, x + 1 = n ∧ y ∗ k = k∧n)
= (x + 1) + 1 = n ∧ (y ∗ k) ∗ k = k∧n

In conjunction with the loop condition (x < n), this is simplified to
the following by distillation:

x + 2 = n ∧ y ∗ (k ∗ k) = k∧n (3)

We can see that (3) is an embedding of (2), so (3) is generalised
to produce the following:

x + v = n ∧ y ∗ w = k∧n (4)

where v and w are new generalisation variables. This is not an
embedding of (2) or (1), so the calculation continues.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

The logical assertion which is true before execution of the loop
body is now re-calculated as follows:

WLP(BEGIN x := x + 1; y := y ∗ k END, x + v = n ∧ y ∗ w = k∧n)
= (x + 1) + v = n ∧ (y ∗ k) ∗ w = k∧n

In conjunction with the loop condition (x < n), this is simplified to
the following by distillation:

x + (v + 1) = n ∧ y ∗ (k ∗ w) = k∧n (5)

We can see that (5) is an embedding of (4), so (5) is generalised
to produce the following:

x + v′ = n ∧ y ∗ w′ = k∧n (6)

where v ′ and w ′ are new generalisation variables. We can now see
that (6) is a renaming of (4), so (6) is our putative invariant.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

We now try to find inductive definitions for the generalisation
variables v ′ and w ′ from the three requirements of loop
invariants using our theorem prover Poit́ın.

The initial values of the generalisation variables (v ′0 and w ′
0)

can be determined using the first invariant requirement:

n ≥ 0 ∧ x = 0 ∧ y = 1⇒ x + v′0 = n ∧ y ∗ w′
0 = k∧n

The assignments v ′0 := n and w ′
0 := k∧n satisfy this assertion.

The inductive values of the generalisation variables (v ′i+1 and
w ′
i+1) can be determined using the second invariant

requirement:

x + v′i = n ∧ y ∗ w′
i = k∧n ∧ x < n⇒

(x + 1) + v′i+1 = n ∧ (y ∗ k) ∗ w′
i+1 = k∧n

The assignments v ′i+1 := v ′i − 1 and w ′
i+1 := w ′

i /k satisfy this
assertion.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example

The final values of the generalisation variables (v ′n and w ′
n)

can be determined using the third invariant requirement:

x + v′n = n ∧ y ∗ w′
n = k∧n ∧ ¬(x < n)⇒ y = k∧n

The assignments v ′n := 0 and w ′
n = 1 satisfy this assertion.

The discovered invariant is therefore equivalent to the
following:

x ≤ n ∧ y = k∧x

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example 2

Consider following program:

{n ≥ 0}
x := n;
y := 1;
z := k;
WHILE x > 0 DO

BEGIN
IF x%2 = 1 THEN y := y ∗ z ELSE SKIP;
x := x/2;
z := z ∗ z

END
{y = k∧n}

We use S to denote the body of the loop in the above program

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example 2

We calculate the logical assertion which is true if the loop is exited:

¬(x > 0) ∧ y = k∧n

This is simplified by distillation to the following:

x ≤ 0 ∧ y = k∧n (1)

Then, we calculate the logical assertion which is true before the
final execution of the loop body:

WLP(S, x ≤ 0 ∧ y = k∧n)

This gives the following:

(x%2 = 1⇒ x/2 ≤ 0 ∧ y ∗ z = k∧n)
∧ (¬(x%2 = 1)⇒ x/2 ≤ 0 ∧ y = k∧n)

In conjunction with the loop condition (x > 0), the second
conjunct is simplified to True by distillation.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example 2

The first conjunct is simplified to the following:

x = 1 ∧ y ∗ z = k∧n (2)

This is not an embedding of (1), so the calculation continues. We
next calculate the logical assertion which is true before the
penultimate execution of the loop body:

WLP(S, x = 1 ∧ y ∗ z = k∧n)
= (x%2 = 1⇒ x/2 = 1 ∧ (y ∗ z) ∗ (z ∗ z) = k∧n)
∧ (¬(x%2 = 1)⇒ x/2 = 1 ∧ y ∗ (z ∗ z) = k∧n)

In conjunction with the loop condition (x > 0), the first conjunct
is simplified to the following by distillation:

x = 3 ∧ y ∗ (z ∗ (z ∗ z)) = k∧n

and the second conjunct is simplified to the following:

x = 2 ∧ y ∗ (z ∗ z) = k∧n
G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example 2

These are generalised with respect to each other to give:

x = v ∧ y ∗ (z ∗ w) = k∧n (3)

where v and w are new generalisation variables. This is not an
embedding of (2) or (1), so the logical assertion which is true
before execution of the loop body is now re-calculated as follows:

WLP(S, x = v ∧ y ∗ (z ∗ w) = k∧n)
= (x%2 = 1⇒ x/2 = v ∧ (y ∗ z) ∗ ((z ∗ z) ∗ w) = k∧n)
∧ (¬(x%2 = 1)⇒ x/2 = v ∧ y ∗ ((z ∗ z) ∗ w) = k∧n)

In conjunction with the loop condition (x > 0), the first conjunct
is simplified to the following by distillation:

x = v ∗ 2 + 1 ∧ y ∗ (z ∗ (z ∗ (z ∗ w))) = k∧n

and the second conjunct is simplified to the following:

x = v ∗ 2 ∧ y ∗ (z ∗ (z ∗ w)) = k∧n
G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example 2

These are generalised with respect to each other to give:

x = v′ ∧ y ∗ (z ∗ (z ∗ w′)) = k∧n (4)

where v ′ and w ′ are new generalisation variables. We can see that
(4) is an embedding of (3), so (4) is generalised to give the
following:

x = v′′ ∧ y ∗ (z ∗ w′′) = k∧n (5)

where v ′′ and w ′′ are new generalisation variables. We can now see
that (5) is a renaming of (3), so (5) is our putative invariant.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example 2

We now try to find inductive definitions for the generalisation
variables v ′′ and w ′′ from the three requirements of loop
invariants using our theorem prover Poit́ın.

The initial values of the generalisation variables (v ′′0 and w ′′
0)

can be determined using the first invariant requirement:

n ≥ 0 ∧ x = n ∧ y = 1 ∧ z = k⇒ x = v′′0 ∧ y ∗ (z ∗ w′′
0) = k∧n

The assignments v ′′0 := n and w ′′
0 := k∧(n − 1) satisfy this

assertion.

The inductive values of the generalisation variables (v ′′i+1 and
w ′′
i+1) can be determined using the second invariant

requirement:

(x = v′′i ∧ y ∗ (z ∗ w′′
i) = k∧n ∧ x > 0)⇒

(x%2 = 1⇒ x/2 = v′′i+1 ∧ (y ∗ z) ∗ ((z ∗ z) ∗ w′′
i+1) = k∧n) ∧

(¬(x%2 = 1)⇒ x/2 = v′′i+1 ∧ y ∗ ((z ∗ z) ∗ w′′
i+1) = k∧n)

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Example 2

The assignments v ′′i+1 := v ′′i /2 and (x%2 = 1⇒ w ′′
i+1 :=

w ′′
i /(z ∗ z)) ∧ ((¬(x%2 = 1)⇒ w ′′

i+1 := w ′′
i /z) satisfy this

assertion.

The final values of the generalisation variables (v ′′n and w ′′
n)

can be determined using the third invariant requirement:

x = v′′n ∧ y ∗ (z ∗ w′′
n) = k∧n ∧ ¬(x > 0)⇒ y = k∧n

The assignments v ′′n := 0 and w ′′
n = 1/z satisfy this assertion.

The discovered invariant is therefore equivalent to the
following:

x = n/2j ∧ y = k∧(n%2j)

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Conclusions

We have described a technique for automatically discovering loop
invariants.

Similar to the induction-iteration method of Suzuki and
Ishihata.

Overcomes the problem of potential non-termination.

Avoids the potential exponential blow-up in clauses into
increasingly larger conjunctions.

Still requires that the programmer provides the postcondition
for the program.

Of course, over-generalisation can occur, and a valid loop
invariant not found.

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Related Work

Abstract interpretation:

Predicate abstraction: replace predicates with variables.
Constraint-based techniques over non-trivial mathematical
domains (such as polynomials or convex polyhedra).

Proof planning: Ireland and Stark, 1997

Dynamic methods: Ernst et al., 2001

Use of heuristics: Furia and Meyer, 2010

Induction-iteration method: Suzuki and Ishihata, 1977

G.W. Hamilton Generating Loop Invariants

Introduction Language Loop Invariants Distillation Our Approach Examples Conclusions

Further Work

Extending for languages with richer features.

Unbounded data structures such as arrays: loop invariants
need to be universally quantified.
Pointers: separation logic extends Floyd-Hoare logic to be able
to handle pointers.

Extending to reason about termination.

Using the weakest precondition rather than the weakest liberal
precondition.
Generating a variant in addition to an invariant.

G.W. Hamilton Generating Loop Invariants

	Introduction
	Language
	Loop Invariants
	Distillation
	Our Approach
	Examples
	Conclusions

