
Submitted to:
VPT 2016

c© G.W. Hamilton
This work is licensed under the
Creative Commons Attribution License.

Generating Counterexamples for Model Checking by
Transformation

G.W. Hamilton
School of Computing and Lero

Dublin City University
Ireland

hamilton@computing.dcu.ie

Counterexamples explain why a desired temporal logic property fails to hold. The generation of
counterexamples is considered to be one of the primary advantages of model checking as a verifi-
cation technique. Furthermore, when model checking does succeed in verifying a property, there is
typically no independently checkable witness that can be used as evidence for the verified property.
Previously, we have shown how program transformation techniques can be used for the verification
of both safety and liveness properties of reactive systems. However, no counterexamples or witnesses
were generated using the described techniques. In this paper, we address this issue. In particular, we
show how the program transformation technique distillation can be used to facilitate the construc-
tion of counterexamples and witnesses for temporal properties of reactive systems. Example systems
which are intended to model mutual exclusion are analysed using these techniques with respect to
both safety (mutual exclusion) and liveness (non-starvation), with counterexamples being generated
for those properties which do not hold.

1 Introduction

Model checking is a well established technique originally developed for the verification of temporal
properties of finite state systems [3]. In addition to telling the user whether the desired temporal prop-
erty holds, it can also generate a counterexample, explaining the reason why this property failed. This
is considered to be one of the major advantages of model checking when compared to other verifica-
tion methods. Fold/unfold program transformation techniques have more recently been proposed as
an approach to model checking. Many such techniques have been developed for logic programs (e.g.
[11, 15, 4, 1, 8]). However, very few such techniques have been developed for functional programs (with
the work of Lisitsa and Nemytykh [12, 2] using supercompilation [17] being a notable exception), and
these deal only with safety properties. Unfortunately, none of these techniques generate counterexamples
when the temporal property does not hold.

In previous work [6], we have shown how a fold/unfold program transformation technique can be
used to facilitate the verification of both safety and liveness properties of reactive systems which have
been specified using functional programs. These functional programs produce a trace of states as their
output, and the temporal property specifies the constraints that all output traces from the program should
satisfy. However, counterexamples and witnesses were not generated using this approach. In this paper,
we address this shortcoming to show how our previous work can be extended to generate a counterex-
ample trace when a temporal property does not hold, and a witness when it does.

The program transformation technique which we use is our own distillation [5, 7] which builds on
top of positive supercompilation [16], but is much more powerful. Distillation is used to transform the
programs defining reactive systems into a simplified form which makes them much easier to analyse. We

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Generating Counterexamples by Transformation

then show how temporal properties for this simplified form can be verified, and extend this to generate
counterexamples and witnesses. The described techniques are applied to a number of example systems
which are intended to model mutually exclusive access to a critical resource by two processes. When
a specified temporal property does not hold, we show how our approach can be applied to generate a
corresponding counterexample and when the property does hold we show our approach can be applied
to generate a corresponding witness.

The remainder of this paper is structured as follows. In Section 2, we introduce the functional
language over which our verification techniques are defined. In Section 3, we show how to specify
reactive systems in our language, and give a number of example systems which are intended to model
mutually exclusive access to a critical resource by two processes. In Section 4, we describe how to
specify temporal properties for reactive systems defined in our language, and specify both safety (mutual
exclusion) and liveness (non-starvation) for the example systems. In Section 5, we describe our technique
for verifying temporal properties of reactive systems and apply this technique to the example systems
to verify the previously specified temporal properties. In Section 6, we describe our technique for the
generation of counterexamples and witnesses, and apply this technique to the example systems. Section
7 concludes and considers related work.

2 Language

In this section, we describe the syntax and semantics of the higher-order functional language which will
be used throughout this paper.

2.1 Syntax

The syntax of our language is given in Figure 1.

e ::= x Variable
| c e1 . . .ek Constructor Application
| λx.e λ -Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1→ e1 | · · · | pk→ ek Case Expression
| let x = e0 in e1 Let Expression
| e0 where f1 = e1 . . . fn = en Local Function Definitions

p ::= c x1 . . .xk Pattern

Figure 1: Language Grammar

A program in the language is an expression which can be a variable, constructor application, λ -abstraction,
function call, application, case, let or where. Variables introduced by λ -abstractions, let expressions and
case patterns are bound; all other variables are free. An expression which contains no free variables is
said to be closed.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has arity 2. In an expression
c e1 . . .en, n must equal the arity of c. The patterns in case expressions may not be nested. No variable
may appear more than once within a pattern and no constructor may appear within more than one pattern.

G.W. Hamilton 3

We assume that the patterns in a case expression are exhaustive; we also allow a wildcard pattern which
always matches if none of the earlier patterns match. Types are defined using algebraic data types, and it
is assumed that programs are well-typed. Erroneous terms such as case (λx.e) of p1→ e1 | · · · | pk→ ek
and (c e1 . . .en) e where c is of arity n cannot therefore occur.

2.2 Semantics

The call-by-name operational semantics of our language is standard: we define an evaluation relation
⇓ between closed expressions and values, where values are expressions in weak head normal form (i.e.
constructor applications or λ -abstractions). We define a one-step reduction relation r; inductively as
shown in Figure 2, where the reduction r can be f (unfolding of function f), c (elimination of constructor
c) or β (β -substitution).

((λx.e0) e1)
β
; (e0{x 7→ e1}) (let x = e0 in e1)

β
; (e1{x 7→ e0})

f = e

f
f

; e

e0
r; e′0

(e0 e1)
r; (e′0 e1)

pi = c x1 . . .xn

(case (c e1 . . .en) of p1 : e′1| . . . |pk : e′k)
c; (ei{x1 7→ e1, . . . ,xn 7→ en})

e0
r; e′0

(case e0 of p1 : e1| . . . pk : ek)
r; (case e′0 of p1 : e1| . . . pk : ek)

Figure 2: One-Step Reduction Relation

We use the notation e ; if the expression e reduces, e⇑ if e diverges, e⇓ if e converges and e⇓ v if e
evaluates to the value v. These are defined as follows, where r∗; denotes the reflexive transitive closure
of r;:

e ;, iff ∃e′.e r; e′ e⇓, iff ∃v.e⇓v
e⇓v, iff e r∗; v∧¬(v ;) e⇑, iff ∀e′.e r∗; e′⇒ e′ ;

3 Specifying Reactive Systems

In this section, we show how to specify reactive systems in our programming language. While reactive
systems are usually specified using labelled transitions systems (LTSs), our specifications can be trivially
derived from these. Reactive systems have to react to a series of external events by updating their states.
In order to facilitate this, we make use of a list datatype, which is defined as follows for the element type
a:

List a ::= Nil |Cons a List

We use [] as a shorthand for Nil, and [s1, . . . ,sn] as a shorthand for a list containing the elements s1 . . .sn.
We also use ++ to represent list concatenation. Our programs will map a (potentially infinite) input list
of external events and an initial state to a (potentially infinite) output list of observable states (a trace),
which gives the values of a subset of state variables whose properties can be verified.

4 Generating Counterexamples by Transformation

In this paper, we wish to analyse a number of systems which are intended to implement mutually
exclusive access to a critical resource for two processes. In all of these systems, the external events
belong to the following datatype:

Event ::= Request1 | Request2 | Take1 | Take2 | Release1 | Release2

Each of the two processes can therefore request access to the critical resource, and take and release this
resource. Observable states in all of our example systems belong to the following datatype:

State ::= ObsState ProcState ProcState

ProcState ::= T |W |U

Each process can therefore be thinking (T), waiting for the critical resource (W) or using the critical
resource (U).

Each of our example systems is transformed into a simplified form as previously shown in [6] using
distillation [5, 7], a powerful program transformation technique which builds on top of the supercompi-
lation transformation [17, 16]. Due to the nature of the programs modelling reactive systems, in which
the input is an external event list, and the output is a list of observable states, the programs resulting from
this transformation take the form e /0, where eρ is defined as shown in Figure 3 where the let variables are
added to the set ρ , and will not be used as case selectors.

eρ ::= Cons eρ

0 eρ

1
| f x1 . . .xn

| case x of p1→ eρ

1 | · · · | pk→ eρ
n , where x /∈ ρ

| x eρ

1 . . .e
ρ
n , where x ∈ ρ

| let x = λx1 . . .xn.e
ρ

0 in e(ρ∪{x})1
| eρ

0 where f1 = λx11 . . .x1k .e
ρ

1 . . . fn = λxn1 . . .xnk .e
ρ
n

Figure 3: Simplified Form Resulting From Distillation

The crucial syntactic property of this simplified form is that all functions must be tail recursive; this
is what allows the resulting programs to be verified more easily. In all of the following examples, the
variable es represents the external event list.

Example 1 In the first example shown in Figure 4, each process can request access to the critical re-
source if it is thinking and the other process is not using it, take the critical resource if it is waiting for
it, and release the critical resource if it is using it. The LTS representation of this program is shown in
Figure 5 (for ease of presentation of this and subsequent LTSs, transitions back into the same state have
been omitted).

Example 2 In the second example shown in Figure 6, each process can request access to the critical
resource if it is thinking and the other process is not using it, take the critical resource if it is waiting for it
and the other process is thinking, and release the critical resource if it is using it. The LTS representation
of this program is shown in Figure 7.

G.W. Hamilton 5

Cons (ObsState T T) (f1 es)
where
f1 = λes.case es of

Cons e es → case e of
Request1 → Cons (ObsState W T) (f2 es)
| Request2 → Cons (ObsState T W) (f3 es)
| → Cons (ObsState T T) (f1 es)

f2 = λes.case es of
Cons e es → case e of

Take1 → Cons (ObsState U T) (f4 es)
| Request2 → Cons (ObsState W W) (f5 es)
| → Cons (ObsState W T) (f2 es)

f3 = λes.case es of
Cons e es → case e of

Request1 → Cons (ObsState W W) (f5 es)
| Take2 → Cons (ObsState T U) (f6 es)
| → Cons (ObsState T W) (f3 es)

f4 = λes.case es of
Cons e es → case e of

Release1 → Cons (ObsState T T) (f1 es)
| → Cons (ObsState U T) (f4 es)

f5 = λes.case es of
Cons e es → case e of

Take1 → Cons (ObsState U W) (f7 es)
| Take2 → Cons (ObsState W U) (f8 es)
| → Cons (ObsState W W) (f5 es)

f6 = λes.case es of
Cons e es → case e of

Release2 → Cons (ObsState T T) (f1 es)
| → Cons (ObsState T U) (f6 es)

f7 = λes.case es of
Cons e es → case e of

Release1 → Cons (ObsState T W) (f3 es)
| Take2 → Cons (ObsState U U) (f9 es)
| → Cons (ObsState U W) (f7 es)

f8 = λes.case es of
Cons e es → case e of

Release2 → Cons (ObsState W T) (f2 es)
| Take1 → Cons (ObsState U U) (f9 es)
| → Cons (ObsState W U) (f8 es)

f9 = λes.case es of
Cons e es → case e of

Release1 → Cons (ObsState T U) (f6 es)
| Release2 → Cons (ObsState U T) (f4 es)
| → Cons (ObsState U U) (f9 es)

Figure 4: Example 1

6 Generating Counterexamples by Transformation

f1
s1 = T
s2 = T

f2
s1 =W
s2 = T

Request1
f3
s1 = T
s2 =W

Request2

f4
s1 =U
s2 = T

Take1

Release1

f5
s1 =W
s2 =W

Request2 Request1
f6
s1 = T
s2 =U

Take2

Release2

f7
s1 =U
s2 =W

Take1

Release2

f8
s1 =W
s2 =U

Take2

Release1

f9
s1 =U
s2 =U

Take2 Take1

Figure 5: LTS Representation of Example 1

Example 3 In the final example shown in Figure 8, each process can request access to the critical re-
source if it is thinking, take the critical resource if it is waiting for it and requested access before the
other process, and release the critical resource if it is using it. Note that this program is the result of
transforming an implementation of Lamport’s bakery algorithm [9] for two processes as shown in [6].
Although the original program makes use of numbered tickets and is therefore an infinite state system,
the use of tickets is completely transformed away and the resulting program has a finite number of states.
The LTS representation of this program is shown in Figure 9.

4 Specification of Temporal Properties

In this section, we describe how temporal properties of reactive systems are specified. We use Linear-
time Temporal Logic (LTL), in which the set of well-founded formulae (WFF) are defined inductively as
follows. All atomic propositions p are in WFF; if ϕ and ψ are in WFF, then so are:

• ¬ϕ

• ϕ ∨ψ

• ϕ ∧ψ

• ϕ ⇒ ψ

• 2ϕ

• 3ϕ

• #ϕ

G.W. Hamilton 7

Cons (ObsState T T) (f1 es)
where
f1 = λes.case es of

Cons e es → case e of
Request1 → Cons (ObsState W T) (f2 es)
| Request2 → Cons (ObsState T W) (f3 es)
| → Cons (ObsState T T) (f1 es)

f2 = λes.case es of
Cons e es → case e of

Take1 → Cons (ObsState U T) (f4 es)
| Request2 → Cons (ObsState W W) (f5 es)
| → Cons (ObsState W T) (f2 es)

f3 = λes.case es of
Cons e es → case e of

Request1 → Cons (ObsState W W) (f5 es)
| Take2 → Cons (ObsState T U) (f6 es)
| → Cons (ObsState T W) (f3 es)

f4 = λes.case es of
Cons e es → case e of

Release1 → Cons (ObsState T T) (f1 es)
| → Cons (ObsState U T) (f4 es)

f5 = λes.case es of
Cons e es → case e of

→ Cons (ObsState W W) (f5 es)
f6 = λes.case es of

Cons e es → case e of
Release2 → Cons (ObsState T T) (f1 es)
| → Cons (ObsState T U) (f6 es)

Figure 6: Example 2

f1
s1 = T
s2 = T

f2
s1 =W
s2 = T

Request1
f3
s1 = T
s2 =W

Request2

f4
s1 =U
s2 = T

Take1

Release1

f5
s1 =W
s2 =W

Request2 Request1
f6
s1 = T
s2 =U

Take2

Release2

Figure 7: LTS Representation of Example 2

8 Generating Counterexamples by Transformation

Cons (ObsState T T) (f1 es)
where
f1 = λes.case es of

Cons e es → case e of
Request1 → Cons (ObsState W T) (f2 es)
| Request2 → Cons (ObsState T W) (f3 es)
| → Cons (ObsState T T) (f1 es)

f2 = λes.case es of
Cons e es → case e of

Take1 → Cons (ObsState U T) (f4 es)
| Request2 → Cons (ObsState W W) (f6 es)
| → Cons (ObsState W T) (f2 es)

f3 = λes.case es of
Cons e es → case e of

Take2 → Cons (ObsState T U) (f5 es)
| Request1 → Cons (ObsState W W) (f7 es)
| → Cons (ObsState T W) (f3 es)

f4 = λes.case es of
Cons e es → case e of

Release1 → Cons (ObsState T T) (f1 es)
| Request2 → Cons (ObsState U W) (f8 es)
| → Cons (ObsState U T) (f4 es)

f5 = λes.case es of
Cons e es → case e of

Release2 → Cons (ObsState T T) (f1 es)
| Request1 → Cons (ObsState W U) (f9 es)
| → Cons (ObsState T U) (f5 es)

f6 = λes.case es of
Cons e es → case e of

Take1 → Cons (ObsState U W) (f8 es)
| → Cons (ObsState W W) (f6 es)

f7 = λes.case es of
Cons e es → case e of

Take2 → Cons (ObsState W U) (f9 es)
| → Cons (ObsState W W) (f7 es)

f8 = λes.case es of
Cons e es → case e of

Release1 → Cons (ObsState T W) (f3 es)
| → Cons (ObsState U W) (f8 es)

f9 = λes.case es of
Cons e es → case e of

Release2 → Cons (ObsState W T) (f2 es)
| → Cons (ObsState W U) (f9 es)

Figure 8: Example 3

G.W. Hamilton 9

f1
s1 = T
s2 = T

f2
s1 =W
s2 = T

Request1
f3
s1 = T
s2 =W

Request2

f4
s1 =U
s2 = T

Take1

Release1

f6
s1 =W
s2 =W

Request2

f7
s1 =W
s2 =W

Request1

f5
s1 = T
s2 =U

Take2

Release2

f8
s1 =U
s2 =W

Take1Request2

Release1

f9
s1 =W
s2 =U

Take2 Request1

Release2

Figure 9: LTS Representation of Example 3

The temporal operator 2ϕ means that ϕ is always true; this is used to express safety properties. The
temporal operator 3ϕ means that ϕ will eventually be true; this is used to express liveness properties.
The temporal operator #ϕ means that ϕ is true in the next state. These modalities can be combined to
obtain new modalities; for example, 23ϕ means that ϕ is true infinitely often, and 32ϕ means that
ϕ is eventually true forever. Fairness constraints can also be specified for some external events (those
belonging to the set F) which require that they occur infinitely often. For the examples given in this
paper, it is assumed that all external events belong to F .

Here, propositional models for linear-time temporal formulas consist of a list of observable states
π = [s0,s1, . . .]. The satisfaction relation is extended to formulas in LTL for a model π and position i as
follows.

π, i � p iff p ∈ si

π, i � ¬ϕ iff π, i 2 ϕ

π, i � ϕ ∨ψ iff π, i � ϕ or π, i � ψ

π, i � ϕ ∧ψ iff π, i � ϕ and π, i � ψ

π, i � ϕ ⇒ ψ iff π, i 2 ϕ or π, i � ψ

π, i � 2ϕ iff ∀ j ≥ i.π, j � ϕ

π, i � 3ϕ iff ∃ j ≥ i.π, j � ϕ

π, i � #ϕ iff π, i+1 � ϕ

A formula ϕ holds in model π if it holds at position 0 i.e. π,0 � ϕ .
The atomic propositions of these temporal formulae can be trivially translated into our functional

language. For our verification rules, we define the following datatype for truth values:

TruthVal ::= True | False | Undefined

10 Generating Counterexamples by Transformation

We use a Kleene three-valued logic because our verification rules must always return an answer, but
some of the properties to be verified may give an undefined outcome. For our example programs which
attempt to implement mutual exclusion, the following two properties are defined. Within these tempo-
ral properties, we use the variable s to denote the current observable state whose properties are being
specified.

Property 1 (Mutual Exclusion) This is a safety property which specifies that both processes cannot be
using the critical resource at the same time. This can be specified as follows:

2(case s of
ObsState s1 s2 → case s1 of

U → case s2 of
U → False
| → True

| → True)

Property 2 (Non-Starvation) This is a liveness property which specifies that each process must even-
tually get to use the critical resource if they are waiting for it. This can be specified for process 1 as
follows (the specification of this property for process 2 is similar):

2((case s of
ObsState s1 s2 → case s1 of

W → True
| → False)⇒3(case s of

ObsState s1 s2 → case s1 of
U → True
| → False))

5 Verification of Temporal Properties

In this section, we show how temporal properties of reactive systems defined in our functional language
can be verified. We define our verification rules on the restricted form of program defined in Figure 3
as shown in Figure 10. The parameter ϕ denotes the property to be verified and φ denotes the function
variable environment. ρ denotes the set of function calls previously encountered; this is used for the
detection of loops to ensure termination. ρ is also used in the verification of the 2 operator (which
evaluates to True on encountering a loop), and the verification of the 3 operator (which evaluates to
False on encountering a loop); ρ is reset to empty when the verification moves inside these temporal
operators. For all other temporal formulae, the value Undefined is returned on encountering a loop.

The verification rules can be explained as follows. Rules (1-4) deal with the logical connectives ∧,
∨, ⇒ and ¬. These are implemented in our language in the usual way for a Kleene three-valued logic
using the corresponding operators ∧3, ∨3, ⇒3 and ¬3. Rules (5a-d) deal with a constructed stream of
states. In rule (5a), if we are trying to verify that a property is always true, then we verify that it is true
for the first state (with ρ reset to empty) and is always true in all remaining states. In rule (5b), if we
are trying to verify that a property is eventually true, then we verify that it is either true for the first state
(with ρ reset to empty) or is eventually true in all remaining states. In rule (5c), if we are trying to verify
that a property is true in the next state then we verify that the property is true for the next state. In rule
(5d), if we are trying to verify that a property is true in the current state then we verify that the property
is true for the current state by evaluating the property using the value of the current state for the state
variable s. Rules (6a-c) deal with function calls. In rule (6a), if we are trying to verify that a property is

G.W. Hamilton 11

(1) P[[e]] (ϕ ∧ψ) φ ρ = (P[[e]] ϕ φ ρ)∧3 (P[[e]] ψ φ ρ)
(2) P[[e]] (ϕ ∨ψ) φ ρ = (P[[e]] ϕ φ ρ)∨3 (P[[e]] ψ φ ρ)
(3) P[[e]] (ϕ ⇒ ψ) φ ρ = (P[[e]] ϕ φ ρ)⇒3 (P[[e]] ψ φ ρ)
(4) P[[e]] (¬ϕ) φ ρ = ¬3(P[[e]] ϕ φ ρ)
(5a) P[[Cons e0 e1]] (2ϕ) φ ρ = (P[[Cons e0 e1]] ϕ φ /0)∧3 (P[[e1]] (2ϕ) φ ρ)
(5b) P[[Cons e0 e1]] (3ϕ) φ ρ = (P[[Cons e0 e1]] ϕ φ /0)∨3 (P[[e1]] (3ϕ) φ ρ)
(5c) P[[Cons e0 e1]] (#ϕ) φ ρ = P[[e1]] ϕ φ ρ

(5d) P[[Cons e0 e1]] ϕ φ ρ = v, where ϕ[e0/s] ⇓ v

(6a) P[[f x1. . .xn]] (2ϕ) φ ρ =
{

True, if f ∈ ρ

P[[e[x1/x′1, . . . ,xn/x′n]]] (2ϕ) φ (ρ ∪{ f}), otherwise
where φ(f) = λx′1 . . .x

′
n.e

(6b) P[[f x1. . .xn]] (3ϕ) φ ρ =
{

False, if f ∈ ρ

P[[e[x1/x′1, . . . ,xn/x′n]]] (3ϕ) φ (ρ ∪{ f}), otherwise
where φ(f) = λx′1 . . .x

′
n.e

(6c) P[[f x1. . .xn]] ϕ φ ρ =
{

Undefined, if f ∈ ρ

P[[e[x1/x′1, . . . ,xn/x′n]]] ϕ φ (ρ ∪{ f}), otherwise
where φ(f) = λx′1 . . .x

′
n.e

(7a) P[[case x of p1→ e1 | · · · | pn→ en]] (3ϕ) φ ρ

= (
∨

pi∈F
P[[ei]] (3ϕ) φ ρ)∨3 (

n∧
i=1

P[[ei]] (3ϕ) φ ρ)

(7b) P[[case x of p1→ e1 | · · · | pn→ en]] ϕ φ ρ

=
n∧

i=1
P[[ei]] ϕ φ ρ

(8) P[[x e1 . . .en]] ϕ φ ρ = Undefined
(9) P[[let x = e0 in e1]] ϕ φ ρ = P[[e1]] ϕ φ ρ

(10) P[[e0 where f1 = e1 . . . fn = en]] ϕ φ ρ

= P[[e0]] ϕ (φ ∪{ f1 7→ e1, . . . , fn 7→ en}) ρ

Figure 10: Verification Rules

always true, then if the function call has been encountered before while trying to verify the same property
we can return the value True; this corresponds to the standard greatest fixed point calculation normally
used for the 2 operator in which the property is initially assumed to be True for all states. Otherwise,
the function is unfolded and added to the set of previously encountered function calls for this property.
In rule (6b), if we are trying to verify that a property is eventually true, then if the function call has
been encountered before while trying to verify the same property we can return the value False; this
corresponds to the standard least fixed point calculation normally used for the 3 property in which the
property is initially assumed to be False for all states. Otherwise, the function is unfolded and added to
the set of previously encountered function calls for this property. In rule (6c), if we are trying to verify
that any other property is true, then if the function call has been encountered before we can return the
value Undefined since a loop has been detected. Otherwise, the function is unfolded and added to the
set of previously encountered function calls. Rules (7a-b) deal with case expressions. In rule (7a), if we
are trying to verify that a property is eventually true, then we verify that it is either eventually true for at
least one of the branches for which there is a fairness assumption (since these branches must be selected
eventually), or that it is eventually true for all branches. In Rule (7b), if we are trying to verify that any

12 Generating Counterexamples by Transformation

other property is true, then we verify that it is true for all branches. In rule (8), if we encounter a free
variable, then we return the value Undefined since we cannot determine the value of the variable; this
must be a let variable which has been abstracted, so no information can be determined for it. In rule (9),
in order to verify that a property is true for a let expression, we verify that it is true for the let body; this
is where we perform abstraction of the extracted sub-expression. In rule (10), for a where expression,
the function definitions are added to the environment φ .

Theorem 5.1 (Soundness) ∀e ∈ Prog,es ∈ List Event,π ∈ List State,ϕ ∈WFF:
(e es r∗; π)∧ (P[[e]] ϕ /0 /0 = True⇒ π,0 � ϕ)∧ (P[[e]] ϕ /0 /0 = False⇒ π,0 2 ϕ)

Proof. The proof of this is by structural induction on the program e. 2

Theorem 5.2 (Termination) ∀e ∈ Prog, ϕ ∈WFF: P[[e]] ϕ /0 /0 always terminates.

Proof. Proof of termination is quite straightforward since there will be a finite number of functions
and uses of the temporal operators 2 and 3, and verification of each of these temporal operators will
terminate when a function is re-encountered. 2

Using these rules, we try to verify the two properties (mutual exclusion and non-starvation) for the
example programs for mutual exclusion given in Section 3. Firstly, distillation is applied to each of the
programs.

Example 1 For the program shown in Figure 4, Property 2 (non-starvation) holds. The verification of
Property 1 (mutual exclusion) is shown below where we represent Property 1 by 2ϕ and the function
environment by φ .

P[[Cons (ObsState T T) (f1 es)]] (2ϕ) /0 /0
= {5a}

(P[[Cons (ObsState T T) (f1 es)]] ϕ /0 /0)∧3 (P[[f1 es]] (2ϕ) /0 /0)
= {5d}

(ϕ[(ObsState T T)/s])∧3 (P[[f1 es]] (2ϕ) /0 /0)
= {calculation, 6a, 7b, 5a, 5d}

(P[[f1 es]] (2ϕ) φ { f1})∧3 (P[[f2 es]] (2ϕ) φ { f1})∧3 (P[[f3 es]] (2ϕ) φ { f1})
= {6a}

(P[[f2 es]] (2ϕ) φ { f1})∧3 (P[[f3 es]] (2ϕ) φ { f1})
= {calculation, 6a, 7b, 5a, 5d}

(P[[f2 es]] (2ϕ) φ { f1, f2})∧3 (P[[f4 es]] (2ϕ) φ { f1, f2})∧3 (P[[f5 es]] (2ϕ) φ { f1, f2})
∧3(P[[f3 es]] (2ϕ) φ { f1})

= {6a}
(P[[f4 es]] (2ϕ) φ { f1, f2})∧3 (P[[f5 es]] (2ϕ) φ { f1, f2})∧3 (P[[f3 es]] (2ϕ) φ { f1})

= {calculation, 6a, 7b, 5a, 5d}
(P[[f1 es]] (2ϕ) φ { f1, f2, f4})∧3 (P[[f4 es]] (2ϕ) φ { f1, f2, f4})∧3 (P[[f5 es]] (2ϕ) φ { f1, f2})
∧3(P[[f3 es]] (2ϕ) φ { f1})

= {6a}
(P[[f5 es]] (2ϕ) φ { f1, f2})∧3 (P[[f3 es]] (2ϕ) φ { f1})

= {calculation, 6a, 7b, 5a, 5d}
(P[[f5 es]] (2ϕ) φ { f1, f2, f5})∧3 (P[[f7 es]] (2ϕ) φ { f1, f2, f5})∧3 (P[[f8 es]] (2ϕ) φ { f1, f2, f5})
∧3(P[[f3 es]] (2ϕ) φ { f1})

G.W. Hamilton 13

= {6a}
(P[[f7 es]] (2ϕ) φ { f1, f2, f5})∧3 (P[[f8 es]] (2ϕ) φ { f1, f2, f5})∧3 (P[[f3 es]] (2ϕ) φ { f1})

= {calculation, 6a, 7b, 5a, 5d}
False

Example 2 For the program shown in Figure 6, Property 1 (mutual exclusion) holds. The verification
of Property 2 (non-starvation) is shown below where we represent Property 2 by 2(ϕ ⇒ 3ψ) and the
function environment by φ .

P[[Cons (ObsState T T) (f1 es)]] (2(ϕ ⇒3ψ)) /0 /0
= {5a}

(P[[Cons (ObsState T T) (f1 es)]] (ϕ ⇒3ψ) /0 /0)∧3 (P[[f1 es]] (2(ϕ ⇒3ψ)) /0 /0)
= {5d}

((ϕ ⇒3ψ)[(ObsState T T)/s])∧3 (P[[f1 es]] (2(ϕ ⇒3ψ)) /0 /0)
= {calculation, 3, 6a, 7b, 5a, 5d}

(P[[f1 es]] (2(ϕ ⇒3ψ)) φ { f1})∧3 (P[[f2 es]] (2(ϕ ⇒3ψ)) φ { f1})
∧3(P[[f3 es]] (2(ϕ ⇒3ψ)) φ { f1})

= {6a}
(P[[f2 es]] (2(ϕ ⇒3ψ)) φ { f1})∧3 (P[[f3 es]] (2(ϕ ⇒3ψ)) φ { f1})

= {calculation, 3, 6a, 7b, 5a, 5d}
(P[[f2 es]] (2(ϕ ⇒3ψ)) φ { f1, f2})∧3 (P[[f4 es]] (2(ϕ ⇒3ψ)) φ { f1, f2})
∧3(P[[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2})∧3 (P[[f3 es]] (2(ϕ ⇒3ψ)) φ { f1})

= {6a}
(P[[f4 es]] (2(ϕ ⇒3ψ)) φ { f1, f2})∧3 (P[[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2})
∧3(P[[f3 es]] (2(ϕ ⇒3ψ)) φ { f1})

= {calculation, 3, 6a, 7b, 5a, 5d}
(P[[f1 es]] (2(ϕ ⇒3ψ)) φ { f1, f2, f4})∧3 (P[[f4 es]] (2(ϕ ⇒3ψ)) φ { f1, f2, f4})
∧3(P[[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2})∧3 (P[[f3 es]] (2(ϕ ⇒3ψ)) φ { f1})

= {6a}
(P[[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2})∧3 (P[[f3 es]] (2(ϕ ⇒3ψ)) φ { f1})

= {calculation, 6a, 7b, 5a, 3, 5b, 6b}
False

Example 3 For the program shown in Figure 8 both Property 1 (mutual exclusion) and Property 2 (non-
starvation) hold.

6 Construction of Counterexamples and Witnesses

In this section, we show how counterexamples and witnesses for temporal properties of reactive systems
defined in our functional language can be constructed. We augment the verification rules from the previ-
ous section to generate a verdict which consists of a trace (a list of observable states) along with a truth
value and belongs to the following datatype:

Verdict ::= TruthVal×List State

The trace will give a counterexample if the associated truth value is False, and a witness if the corre-
sponding truth value is True. The logical connectives ∧v,∨v,⇒v and ¬v are extended to this datatype as
∧v,∨v,⇒v and ¬v, which are defined as follows.

14 Generating Counterexamples by Transformation

(b1, t1)∧v (b2, t2) = (b, t)
where
b = b1∧v b2
t = min{ti|ti ∈ {t1, t2}∧bi = b}

(b1, t1)∨v (b2, t2) = (b, t)
where
b = b1∨v b2
t = min{ti|ti ∈ {t1, t2}∧bi = b}

(b1, t1)⇒v (b2, t2) = (¬v(b1, t1))∨v (b2, t2)

¬v(b, t) = (¬vb, t)

If there is more than one counterexample or witness, the function min is used to ensure that the shortest
one is always returned. The rules for the construction of counterexamples and witnesses for the simplified
form of program defined in Figure 3 are as shown in Figure 11.

(1) C [[e]] (ϕ ∧ψ) φ ρ π = (C [[e]] ϕ φ ρ π)∧v (C [[e]] ψ φ ρ π)
(2) C [[e]] (ϕ ∨ψ) φ ρ π = (C [[e]] ϕ φ ρ π)∨v (C [[e]] ψ φ ρ π)
(3) C [[e]] (ϕ ⇒ ψ) φ ρ π = (C [[e]] ϕ φ ρ π)⇒v (C [[e]] ψ φ ρ π)
(4) C [[e]] (¬ϕ) φ ρ π = ¬v(C [[e]] ϕ φ ρ π)
(5a) C [[Cons e0 e1]] (2ϕ) φ ρ π = (C [[Cons e0 e1]] ϕ φ /0 π)∧v (C [[e1]] (2ϕ) φ ρ (π++[e0]))
(5b) C [[Cons e0 e1]] (3ϕ) φ ρ π = (C [[Cons e0 e1]] ϕ φ /0 π)∨v (C [[e1]] (3ϕ) φ ρ (π++[e0]))
(5c) C [[Cons e0 e1]] (#ϕ) φ ρ π = C [[e1]] ϕ φ ρ (π++[e0])
(5d) C [[Cons e0 e1]] ϕ φ ρ π = (v,π++[e0]), where ϕ[e0/s] ⇓ v

(6a) C [[f x1. . .xn]] (2ϕ) φ ρ π =
{
(True,π), if f ∈ ρ

C [[e[x1/x′1, . . . ,xn/x′n]]] (2ϕ) φ (ρ ∪{ f}) π , otherwise
where φ(f) = λx′1 . . .x

′
n.e

(6b) C [[f x1. . .xn]] (3ϕ) φ ρ π =
{
(False,π), if f ∈ ρ

C [[e[x1/x′1, . . . ,xn/x′n]]] (3ϕ) φ (ρ ∪{ f}) π , otherwise
where φ(f) = λx′1 . . .x

′
n.e

(6c) C [[f x1. . .xn]] ϕ φ ρ π =
{
(Unde f ined,π), if f ∈ ρ

C [[e[x1/x′1, . . . ,xn/x′n]]] ϕ φ (ρ ∪{ f}) π , otherwise
where φ(f) = λx′1 . . .x

′
n.e

(7a) C [[case x of p1→ e1 | · · · | pn→ en]] (3ϕ) φ ρ π

= (
∨

pi∈F
C [[ei]] (3ϕ) φ ρ π)∨v (

n∧
i=1

C [[ei]] (3ϕ) φ ρ π)

(7b) C [[case x of p1→ e1 | · · · | pn→ en]] ϕ φ ρ π

=
n∧

i=1
C [[ei]] ϕ φ ρ π

(8) C [[x e1 . . .en]] ϕ φ ρ π = (Unde f ined,π)
(9) C [[let x = e0 in e1]] ϕ φ ρ π = C [[e1]] ϕ φ ρ π

(10) C [[e0 where f1 = e1 . . . fn = en]] ϕ φ ρ π

= C [[e0]] ϕ (φ ∪{ f1 7→ e1, . . . , fn 7→ en}) ρ π

Figure 11: Counterexample and Witness Construction Rules

G.W. Hamilton 15

These rules are very similar to the verification rules given in Figure 10, with the addition of the parameter
π , which gives the value of the current trace thus far. As each observable state in the program trace is
processed in rules (5a-d), it is appended to the end of π and when a final truth value is obtained it is
returned along with the value of π . Counterexamples and witnesses can of course be infinite in the form
of a lasso consisting of a finite prefix and a loop, while only a finite trace will be returned using these
rules. However, it is is quite easy to detect the loop in the generated trace as an observable state will be
repeated at the end of the trace. To prove that the constructed counterexample or witness is valid, we
need to prove that it satisfies the original temporal property which was verified.

Theorem 6.1 (Validity) ∀e ∈ Prog,ϕ ∈WFF:
(C [[e]] ϕ /0 /0 [] = (True,π)⇒ π,0 � ϕ)∧ (C [[e]] ϕ /0 /0 [] = (False,π)⇒ π,0 2 ϕ)

Proof. The proof of this is by structural induction on the program e. 2

Using these rules, we try to construct counterexamples for the two properties (mutual exclusion and
non-starvation) for the example programs given in Section 3.

Example 1 For the program shown in Figure 4, the application of these rules for Property 1 (mutual
exclusion) is shown below where we represent Property 1 by 2ϕ and the function environment by φ . We
also use the shorthand notation (X ,Y) to denote the state ObsState X Y .

C [[Cons (T,T) (f1 es)]] (2ϕ) /0 /0 []
= {5a}

(C [[Cons (T,T) (f1 es)]] ϕ /0 /0 [])∧v (C [[f1 es]] (2ϕ) /0 /0 [(T,T)])
= {5d}

(ϕ[(T,T)/s])∧v (C [[f1 es]] (2ϕ) /0 /0 [(T,T)])
= {calculation, 6a, 7b, 5a, 5d}

(C [[f1 es]] (2ϕ) φ { f1} [(T,T),(T,T)])∧v (C [[f2 es]] (2ϕ) φ { f1} [(T,T),(W,T)])
∧v(C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

= {6a}
(C [[f2 es]] (2ϕ) φ { f1} [(T,T),(W,T)])∧v (C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

= {calculation, 6a, 7b, 5a, 5d}
(C [[f2 es]] (2ϕ) φ { f1, f2} [(T,T),(W,T),(W,T)])
∧v(C [[f4 es]] (2ϕ) φ { f1, f2} [(T,T),(W,T),(U,T)])
∧v(C [[f5 es]] (2ϕ) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

= {6a}
(C [[f4 es]] (2ϕ) φ { f1, f2} [(T,T),(W,T),(U,T)])
∧v(C [[f5 es]] (2ϕ) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

= {calculation, 6a, 7b, 5a, 5d}
(C [[f1 es]] (2ϕ) φ { f1, f2, f4} [(T,T),(W,T),(U,T),(T,T)])
∧v(C [[f4 es]] (2ϕ) φ { f1, f2, f4} [(T,T),(W,T),(U,T),(U,T)])
∧v(C [[f5 es]] (2ϕ) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

= {6a}
(C [[f5 es]] (2ϕ) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

16 Generating Counterexamples by Transformation

= {calculation, 6a, 7b, 5a, 5d}
(C [[f5 es]] (2ϕ) φ { f1, f2, f5} [(T,T),(W,T),(W,W),(W,W)])
∧v(C [[f7 es]] (2ϕ) φ { f1, f2, f5} [(T,T),(W,T),(W,W),(U,W)])
∧v(C [[f8 es]] (2ϕ) φ { f1, f2, f5} [(T,T),(W,T),(W,W),(W,U)])
∧v(C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

= {6a}
(C [[f7 es]] (2ϕ) φ { f1, f2, f5} [(T,T),(W,T),(W,W),(U,W)])
∧v(C [[f8 es]] (2ϕ) φ { f1, f2, f5} [(T,T),(W,T),(W,W),(W,U)])
∧v(C [[f3 es]] (2ϕ) φ { f1} [(T,T),(T,W)])

= {calculation, 6a, 7b, 5a, 5d}
(False,[(T,T),(W,T),(W,W),(U,W),(U,U)])

We can see that the rules that are applied closely mirror those applied in the verification of this property,
and that the following counterexample is generated:

Cons (ObsState T T) (Cons (ObsState W T) (Cons (ObsState W W) (Cons (ObsState U W)
(Cons (ObsState U U) Nil))))

Example 2 For the program shown in Figure 6, the application of these rules for Property 2 (non-
starvation) is shown below where we represent Property 2 by 2(ϕ⇒3ψ) and the function environment
by φ . We again use the shorthand notation (X ,Y) to denote the state ObsState X Y .

C [[Cons (T,T) (f1 es)]] (2(ϕ ⇒3ψ)) /0 /0 []
= {5a}

(C [[Cons (T,T) (f1 es)]] (ϕ ⇒3ψ) /0 /0 [])∧v (C [[f1 es]] (2(ϕ ⇒3ψ)) /0 /0 [(T,T)])
= {5d}

((ϕ ⇒3ψ)[(T,T)/s])∧v (C [[f1 es]] (2(ϕ ⇒3ψ)) /0 /0 [(T,T)])
= {calculation, 3, 6a, 7b, 5a, 5d}

(C [[f1 es]] (2(ϕ⇒3ψ)) φ { f1} [(T,T),(T,T)])∧v (C [[f2 es]] (2(ϕ⇒3ψ)) φ { f1} [(T,T),(W,T)])
∧v(C [[f3 es]] (2(ϕ ⇒3ψ)) φ { f1} π4)

= {6a}
(C [[f2 es]] (2(ϕ⇒3ψ)) φ { f1} [(T,T),(W,T)])∧v (C [[f3 es]] (2(ϕ⇒3ψ)) φ { f1} [(T,T),(T,W)])

= {calculation, 3, 6a, 7b, 5a, 5d}
(C [[f2 es]] (2(ϕ ⇒3ψ)) φ { f1, f2} [(T,T),(W,T),(W,T)])
∧v(C [[f4 es]] (2(ϕ ⇒3ψ)) φ { f1, f2} [(T,T),(W,T),(U,T)])
∧v(C [[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2(ϕ ⇒3ψ)) φ { f1} [(T,T),(T,W)])

= {6a}
(C [[f4 es]] (2(ϕ ⇒3ψ)) φ { f1, f2} [(T,T),(W,T),(U,T)])
∧v(C [[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2(ϕ ⇒3ψ)) φ { f1} [(T,T),(T,W)])

= {calculation, 3, 6a, 7b, 5a, 5d}
(C [[f1 es]] (2(ϕ ⇒3ψ)) φ { f1, f2, f4} [(T,T),(W,T),(U,T),(T,T)])
∧v(C [[f4 es]] (2(ϕ ⇒3ψ)) φ { f1, f2, f4} [(T,T),(W,T),(U,T),(U,T)])
∧v(C [[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2(ϕ ⇒3ψ)) φ { f1} [(T,T),(T,W)])

G.W. Hamilton 17

= {6a}
(C [[f5 es]] (2(ϕ ⇒3ψ)) φ { f1, f2} [(T,T),(W,T),(W,W)])
∧v(C [[f3 es]] (2(ϕ ⇒3ψ)) φ { f1} [(T,T),(T,W)])

= {calculation, 6a, 7b, 5a, 3, 5b, 6b}
(False,[(T,T),(W,T),(W,W),(W,W)])

The following counterexample with a loop at the end is therefore generated:

Cons (ObsState T T) (Cons (ObsState W T) (Cons (ObsState W W) (Cons (ObsState W W) Nil)))

7 Conclusion and Related Work

In previous work [6], we have shown how a fold/unfold program transformation technique can be used to
verify both safety and liveness properties of reactive systems which have been specified using a functional
language. However, counterexamples and witnesses were not constructed using this approach. In this
paper, we have therefore extended these previous techniques to address this shortcoming to construct a
counterexample trace when a temporal property does not hold, and a witness when it does.

Fold/unfold transformation techniques have also been developed for verifying temporal properties
for logic programs [11, 15, 4, 1, 8]). Some of these techniques have been developed only for safety
properties, while others can be used to verify both safety and liveness properties. Due to the use of a
different programming paradigm, it is difficult to compare the relative power of these techniques to our
own. However, none of these techniques construct counterexamples when the temporal property does
not hold.

Very few techniques have been developed for verifying temporal properties for functional programs
other than the work of Lisitsa and Nemytykh [12, 2]. Their approach uses supercompilation [17, 16]
as the fold/unfold transformation methodology, where our own approach uses distillation [5, 7]. Their
approach can verify only safety properties, and does not construct counterexamples when the safety
property does not hold.

One other area of work related to our own is the work on using Higher Order Recursion Schemes
(HORS) to verify temporal properties of functional programs. HORS are a kind of higher order tree
grammar for generating a (potentially infinite) tree and are well-suited to the purpose of verification
since they have a decidable mu-calculus model checking problem, as proved by Ong [14]. Kobayashi
[13] first showed how this approach can be used to verify safety properties of higher order functional
programs and for the construction of counterexamples when the safety property does not hold. This
approach was then extended to also verify liveness properties by Lester et al. [10], but counterexamples
are not constructed when the liveness property does not hold. These approaches have a very bad worst-
case time complexity, but techniques have been developed to ameliorate this to a certain extent. It does
however appear likely that this approach will be able to verify more properties than our own approach
but much less efficiently.

Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie), and by the School of Computing, Dublin City
University.

18 Generating Counterexamples by Transformation

References
[1] Alberto Pettorossi and Maurizio Proietti and Valerio Senni (2009): Deciding Full Branching Time Logic

by Program Transformation. In: 19th International Symposium on Logic-Based Program Synthesis and
Transformation, pp. 5–21.

[2] Alexei Lisitsa and Andrei P. Nemytykh (2008): Reachability Analysis in Verification via Supercompilation.
International Journal of Foundations of Computer Science 19(4), pp. 953–969.

[3] E.M. Clarke, E.A. Emerson & A.P. Sistla (1986): Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems 8(2), pp.
244–263.

[4] Fabio Fioravanti and Alberto Pettorossi and Maurizio Proietti (2001): Verification of Sets of Infinite State Pro-
cesses Using Program Transformation. In: 11th International Workshop on Logic Based Program Synthesis
and Transformation, pp. 111–128.

[5] G.W. Hamilton (2007): Distillation: Extracting the Essence of Programs. In: Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 61–70.

[6] G.W. Hamilton (2015): Verifying Temporal Properties of Reactive Systems by Transformation. Electronic
Proceedings of Theoretical Computer Science 199, pp. 33–50.

[7] G.W. Hamilton & N.D. Jones (2012): Distillation With Labelled Transition Systems. In: Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, ACM, pp.
15–24.

[8] Hirohisa Seki (2011): Proving Properties of Co-Logic Programs by Unfold/Fold Transformations. In: 21st
International Symposium on Logic-Based Program Synthesis and Transformation, pp. 205–220.

[9] L. Lamport (1974): A New Solution of Dijkstra’s Concurrent Programming Problem. Communications of
the ACM 17(8), pp. 453–455.

[10] Lester, M.M. and Neatherway, R.P. and Ong, C.-H. L. and Ramsay, S.J. (2010): Model Checking Liveness
Properties of Higher-Order Functional Programs. Unpublished.

[11] M. Leuschel & T. Massart (1999): Infinite State Model Checking by Abstract Interpretation and Program
Specialisation. In: 9th International Workshop on Logic Programming Synthesis and Transformation, pp.
62–81.

[12] A. Lisitsa & A. Nemytykh (2007): Verification as a Parameterized Testing (Experiments with the SCP4
Supercompiler). Programming and Computer Software 33(1), pp. 14–23.

[13] Naoki Kobayashi (2009): Types and Higher-Order Recursion Schemes for Verification of Higher-Order Pro-
grams. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL, pp. 416–428.

[14] C.-H. L. Ong (2006): On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In: Pro-
ceedings of Logic in Computer Science, LICS, IEEE Computer Society Press, pp. 81–90.

[15] Abhik Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan & Scott A. Smolka
(2000): Verification of Parameterized Systems Using Logic Program Transformations. In: Proceedings of
the 6th International Conference on Tools and Algorithms for Construction and Analysis of Systems, pp.
172–187.

[16] M.H. Sørensen, R. Glück & N.D. Jones (1996): A Positive Supercompiler. Journal of Functional Program-
ming 6(6), pp. 811–838.

[17] V.F. Turchin (1986): The Concept of a Supercompiler. ACM Transactions on Programming Languages and
Systems 8(3), pp. 90–121.

	Introduction
	Language
	Syntax
	Semantics

	Specifying Reactive Systems
	Specification of Temporal Properties
	Verification of Temporal Properties
	Construction of Counterexamples and Witnesses
	Conclusion and Related Work

