
Submitted to:
VPT 2016

c© A. Nepeivoda
This work is licensed under the
Creative Commons Attribution License.

Turchin’s Relation for Call-by-name Computations:
a Formal Approach

Antonina Nepeivoda
Program Systems Institute of Russian Academy of Sciences∗

Pereslavl-Zalessky, Russia
a nevod@mail.ru

Supercompilation is a program transformation technique that was first described by V.F. Turchin in
the 1980s. In supercompilation, Turchin’s relation as a similarity relation on call stack configurations
is used both for call-by-value and call-by-name semantics to terminate unfolding of the program
being transformed. In this paper, we give a formal grammar model of call-by-name stack behaviour.
We classify the model in terms of the Chomsky hierarchy and then formally prove that Turchin’s
relation can terminate all computations generated by the model and estimate how long may be a
sequence of call stacks generated by a program until it is terminated via Turchin’s relation.

1 Introduction

In recent years, general-purpose program transformation tools such as supercompilers are proved to be
useful in some verification tasks, e. g., verification of cache-coherence protocols [10] and search of at-
tacks on some cryptographic protocols [12]. In this domain, two different approaches to verification
are used. The first approach is mostly case-studying. It describes program transformation tools that
are successful for solving some verification problems ([1]). The problems themselves can be very com-
plicated (e. g., the missionaries and cannibals puzzle which was solved in a generic case by interactive
supercompilation [9]). So the approach focuses on searching for “stories of success” without describ-
ing uniform modelling algorithms for similar problems or displaying formal proofs. Although showing
how the program transformation can be efficient when solving real-life tasks [8, 5], this approach can
tempt a researcher to produce some new program transformation algorithms which are perfectly suited
for solving a particular problem.

The second approach is much more formal: its aim is to describe some problem classes for which
verification can be proved to be solvable by a given program transformation method. These works are
usually inspired by the “stories of success” found by the first approach. Many problems that are known
to be solvable are already successfully automatically solved by specialized verifiers, and generic pur-
pose program transformation tools cannot compare to them with respect to efficiency and convenience.
However, research in this direction can indicate some possibly successful applications of the program
transformation tools by proving that these applications can be done in theory. It may be useful first to
study computational power of some program transformation technique and then to use this knowledge for
searching of problems that can be handled in the scope of this computational power. This way of thinking
already proved itself to be useful: after studying properties of the homeomorphic embedding relation on
prefix-grammar-generated traces, it became possible to use prefix grammars as models for a set of ping-
pong cryptographic protocols [3] and to prove that supercompiling the corresponding program models is

∗The reported study was partially supported by RFBR, research project No. 14-07-00133 a

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Turchin’s relation for call-by-name computations

equivalent to verifying the corresponding protocol models in the classical case [12]. But the prefix gram-
mar model makes sense only for program languages based on call-by-value semantics, although most
program transformation tools analyze call-by-name programs. So it is interesting to model behaviour of
the function call stacks for the call-by-name semantics by the way similar to prefix grammars and find
out whether this new model is able to solve more formal problems than the prefix grammars model. The
theoretical answer to this question is definitely yes.

The paper is organized as follows. First, we recall notions from [13] to which we refer further. Then
we define a class of multi-layer prefix grammars and describe its computational power. Then we show
how the defined grammars can be used to model the call stack behaviour for call-by-name computations.
Finally, we refine the definition of Turchin’s relation for the new class of grammars and give some
estimations of bad sequence length.

Our contributions are the following:

1. We give a formal model of the call-by-name stack behaviour and estimate its computational power.

2. We formally prove that the Turchin relation on the call stack sequences generated by the model is
well binary.

3. We give some bounds on the maximal number of steps of a computation path before the Turchin
relation terminates the path.

2 Preliminaries

There we recall some simple definitions from [13], to which we refer further in this paper.

Definition 1. Given a set S and a relation R⊂ S×S, R is called a well binary relation, if every sequence
{Φn} of elements from S such that ∀i, j(i < j⇒ (Φi,Φ j) /∈ R) is finite. So, a well binary relation is “a
well quasi-order without the order” (i. e., it is not necessarily transitive).

A sequence {Φn} satisfying the property ∀i, j(i < j⇒ (Φi,Φ j) /∈ R) is called a bad sequence with
respect to R.

Definition 2. A tuple 〈ϒ,R,Γ0〉, where ϒ is an alphabet, Γ0 ∈ ϒ+ is an initial word, and R⊂ ϒ+×ϒ∗ is
a finite set of rewriting rules, is called a prefix grammar if R : Rl → Rr ∈ R can be applied only to words
of the form RlΦ (where Rl is a prefix of the word RlΦ and Φ ∈ ϒ∗ is arbitrary) and generates only words
of the form RrΦ.

If the left-hand sides Rl of all rules R : Rl → Rr ∈ R have the length 1 (only the first letter of a word
is changed by any rule) then the prefix grammar is called an alphabetic prefix grammar.

A trace of a prefix grammar G= 〈ϒ,R,Γ0〉 is a word sequence {Φi} (finite or infinite) where Φ1 = Γ0
and for all i ∃R(R : Rl → Rr & R ∈ R & Φi = RlΘ & Φi+1 = RrΘ) (where Θ is a suffix). In other words,
the elements of a trace are derived from their predecessors by applying the rewriting rules from G.

Finally, we recall how the Turchin relation is defined for traces generated by a prefix grammar. We
say that a letter in a word in a trace was changed in the trace segment, if the letter is generated by some
rule that was applied to some word in the trace segment.

Example 1. Let Γ0 be aa, and let us apply rule a→ ba to Γ0. In the trace segment

Γ0 : aa→ Γ1 : baa

the first letter a in Γ1 does not coincide with the first letter a in Γ0 (it is rewritten by a→ ba) and the
second letter a in Γ1 is unchanged with respect to Γ0.

A. Nepeivoda 3

The following definition formalizes the definition of the Turchin relation for function call stacks
given in [11].

Definition 3. Let 〈ϒ,R,Γ0〉 be a prefix grammar. We say that two words Γi, Γ j in a trace {Γk} form a
Turchin pair (denoted as Γi � Γ j) if Γi = ΦΘ0, Γ j = ΦΨΘ0 and the suffix Θ0 is not changed in the trace
segment from Γi to Γ j.

3 Multi-layer Prefix Grammars

Let ϒ be an alphabet. Let S be a label set and / be a strict (non-reflexive) partial order relation over S.
We denote labels from S by the letters s, t (maybe with subscripts). Let us say that s1 is a child of s0 w.r.t.
S′ ⊆ S (denoted by s1 = child(s0)[S′]) if s0 / s1, s0 ∈ S′, s1 ∈ S′ and there is no such s2 ∈ S′ that s0 / s2
and s2 / s1. The inverse for the child relation is the parent relation. Given a set S′ ⊆ S, if S′ contains no
children or parents of a label t then we call t a free label w.r.t. S′1.

Informally, the labels can be considered as nodes of trees with unbounded branching, then the child–
parent relation has its usual meaning.

Henceforth, Greek capitals Γ, ∆, Φ, Ψ, Ξ, Θ denote words from {〈a,si〉|a ∈ ϒ & si ∈ S}∗. Finite se-
quences of such pairs are called layered words. If 〈a1,s1〉 . . .〈an,sn〉 is a layered word, the corresponding
plain word is defined as a1 . . .an. The empty word is denoted by Λ.

If Φ is a layered word, |Φ| stands for the number of pairs in Φ and Φ[i] stands for the i-th pair. For
the sake of brevity, layered word 〈a1,s0〉 . . .〈an,s0〉 can be also written as 〈a1 . . .an,s0〉 (thus, a〈s0〉 is an
equivalent form for 〈a,s0〉).

Φ〈s0〉 denotes the maximal subsequence of Φ containing only pairs with the label s0. Φ〈ŝ0〉 denotes
the maximal subsequence of Φ not containing pairs with the label s0. The set of all labels in Φ is denoted
by SΦ.

Example 2. Let Φ = 〈a1,s1〉〈a2,s1〉〈a3,s2〉〈a4,s4〉〈a5,s1〉〈a6,s3〉〈a7,s4〉. Then Φ〈s1〉 = 〈a1a2a5,s1〉,
Φ〈ŝ1〉= 〈a3,s2〉〈a4,s4〉〈a6,s3〉〈a7,s4〉.

If s1 / s2, s2 / s3, s1 / s4 (and not s2 / s4), then the layered word Φ can be represented as the following
tree:

s1 : a1a2a5

((vv
s2 : a3

��

s4 : a4a7

s3 : a6

The order of the letters in Φ is significant for the tree representation only if the letters have the same
label2.

Given a label si and natural numbers K1 and K2, we define a set of layer functions Fsi
K1,K2

: {〈a, t〉|a ∈
ϒ & t ∈ S}∗→ {〈a, t〉|a ∈ ϒ & t ∈ S}∗ as a minimal set of functions containing all compositions of K1
elementary functions, which are:

1In most cases, we assume that S′ is a set of all previously used labels, hence there is no need to write it in the square
brackets in expressions like child(s0)[S′].

2Hence, the tree above is a representation not only of the word Φ, but also, for example, of the word
〈a6,s3〉〈a3,s2〉〈a1,s1〉〈a4,s4〉〈a7,s4〉〈a2,s1〉〈a5,s1〉

4 Turchin’s relation for call-by-name computations

1. Appending Apps j [Ψ] (s j ∈ S, Ψ ∈ ϒ∗): given a layered word Φ, Apps j [Ψ](Φ) is the sequence
ΦΨ〈s j〉 such that s j is a child of si w.r.t. SΦ∪{s j}, s j is free w.r.t. SΦ \{si,s j}, and |Ψ| ≤ K2.
For example, if Apps1 [a] ∈ Fs0

1,1 and s0 / s1, then

s1
App[a](〈a,s0〉〈b,s1〉) = 〈a,s0〉〈b,s1〉〈a,s1〉

On tree representations, the appending operation appends some new letters to an existing node.

2. Lifting Lifts j [Ψ〈sk〉](s j,sk ∈ S, Ψ ∈ ϒ∗): given Φ with a non-empty Φ〈s j〉, where s j is a child of
si w.r.t. SΦ, Lifts j [Ψ〈sk〉](Φ) is the sequence ΦΨ〈sk〉 where |Ψ| ≤ K2 and sk is a child of si w.r.t.
SΦ∪{sk}, sk is free w.r.t SΦ \{si} and s j is a child of sk w.r.t SΦ∪{sk}.
For example, if Lifts1 [a〈s2〉] ∈ Fs0

1,1 and s0 / s1, then

s1
Lift[〈a,s2〉](〈a,s0〉〈b,s1〉) = 〈a,s0〉〈b,s1〉〈a,s2〉

The lifting operation differs from the appending operation only by introduction of an unused child
label sk, which marks the newly appended word Ψ. On tree representations, the lifting operation
inserts a new node between the nodes labelled by si and s j.

3. Deleting Dels j (s j ∈ S): given Φ with a non-empty Φ〈s j〉, s j = child(si) w.r.t. SΦ, Dels j erases
Φ〈s j〉 from Φ together with all Φ〈t〉 for which s j / t.
For example, if Dels1 ∈ Fs0

1,1 and s0 / s1, s2 = child(s1), then

Deletes1(〈a,s0〉〈b,s1〉〈c,s2〉) = 〈a,s0〉

On tree representations, the deleting operation deletes the subtree, which uppermost node is la-
belled by s j.

4. Copying Copys j (s j ∈ S): given Φ with a non-empty Φ〈s j〉, s j = child(si) w.r.t. SΦ, Copys j appends
Φ〈sk〉 to Φ, where sk is a child of si w.r.t. SΦ ∪{s j}, s j is free w.r.t. SΦ \ {si} and then appends
all subsequences Φ〈sl〉 labelled by incomparable children of s j and labels them by incomparable
children of sl and so on until all the sequences Φ〈t〉, where s j / t, are copied exactly once.
For example, if Copys1 ∈ Fs0

1,1 and s0 / s1, s2 = child(s1), then

s1
Copy(〈a,s0〉〈b,s1〉〈c,s2〉) = 〈a,s0〉〈b,s1〉〈c,s2〉〈b,s3〉〈c,s4〉,

where s3 and s4 are incomparable with s1 and s2, s4 = child(s3), s3 = child(s0).
On tree representations, the copying operation creates a copy of the subtree, which uppermost node
is labelled by s j.

Example 3. Let ϒ = {a,b}, {S,/}= {Q,<}. Let F1
2,1 be determined by the following basic functions:

1. App3[a], App4[b].

2. Lift3[c〈2〉].
Consider the word a〈1〉. The set of all images of F1

2,1(a〈1〉) is {a〈1〉aa〈3〉,a〈1〉bb〈4〉,a〈1〉c〈2〉a〈3〉}.
Because the label 3 is not free w.r.t. to word a〈1〉b〈4〉, and the label 4 is not free w.r.t. to word

a〈1〉a〈3〉, we cannot apply App3[a] when App4[b] is applied, and vice versa.

A. Nepeivoda 5

In Section 4, it is shown how the described layer functions model call stack transformations.
Definition 4. Let us consider a tuple G = 〈ϒ,S,R,Fx

K1,K2
,Γ0$∆0〉 where Γ0 and ∆0 are layered words

over ϒ×S such that for every Γ0[i] = 〈ai,si〉 and Γ0[j] = 〈a j,s j〉, if i > j then s j / si or s j = si, $ is a
special symbol not belonging to ϒ and Fx

K1,K2
is a finite set of layer function forms where x runs over S.

For every G-word Γ$∆, where Γ and ∆ are words over ϒ×S, we call Γ the visible layer, and we call ∆

the invisible layer of Γ$∆.
Let all rewriting rules from R have one of the following forms:

1. Ξ〈a,si〉Θ$Ψ→Φ〈si〉Θ$Fsi(Ψ), |Φ| ≤ K2, |Ξ| ≤ K2−1, Fsi(Ψ) ∈ Fsi
K1,K2

.

2. For some s j = child(si) ∈ S,

Ξ〈a,si〉Θ$Ψ→Ψ〈s j〉Φ〈si〉Θ$Fsi(Ψ〈ŝ j〉),

|Φ| ≤ K2, |Ξ| ≤ K2− 1, Fsi(Ψ) ∈ Fsi
K1,K2

. The rules having this form are called pop rules. A pop
rule cannot “look into” containment of the invisible layer of a transformed word: if there are no
children of si, Ψ〈child(si)〉 will be Λ; otherwise we may specify s j, but there are no ways to specify
Ψ〈s j〉.

Such a grammar G is called a multi-layer prefix grammar. K2 is called the maximal rewrite depth, K1 is
called the maximal replication index. A sequence of G-words starting with Γ0$∆0 that is transformed by
the rules from R is called a trace over G.

If any rule of such a grammar changes only one letter of the visible layer, then the multi-layer prefix
grammar is alphabetic.
Definition 5. Let ΦΘ$∆i be the i-th G-word in a trace {Γk$∆k} generated by an alphabetic multi-layer
prefix grammar G. If Γ j$∆ j = ΨΘ$∆ j (j > i) then we say that Ψ is a derivative prefix (or simply
a derivative) of Φ (denoted by deriv(Φ)).

Now we can prove some simple propositions about the multi-layer grammars.
Proposition 1. The three following properties hold.

1. If G is an alphabetic multi-layer prefix grammar and Γ$∆ is a G-word generated by G, then for
every Γ[i] = 〈ai,si〉, Γ[j] = 〈a j,s j〉 if i < j then either si = s j or si / s j.

2. Let an alphabetic multi-layer grammar G generate Γ$ΨΨ〈s1〉Ψ〈s2〉 such that s1 and s2 are not
equal and incomparable. Then derivatives of Ψ〈s1〉 and Ψ〈s2〉 cannot occur in the visible part of
the same word.

3. Let G generate a word 〈a,si〉Γ〈b,s j〉Θ$Ψ. In a trace containing this word, all the words have
occurrences of deriv(〈a,si〉) before occurrences of deriv(〈b,s j〉) in the visible layer.

Proof. 1. By the definition, the initial word Γ0$∆0, satisfies the stated property. If some word 〈a,si〉Γ$∆

satisfies the proposition statement, a non-pop rule can only prepend children of 〈a,si〉 to Γ, and a pop
rule can only append descendants of 〈a,si〉 to Γ. Therefore, all the words generated from 〈a,si〉Γ$∆ must
satifsy the stated property.

2. If s1 and s2 are incomparable then the labels of the derivatives of Ψ〈s1〉 and Ψ〈s2〉 are also
incomparable. And the stated property follows from the case (1).

3. In a trace generated by G, deriv(〈b,s j〉) can be generated only after transformations of the word
〈b,s j〉Θ$Ψ′, and this word can contain deriv(〈a,si〉) only in the invisible layer. All deriv(〈b,s j〉) are
appended to the end of the invisible layer (by the definitions of Appsk [Ψ], Liftsk [Ψ〈su〉], Copysk). They
are marked by the labels, which are not less (but may be incomparable) than the labels of deriv(〈a,si〉).
Hence, after applying the pop rules, deriv(〈b,s j〉) will occur in the visible layer after deriv(〈a,si〉).

6 Turchin’s relation for call-by-name computations

Definition 6. Let G = 〈ϒ,S,R,Fx
K1,K2

,Γ0$∆0〉 be a multi-layer prefix grammar with |∆0| > 0. The set
of all the words A ∈ ϒ s.t. A is a plain word corresponding to the visible layer ∆ of some G-word ∆$Λ

produced by a finite trace of G is called a language generated by G.

Theorem 1. Every recursively enumerable set can be generated by a multi-layer prefix grammar.

Proof. It is sufficient to prove that, given an input word, every Turing machine on the input can be
emulated by a multi-layer prefix grammar treating the input word as its initial word.

Consider an arbitrary Turing machine 〈Q,ϒA,b,σ ,q0,F〉, where Q is a state alphabet, ϒA is a tape
alphabet, b is the blank symbol, q0 ∈ Q is the initial state, F ⊂ Q is a set of final states, and σ ⊂
Q×ϒA×QϒA×{L,R} is a set of transition rules, and an input I ∈ ϒA. Let us introduce a multi-layer
prefix grammar with the alphabet ϒ = ϒA ∪QR ∪QL ∪{BlankL,BlankR,b}, where QR and QL are the
state alphabets Q marked by the superscripts meaning “a state after moving to the right cell” and “a state
after moving to the left cell” correspondingly. BlankR and BlankL are special “end-marks” referring to
blanks on the tape after the rightmost and leftmost cells reached in a computation. All blanks on the tape
between them are denoted in the model grammar by usual b symbols.

Let us assume in this proof that all labels in the model grammar have the form si, where i is a rational
number (i ∈Q), and si / s j iff i < j (i ∈Q, j ∈Q).

The initial word in the model grammar is

Γ0$∆0 = 〈qR
0 ,s0〉I〈s0〉〈BlankR,s0〉$〈BlankL,s1〉

In order to emulate a rule (q1,a1)→ (q2,a2,R)∈ σ , we use one of the following two rewrite schemes
(x is a letter variable):

〈qR
1 ,si〉〈a1,s j〉Φ$Ψ〈x,sk〉 → 〈qR

2 ,s j〉Φ$Ψ〈x,sk〉〈a2,s j+k
2
〉

〈a1,s j〉〈qL
1 ,si〉Φ$Ψ〈x,sk〉 → 〈qR

2 ,s j〉Φ$Ψ〈x,sk〉〈a2,s j+k
2
〉

In order to emulate a rule (q1,a1)→ (q2,a2,L), we use one of the following two schemes:

〈qR
1 ,si〉Φ$Ψ〈x,child(si)〉 → 〈x,child(si)〉〈qL

2 ,child(si)〉〈a2,child(si)〉Φ$Ψ

〈a1,s j〉〈qL
1 ,si〉Φ$Ψ〈x,child(si)〉 → 〈x,child(si)〉〈qL

2 ,child(si)〉〈a2,child(si)〉Φ$Ψ

So we model the tape part to the right of the machine head by the visible layer, and the tape part to
the left of the machine head by the invisible layer. The letters from QR∪QL can only appear in the visible
layer, and what is more, a letter from QR may be only the first letter of the visible layer, and a letter from
QL — the second letter.

In the proof above we construct a grammar, every rule of which changes the two first letters of the
visible part of a G-word. If we model function call stacks by multi-layer prefix grammars, this can be
possible only if function definitions contain nested functions in the patterns. In the case of the plain
prefix grammars, the class of generating alphabetic prefix grammars defines the regular languages as
well as the class of all prefix grammars [2]. In the case of the alphabetic multi-layer prefix grammars,
the situation changes drastically. We can informally compare their power to the 1-state Turing machines,

A. Nepeivoda 7

although the grammars modelling Turing machines use only the lifting layer functions, while copying
and appending are left aside.

In the case of the multi-layer prefix grammars, the state of the art is presented by the following
proposition.

Proposition 2. Alphabetic multi-layer prefix grammars are strictly stronger3 than context-free grammars
and one-state Turing machines.

Proof. First, we prove that the described class of the multi-layer prefix grammars is not weaker than the
class of context-free grammars and the class of one-state Turing machines.

For the one-state Turing machines, the corresponding model is constructed in the proof of Theorem
1.

Given a context-free language, we consider its generating context-free grammar in the Greibach
normal form [4]. Let the set of non-terminals of the grammar be Q and the set of terminals be T . We
construct a multi-layer grammar with the alphabet ϒ = T ∪Q∪{’Nil’}∪ {’Pop’}. The initial word is
〈S,s0〉〈’Pop’,s0〉$〈’Nil’,s1〉 where S is the initial symbol of the context-free grammar. For every rule
q1→ tq2q3, qi ∈ Q, t ∈ T , we construct the rewriting rule

〈q1,s0〉Φ$Ψ→ 〈q2q3,s0〉Φ$Ψ〈t,s1〉

For a rule q1→ Λ we construct the rule

〈q1,s0〉Φ$Ψ→Φ$Ψ

Finally, we add the rule

〈’Pop’,s0〉Φ$Ψ→Ψ〈s1〉Φ$Ψ〈ŝ1〉

Because all invisible letters are labelled by s1 and ’Pop’ is never generated elsewhere than in the
initial word the last rule actually looks as 〈’Pop’,s0〉$Ψ〈child(s0)〉→Ψ〈child(s0)〉$Λ and its application
halts the computation.

Since alphabetic multi-layer grammars generate all context-free languages and all languages gener-
ated by one-state Turing machines, they are stronger than the one-state Turing machines (some regular
languages cannot be generated by such a machine [14]).

In order to show that the alphabetic multi-layer prefix grammars are stronger than the context-free
grammars, it is sufficient to show that the language {b2n |n ∈ N} can be generated by such a grammar
(such a language cannot be generated by a context-free grammar [6]).

Let the initial word of the grammar be 〈a,s0〉$〈bb,s1〉〈’Nil’,s2〉, where s1 and s2 are children of s0
incomparable with each other.

R[1] : 〈a,s0〉Φ$Ψ〈t〉Ψ〈s2〉 →Ψ〈t〉〈a,s0〉Φ$Ψ〈s2〉
R[2] : 〈a,s0〉$Ψ〈t〉Ψ〈s2〉 →Ψ〈t〉$Λ

R[3] : 〈b, t〉Φ$Ψ′Ψ〈child(t)〉 →Φ$Ψ′Ψ〈child(t)〉〈bb,child(t)〉
Consider the tree of the possible traces generated by the grammar.

3They generate all the languages these models can generate, and some languages that cannot be generated by these two
models.

8 Turchin’s relation for call-by-name computations

〈a,s0〉$〈bb,s1〉〈’Nil’,s2〉
,,tt

〈bb,s1〉$Λ 〈bb,s1〉〈a,s0〉$〈’Nil’,s2〉
��

〈b,s1〉〈a,s0〉$〈bb,child(s1)〉〈’Nil’,s2〉
��

〈a,s0〉$〈bbbb,child(s1)〉〈’Nil’,s2〉
rr

��〈bbbb,child(s1)〉$Λ . . .

��
〈a,s0〉$〈b8,child(child(s1))〉〈’Nil’,s2〉

++rr.

The resulting grammar {b2n |n ∈ N} is not even mildly context-sensitive4 [6].

Given a word w = w[1]w[2] . . .w[N], the inverse word of w is the word w[N] . . .w[2]w[1] (denoted by
inv(w)).

Proposition 3. No rule set R exists such that all alphabetic multi-layer prefix grammars with the rule
set R and the initial word arbitrarily chosen from w ∈ {a,b}∗ constructs inv(w).

Proof. Let w be modelled by the initial word Φ0〈x,si〉Φ1〈y,s j〉$Λ. The word inv(w) is be modelled
by 〈y, t j〉 inv(Φ1)〈x, ti〉 inv(Φ0)$Λ. According to Proposition 1, because 〈y, t j〉 = deriv(〈y,s j〉), 〈x, ti〉 =
deriv(〈x,si〉), such a word cannot appear in any trace generated by any alphabetic multi-layer prefix
grammar.

This proof shows that the class of the alphabetic multi-layer prefix grammars does not coincide with
the classes of tree automata grammars or linear indexed grammars [6]. Informally, this class contains
grammars that are able to generate very long words with a rather simple structure.

4 Modelling Call Stack Behaviour by Multi-layer Grammars

4.1 Language

In this section, we informally describe the syntax and semantics of the simple functional language L
which is used to demonstate the modelling mechanism.

The language L has the call-by-name semantics. The names of the variables in L are the words
starting with the letter x; other identifiers are the names of the constants (null-ary constructors) or the
functions. The identifier cons cannot be used for a constant or a function name. There are two data types:
the list set and the natural number set. The increment (+1) and decrement functions (-1) are available for
the natural numbers.

4The class of mildly context-sensitive grammars is a special subclass of context-sensitive grammars that includes not only
all context-free grammars, but also, e. g., tree adjoining grammars [7].

A. Nepeivoda 9

L has the two constructors: the tuple constructor, denoted as < ,..., >, the ordinary list constructor
cons with the two arguments: the first is the list head, and the second is the tail.

A definition of a function f(x1,...,xn) in L is a sequence of sentences of the form

f(T1, ...,Tn) = T0;

or
f(T1, ...,Tn) = h(S1, ...,Sm);

Here Ti may be a constant, a variable, a tuple of constants and variables, or cons(Qi,Tj) where Qi
is a constant, a variable or a tuple containing constants or variables, and j > n. Si are expressions that
can contain function calls but cannot contain the variables that are absent in f(T1,...,Tn). For every
left-hand side of the definition f(T1, ...,Tn), no variable can appear in f(T1, ...,Tn) more than once.

The program sentences in L are rewriting rules. The rewriting rules in the programs are ordered from
top to bottom and they should be matched in this order (such pattern matching is used in the Haskell,
Refal [17] and Prolog languages).

4.2 Multi-layer grammars as call stack behaviour models

We borrow the notions of f -function and g-function from [15] and use them in the following sense. An
f -function is a function whose definition contains only variables in the patterns (e. g., if h1 is defined
as h1(x1,x2) = x2+h2(x1+1) then h1 is an f -function). A g-function is a function with non-trivial
patterns in the definition (e. g., h1(x1+1) = h1(x1)+h1(x1) is a definition of the g-function).

In order to get a grammar from a program, we treat every configuration which appears while execu-
tion of the program as a tree, where nodes are named by function or constructor names and leaves contain
no function calls.

All the nodes with the function calls are marked by labels from the label set S. If one such node
in the configuration tree is a child of another, the parent node has no other children containing function
calls, and the function call in the parent node is a call of g-function, then the parent and the child are
given the same label. If some node T is a descendant of a node W , the label of T is greater (or equal)
than the label of W . Otherwise the labels are incomparable.

For example, assuming that h3 is a g-function5, configuration h1(< h2(A,B),h3(h2(x))>) can be
labelled as

s0 : h1

��
< · · ·>

&&xx
s1 : h2

�� &&

s2 : h3

��
A B s2 : h2

��
x

There s0 / s1, s0 / s2, s1 and s2 are incomparable.

5Otherwise, the innermost call of h2 must be given a fresh label, which is a child for s2.

10 Turchin’s relation for call-by-name computations

After that, we delete all the unlabelled nodes (which have the names of static constructors) from the
tree6 and merge the nodes with the same labels. When the nodes are merged, the function names from
the ancestor nodes is placed after the function names from the descendant nodes. For our configuration,
after the merging we get the following diagram:

s0 : h1

&&yy
s1 : h2 s2 : h2h3

This diagram is a sketch for G-word representing the current call stack configuration. After the
sketch is constructed, in the corresponding G-word the node marked by the function call to be evalu-
ated is placed to the beginning on the visible layer, and all its ancestors (starting from the bottom) are
placed after it. All the other nodes with labels incomparable with the label of the active function call
are placed into invisible layer. If the name of the active call is h1, then the corresponding G-word is
〈h1,s0〉$〈h2,s1〉〈h2h3,s2〉. If the active call is, say, the call of h2 in the first argument of h1, the corre-
sponding G-word will be 〈h2,s1〉〈h1,s0〉$〈h2h3,s2〉.

So the visible layer of the word represents the active part of the call stack, the invisible layer repre-
sents the tree of the passive calls.

Layer functions, that are used in the multi-layer grammars (introduced in Section 3), describe one-
step actions transforming passive parts of function call stacks, that can be made in L (and in most of
other programming languages of the same sort).

1. Appending Apps j [Ψ] models adding a g-function call Ψ (or a sequence of such function calls)
to the passive part of the configuration. None of the function calls from Ψ can be evaluated
immediately. E. g., if the definition of h1 is

h1(x1+1,x2) = h1(x1,h2(h2(x2)));

and the definition of h2 is

h2(x+1) = x;

then the G-word 〈h1,s0〉$〈h3,s1〉〈h1,s2〉 corresponding to the configuration h1(h3(x1)+1,h2(0))
will be transformed to 〈h3,s1〉〈h1,s0〉$〈h2h2h2,s2〉, which corresponds to the pop of Ψ〈s1〉 from
the invisible layer and an application of Apps2 [h2h2] to it.

2. Lifting Lifts j [Ψ〈sk〉] models adding a function call with a trivial pattern in the definition (an f -
function), or a call of a g-function, which can be evaluated immediately, to the invisible layer.
E. g., given the following definition

h1(x1+1,x2) = h1(x1,h2(x2+1));

the call of h2 can be evaluated immediately. Hence, the word 〈h1,s0〉$〈h3,s1〉〈h2,s2〉 will be
transformed by the call of h1 to the word 〈h3,s1〉〈h1,s0〉$〈h2,s2〉〈h2,s3〉, where s3 / s2 and s1 /
s3. This word transformation corresponds to the pop of Ψ〈s1〉 from the invisible layer and an
application of Lifts2 [〈h2,s3〉] to it.

6In some cases, this action can transform the tree into a forest. For example, that can happen if the configuration is
cons(h1(x),cons(h2(x),Nil)). To avoid these cases, we always assume that the transformed tree has a root, but the root
is a “virtual” function call, which is always present in the G-word corresponding to the tree and is denoted by $.

A. Nepeivoda 11

3. Deleting Dels j corresponds to replacing of one argument of the called function by an expression
without function calls. E. g., let h1 be defined as follows

h1(x1+1,x2) = h1(x1,0);

The word 〈h1,s0〉$〈h3,s1〉〈h2,s2〉 will be transformed by the call of the function h1 to the word
〈h3,s1〉〈h1,s0〉$Λ. This word transformation corresponds to the pop of Ψ〈s1〉 from the invisible
layer and an application of Dels2 to it.

4. Copying Copys j corresponds to copying one argument of the called function into another. E. g., let
h1 be defined as follows

h1(x1+1,x2) = h1(x1,x1);

The word 〈h1,s0〉$〈h3,s1〉〈h2,s2〉 will be transformed by the call of the function h1 to the word
〈h3,s1〉〈h1,s0〉$〈h3,s3〉. This word transformation corresponds to the pop of Ψ〈s1〉 from the invis-
ible layer and an application of Copys1 Dels2 to it.

Because every definition is finite, only a finite number of appendings, deletings, copyings and liftings
can be done in one step of a program execution. That guarantees finiteness of the constants K1 and K2 in
the corresponding multi-layer grammar. Absence of function calls in the patterns of function definitions
in L makes the multi-layer grammar, that describes an L-program, alphabetic.

5 Turchin’s Relation and Multi-Layer Grammars

5.1 Turchin’s theorem for multi-layer grammars

Definition 7. Let G be a multi-layer prefix grammar, and {Φl$∆l} be a trace of G-words. Let us call a
suffix Θ a permanently stable suffix w.r.t. the segment 〈i, j〉 if all the words Φk$∆k in the trace, such that
k > i and k < j, are of the form Φ′kΘ$∆k. If j is not bounded, Θ is called a permanently stable suffix
w.r.t. i.

Informally, a permanently stable suffix is a suffix of the visible layer that is never changed in the
trace segment starting by the i-th and ending by the j-th G-word in the trace. In the terms of call stack
behaviour, a permanently stable suffix corresponds to an unchanged context of the computation.

Example 4. Let a trace of some multi-layer grammar be:

〈i,s0〉$Λ // 〈abcd,s0〉$Λ // 〈bcd,s0〉$〈a,s1〉 // 〈cd,s0〉$〈ab,s1〉 // 〈ab,s1〉〈d,s0〉$Λ

Suffix 〈d,s0〉 is permanently stable w.r.t. the trace segment starting from 〈abcd,s0〉$Λ. Suffix 〈b,s1〉 is
not permanently stable w.r.t. the trace segment consisting of the last two words in the trace, because in
the word 〈cd,s0〉$〈ab,s1〉 it occurs in the invisible layer.

Definition 8. Let G = 〈ϒ,S,R,Fx
K1,K2

,Γ0$∆0〉 be a multi-layer prefix grammar. Given two G-words
Ξi = Γi$∆i, Ξ j = Γ j$∆ j in a trace {Γk$∆k}, we say that the words form a Turchin pair (denoted as
Ξi � Ξ j) if Γi = ΦΘ0, Γ j = Φ′ΨΘ0, Φ is equal to Φ′ as a plain word (up to the layer labels) and the
suffix Θ0 is permanently stable on the trace segment from Γi$∆i to Γ j$∆ j.

Theorem 2. Let G = 〈ϒ,S,R,Fx
K1,K2

,Γ0$∆0〉 be a multi-layer prefix grammar. Every infinite trace gen-
erated by grammar G contains an infinite subsequence Γin$∆in such that for every Γik1

$∆ik1
, Γik2

$∆ik2
,

k1 < k2 implies Γik1
� Γik1

.

12 Turchin’s relation for call-by-name computations

Proof. The idea of the proof is borrowed from the original V. Turchin’s work [18]. Afterwards, in
informal discussions, Andrei Klimov suggested its more formal refinement, a modification of which is
presented in this paper.

Let N be the maximal number of letters of the visible layer that can be changed by rewriting rules
from R. We consider the following two cases.

Let {Φi$∆i} be an infinite trace under the theorem conditions. If some word Γ′iΘi$∆i contains a suffix
Θi that is permanently stable w.r.t. i in the trace, and no word Γ j$∆ j, j > i, contains a permanently stable
(w.r.t. j) suffix longer than Θi, then there are infinitely many words Φ$Ψ such that |Φ| ≤ |Θi|+N in the
trace. Thus some word Φ repeats itself as a plain word infinitely many times in the visible layer, so we
can consider the subsequence of words, which have Φ as the visible part, in the trace as a subsequence,
every two words of which form a Turchin pair.

Let {Φi$∆i} be an infinite trace with no upper bound on the permanently stable suffixes’ length.
So there is an infinite sequence of suffixes {Φ̂in} that are permanently stable w.r.t to positions in of the
G-words {Φin$∆in} where these suffixes first appear. The letter of Φin preceding Φ̂in is not permanently
stable, so it is erased somewhere in the trace {Φi$∆i}. The G-word in which it is erased looks as
Ψi′nΦ̂in$∆in′ , |Ψi′n | ≤ N. We consider the sequence {Γin$∆in} of such G-words. Since |Ψi′n | is bounded,
there are infinitely many G-words Ξin with the same prefixes Ψi′n up to the layer labels. Let us consider
two of the words having the same prefix, say ΨΘin$∆′in and Ψ′Θip$∆′ip

, where in < ip. Both Θin and Θip

are permanently stable, so Θin is a suffix of Θip (and Θip = ΞΘin). Hence, these words have the form
ΨΘin$∆′in and Ψ′ΞΘin$∆′ip

, and Ψ and Ψ′ coincide as the plain words, and Θin is never changed on the
trace starting by ΨΘin$∆′in . So every two words in the subsequence Ξin form a Turchin pair.

The proof of Theorem 2 implies the following corollary.

Proposition 4. A product of the Turchin relation and an arbitrary well binary relation R is a well binary
relation on the traces generated by multi-layer prefix grammars.

Proof. Every infinite trace generated by a multi-layer prefix grammar contains an infinite subsequence,
every two words of which form a Turchin pair. Due to well-binariness of R, this subsequence also
contains two words Γ and ∆ such that Γ precedes ∆ and 〈Γ,∆〉 ∈ R.

The proof of Theorem 2 also implies the following corollary.

Proposition 5. Let G = 〈ϒ,S,R,Fx
K1,K2

,Γ0$∆0〉 be a multi-layer prefix grammar. Every infinite trace
generated by G contains two words Γi$∆i, Γ j$∆ j (i < j) such that Γi$∆i � Γ j$∆ j and |Γi|< |Γi+1| and
|Γ j|< |Γ j+1|.

Informally Proposition 5 states that when we search for Turchin pairs in a trace, we can skip terms
before shortenings of the visible layer. However one can notice that a refinement that was suggested in
[13] for the plain prefix grammars can generate infinite bad sequences in computations over multi-layer
prefix grammars. The refinement tests for the Turchin relation only the pairs of the words generated by
the rules not shortening the visible layer of a word.

Example 5. Let G be determined by the initial word 〈t pqe,s0〉$Λ and the rewriting rules

R[1] : 〈p,si〉Φ$Ψ′Ψ〈child(si)〉 →Φ$Ψ′Ψ〈pp,child(si)〉
R[2] : 〈q,si〉Φ$Ψ′Ψ〈child(si)〉 →Φ$Ψ′Ψ〈qq,child(si)〉
R[3] : 〈e,si〉Φ$Ψ′Ψ〈child(si)〉 →Ψ〈child(si)〉ee〈si〉Φ$Ψ′

R[4] : 〈t,si〉Φ$Ψ′Ψ〈child(si)〉 →Φ$Ψ′Ψ〈child(si)〉〈tt,child(si)〉

A. Nepeivoda 13

The tree of the traces over G looks as follows:

〈t pqe,s0〉$Λ

��
〈pqe,s0〉$〈tt,child(s0)〉

��
〈qe,s0〉$〈tt pp,child(s0)〉

��
〈e,s0〉$〈tt ppqq,child(s0)〉

��
〈tt ppqq,child(s0)〉〈ee,s0〉$Λ

��
〈t ppqq,child(s0)〉〈ee,s0〉$〈tt,child(child(s0))〉

��. . .

��
〈ee,s0〉$〈tttt ppppqqqq,child(child(s0))〉

��
〈tttt ppppqqqq,child(child(s0))〉〈eee,s0〉$Λ

��. . .

The only visible layers that satisfy the condition |Γi| ≥ |Γi−1| are 〈t2k
p2k

q2k
,si〉〈ek,s0〉. For all k > 0, no

two distinct words with such visible layers form a Turchin pair.

This example shows another subtle feature of the Turchin relation over multi-layer computations. For
the traces generated by the plain prefix grammars the first pair of homeomorphically embedded words
also form a Turchin pair. So in some sense these two relations have the same effect when they are used
as termination criteria. But as we can see in Example 5, this proposition fails for the traces generated by
the multi-layer grammars.

5.2 Bounds on the bad sequences length

We recall that Ψ〈ŝ j〉 is the maximal subsequence of Ψ not containing letters labelled by s j.

Definition 9. Let a multi-layer grammar G contain the rule

Ξ〈a,si〉Θ$Ψ→Ψ〈s j〉Φ〈si〉Θ$Fsi(Ψ〈ŝ j〉).

An imbedded prefix ∆ is a plain word corresponding to G-word Φ〈si〉 or any derivative of Ξ generated
by Fsi(Ψ〈ŝ j〉).

If {Γi$∆i}k
i=0 is a trace segment generated by G, we call a free imbedded prefix Θ such an imbedded

prefix that ΘΨΓk forms no Turchin pairs with Γi (i≤ k).

Example 6. Let Gbin have the initial word 〈s,s0〉$〈’E’,s1〉 and the rewriting rules

R[1] : 〈m,x〉Φ$Ψ→ 〈pmp,x〉Φ$Ψ

R[2] : 〈m,x〉Φ$Ψ→Ψ〈y〉〈pmp,x〉Φ$Ψ〈ŷ〉, y = child(x)
R[3] : 〈p,x〉Φ$Ψ→Φ$Ψ

R[4] : 〈p,x〉Φ$Ψ→Φ$Ψ〈p,child(x)〉

14 Turchin’s relation for call-by-name computations

Imbedded prefixes in Gbin are pmp (generated by R[1] and R[2]) and p (generated by R[4]).

Lemma 1. Let us consider the Ackermann function defined as follows: BK(M,0) = 1, BK(0,N) = N+1,
BK(M,N) = BK(M− 1,BK(M,N − 1) ∗K). An alphabetic multi-layer grammar G can generate bad
sequences w.r.t. the Turchin relation not longer than BK(M,N), where K is a maximal length of an
imbedded prefix in G (the maximal rewrite depth of G), M is the number of the imbedded prefixes in the
set of rewriting rules of G and N is the total length of the initial word in the grammar.

Proof. Let the initial word of G contain only unique letters (that do not occur in imbedded prefixes
of the rewriting rules of G)7. Then for every two words Γi$∆i, Γ j$∆ j in a trace, if Γi and Γ j con-
tain different letters belonging to the visible layer of the initial word, they cannot form a Turchin
pair. More formally, if the visible layer of the initial word is 〈Φ0[1],s0〉 . . .〈Φ0[N],s0〉, then a word
having suffix 〈Φ0[i],s0〉 . . .〈Φ0[N],s0〉 cannot form a Turchin pair with a word having suffix 〈Φ0[i+
k],s0〉 . . .〈Φ0[N],s0〉. We assume that a trace containing a bad sequence contains all of the words

〈Φ0[1],s0〉 . . .〈Φ0[N],s0〉$∆0

〈Φ0[2],s0〉 . . .〈Φ0[N],s0〉$∆i2
. . .
〈Φ0[N−1],s0〉 . . .〈Φ0[N],s0〉$∆iN−1

〈Φ0[N],s0〉$∆iN

If some word 〈Φ0[j],s0〉 . . .〈Φ0[N],s0〉$∆i j does not occur in the trace, then 〈Φ0[j],s0〉 . . .〈Φ0[N],s0〉
is a permanently stable suffix with respect to the whole trace, so 〈Φ0[j],s0〉 . . .〈Φ0[N],s0〉 can be deleted
from all the words in the trace with no impact on the bad sequence length.

If there are no imbedded prefixes (or all of them are never free), then we can only erase letters and
the longest bad sequence consists of N +1 words starting from the initial word and ending with Λ.

If the initial word has the length 0, then it is Λ$Λ and no rules can be applied to it. The longest bad
sequence has the length 1 and contains only the initial word.

Now we make the induction step. Let the length of the initial word be N, the number of imbedded
prefixes be M. For M1 < M and arbitrary N2, let the length of the longest bad sequence built on the initial
word of the length N2 with M1 free imbedded prefixes be not more than BK(M1,N2). For N1 < N, let the
length of the longest bad sequence built on the word of the length N1 with M free imbedded prefixes be
not more than BK(M,N1).

First, we assume that ∆0 = Λ.
A trace which is a candidate for a bad sequence consists of the two following segments. The first

segment — say, segment σ1 — starts with the initial word and ends with 〈Φ0[N],s0〉$∆iN . The second
segment, σ2, starts from the word 〈Φ0[N],s0〉$∆iN and ends with a word having a Turchin pair. Whatever
the rule applications on the segment σ1 are, no word from σ1 can form a Turchin pair with a word from
σ2 because of the properties of the initial word. So we can generate a longest possible bad sequence σ1
and then combine it with a longest possible bad sequence σ2 to receive a longest possible bad sequence
on the whole trace.

The word 〈Φ0[N],s0〉$∆iN can be transformed either by an application of a pop rule or by replacing
〈Φ0[N],s0〉 by some imbedded prefix Ξ. Since Ξ replaces the last letter of the initial word, it becomes not
free for all the segment σ2. If Ξ is a prefix of a word in ∆iN which is placed in the visible layer, it becomes
not free until it is erased. Therefore, a bad sequence with an application of a pop rule to 〈Φ0[N],s0〉$∆iN

7Otherwise, some accidental Turchin pairs may appear in a trace.

A. Nepeivoda 15

is not shorter than a bad sequence with an application of a non-pop rule, if ∆iN contains words not shorter
than K.

The longest possible bad sequence σ1 is not longer than BK(M,N− 1), where M is the number of
imbedded prefixes in the rewriting rules of G. ∆iN can contain words Ψ〈si〉 of the length not more than
(BK(M,N− 1)− 1) ∗K (is is possible to append not more than k letters to the invisible layer during a
rule application, and there are BK(M,N−1)−1 such applications on σ1). So the longest possible visible
layer after an application of a pop rule to 〈Φ0[N],s0〉$∆iN contains not more than BK(M,N−1)∗K letters
(K more letters can be added on the visible layer by the rule). Let us denote the plain word corresponding
to this visible layer as Φ′0.

After Φ′0 is placed in the visible layer, all the other invisible words in ∆iN cannot appear in the visible
layer, which is shown in Proposition 1. So we can consider the word which follows 〈Φ0[N],s0〉$∆iN as
an equivalent of the word Φ′0〈tw〉$Λ.

For every word Φ〈Φ′0[j], tw〉 . . .〈Φ′0[w], tw〉$∆i (|Φ|¿0) in σ2, at least one imbedded prefix is not free.
Namely, the imbedded prefix which contains Φ′0[j] and which application generated Φ′0[j] in the word
Φ′0, is not free. This prefix corresponds to the plain word Ψ1Φ′0[j]Ψ2 where Ψ1 and Ψ2 are some
words, and Ψ2 coincides with some prefix of the word Φ′0[j + 1] . . .Φ′0[w]. Somewhere in σ2 before
the word Φ〈Φ′0[j], t j〉 . . .〈Φ′0[w], tw〉$∆i, is the word Θ j = 〈Ψ1Φ′0[j], t j〉 . . .〈Φ′0[w], tw〉$∆′. After changing
Φ〈Φ′0[j], t j〉 to some word having the prefix Ψ1Φ′0[j]Ψ2, we get a Turchin pair with Θ j.

Hence, the longest bad sequence that can be constructed by the grammar G on the word Φ′0〈tw〉$Λ has
the length not more than BK(M−1, |Φ′0|). So the bad sequence constructed on the initial word Φ0〈s0〉$Λ

is not longer than BK(M−1,BK(M,N−1)∗K).
If ∆0 is not Λ, then for every ∆0〈si〉, we can build some bad sequence on it as a prefix of a visible

layer. The longest bad sequence on the prefix ∆0〈si〉 can be build if we have all the M imbedded prefixes
as free. So we consider only bad sequences where ∆0〈si〉 can be placed on the visible layer as early as
possible — they are the longest possible bad sequences. And the longest of them are not longer than the
longest possible bad sequence constructed from the initial word ∆0Φ0$Λ (because of the presence of the
letter Φ0[1] in the word).

To show that such bad sequences exist, we construct a grammar G = 〈ϒ,S,R,Fx
N,K ,Γ0$∆0〉 such that

all rules in R are either

R[l] : 〈al,si〉Θ$Ψ→Φl〈si〉Θ$Fsi(Ψ)

or

R[l] : 〈al,si〉Θ$Ψ→Ψ〈s j〉Φl〈si〉Θ$Fsi(Ψ〈ŝ j〉)

and |Φl| is either a number greater than 1 (say, |Φl|=K) or 0. If Φl =Λ, then Fsi is always a composition
of N appending operations Appsk [Ξ], where sk are incomparable children of si (sk is a fresh label from S
if Ψ1 contains no children of si), and |Ξ|= |Φ j| for some imbedded prefix Φ j in R.

In order to construct an Ackermanian-long bad sequence containing no Turchin pairs, we use the
following strategy.

1. Apply all the rules R[j] with the different imbedded prefixes in the right-hand sides of the visible
layers to the initial word.

2. (a) If applications of all imbedded prefixes Φ j generate Turchin pairs (no free imbedded prefixes
are available on the trace), apply a rule with Φ j = Λ.

16 Turchin’s relation for call-by-name computations

(b) If there is an imbedded prefix Φ j that can be prepended to the visible layer of the word
without generating a Turchin pair, then use it and pop (Φ j)

k from the invisible part8.

Proceed with the step (1) until the empty word or a Turchin pair is generated.

This strategy constructs a trace which ends with a segment starting with the longest word in the trace
(Φ j)

k$Ψ′, the letters of the visible layer of which are erased until the word Λ$Ψ is reached.

Let us illustrate the construction above with a grammar of the described form where K = 2, and the
length of the initial word is also 2.

The initial word is 〈an,s0〉$Λ. The rewriting rules are

〈a,s〉Θ$Ψ→ 〈bb,s〉Θ$Ψ

〈a,s〉Θ$Ψ′Ψ〈child1(s)〉 →Ψ〈child1(s)〉〈bb,s〉Θ$ΨAppchild1(s)[bb]Appchild2(s)[cc]

〈b,s〉Θ$Ψ→ 〈cc,s〉Θ$Ψ

〈b,s〉Θ$Ψ′Ψ〈child2(s)〉 →Ψ〈child2(s)〉〈cc,s〉Θ$ΨAppchild1(s)[bb]Appchild2(s)[cc]

〈c,s〉Θ$Ψ→Θ$ΨAppchild1(s)[bb]Appchild2(s)[cc]

A trace of the grammar built by the described strategy is presented below. We assume that sΓ / s∆ iff
the word Γ is a prefix of the word ∆. Otherwise, sΓ and s∆ are incomparable.

8We cannot prescribe a rule to pop Φk
j from the invisible part, but we can assign the label sΦ j to all Φ j placed to the invisible

layer, and then we can pop Ψ〈sΦ j 〉 from it.

A. Nepeivoda 17

〈aa,s0〉$Λ

��

〈b12,s021〉〈b2,s0〉$Λ

��
〈bba,s0〉$Λ

��

〈c2b11,s021〉〈b2,s0〉$Λ

��
〈ccba,s0〉$Λ

��

〈cb11,s021〉〈b2,s0〉$〈b2,s0211〉〈c2,s0212〉
��

〈cba,s0〉$〈b2,s01〉〈c2,s02〉
��

〈b11,s021〉〈b2,s0〉$〈b4,s0211〉〈c4,s0212〉
��

〈ba,s0〉$〈b4,s01〉〈c4,s02〉
��

〈c6,s0212〉〈b10,s021〉〈b2,s0〉$Λ

��〈c4,s02〉〈c2a,s0〉$Λ

��

. . .

��
〈c3,s02〉〈c2a,s0〉$〈b2,s021〉〈c2,s022〉

��

〈b10,s021〉〈b2,s0〉$〈b12,s02121〉〈c12,s02122〉
��

〈c2,s02〉〈c2a,s0〉$〈b4,s021〉〈c4,s022〉
��

〈c14,s02122〉〈b9,s021〉〈b2,s0〉$Λ

��〈c,s02〉〈c2a,s0〉$〈b6,s021〉〈c6,s022〉

��

. . .

��
〈c2a,s0〉$〈b8,s021〉〈c8,s022〉

��

〈c2i−2,s02122...2〉〈b13−i,s021〉〈b2,s0〉$Λ

��〈ca,s0〉$〈b10,s021〉〈c10,s022〉

��

. . .

��

〈a,s0〉$〈b12,s021〉〈c12,s022〉

��

〈c215−2,s02122222...2〉$Λ

Until the last word is completely erased, no words in the trace form Turchin pairs.

The set of the rules above allows us to generate bad sequences with the length order O(B(n,2)) (n is
the length of the initial word). If we add the rules
〈c,s〉Θ$Ψ→ 〈dd,s〉Θ$Ψ

〈c,s〉Θ$Ψ′Ψ〈child3(s)〉 →Ψ〈child3(s)〉〈dd,s〉Θ$ΨAppchild1(s)[bb]Appchild2(s)[cc]Appchild3(s)[dd]
〈d,s〉Θ$Ψ→Θ$ΨAppchild1(s)[bb]Appchild2(s)[cc]Appchild3(s)[dd]

to the grammar (so the imbedded prefix dd is added to the set of imbedded prefixes {cc,bb}), the strategy
will generate words of the length B(n,3), and so on.

We can also generate Ackermanian languages by the grammars of the described sort.

Example 7. Let Gexptower be the following grammar. Its initial word is

〈A,s0〉〈E,s0〉$〈Bb,s01〉〈,s02〉〈’Nil’,s03〉

and s03 is a child of s0 which is incomparable with all other labels in S. The set R of rewriting rules is:

18 Turchin’s relation for call-by-name computations

R[0] : 〈A,si〉Θ$Ψ → 〈Aa,si〉Θ$Ψ

R[1] : 〈A,si〉Θ$Ψ → 〈Bb,si〉Θ$Ψ

R[2] : 〈a,si〉Θ$Ψ〈si1〉Ψ〈si2〉Ψ′ → Ψ〈si1〉Θ$Ψ′

R[3] : 〈B,si〉Θ$Ψ → 〈Cc,si〉Θ$Ψ

R[4] : 〈b,si〉Θ$Ψ〈si1〉Ψ〈si2〉Ψ′ → Ψ〈si2〉Θ$Ψ′

R[5] : 〈,si〉Θ$Ψ → Θ$Ψ〈Bb,si1〉〈Cc,si2〉
R[6] : 〈c,si〉Θ$Ψ → Θ$Ψ〈Bb,si1〉〈Cc,si2〉
R[7] : 〈E,s0〉$Ψ〈si1〉Ψ〈si2〉〈’Nil’,s3〉 → Ψ〈si2〉$Λ

After the rule R[7] is applied, the second descendant of s0 is placed into the visible part and the
invisible part of the word becomes Λ. Each application of the rule R[0] adds a level to the tower of
exponentials which is the length of the visible part of this word, i.e. the length of words in the generated

language is 2 2...
2
}

N .

Example 8. A program that generates traces similar to traces generated by Gexptower (the grammar from
Example 7) can be as follows. The input point of the program is A(< N,b(B(< 1,0>))>) (where N is
an arbitrary fixed natural number).

A(<x1+1,x2>)=a(A(<x1,x2>));

A(<0,x2>)=<x2+1,0>;

a(<x1+1,x2>)=x1;

B(<x1+1,x2>)=c(c(<x1+1,x2>));

b(<x1+1,x2>)=x2;

c(<x1+1,x2>)=<B(b(<x1,x2>))+1, c(c(<x1,x2>))>;

c(<0,x2>)=<B(b(<1,0>))+1, c(c(<0,0>))>;

The program never stops and its call stack configurations form bad sequences of the exponential tower
length (in N) with respect to the Turchin relation. However, with respect the homeomorphic embedding
over the entire terms, a computation of this program for every N > 0 is terminated on the 5+N-th step.

6 Conclusion

The Turchin relation for call-by-name computations is a strong and consistent branch termination crite-
rion, which finds pairs of embedded terms on the trace of every infinite computation. It allows a program
transformation tool to construct very long configuration sequences (i.e., traces) with no Turchin pairs in
them, and neither the homeomorphic embedding can replace the Turchin relation nor the Turchin relation
can be considered as a simplification of the homeomorphic embedding in the case of the normal-order
reduction. The Turchin relation can be used together with the homeomorphic embedding without the
loss of well-binariness.

Alphabetic multi-layer grammars, which describe function call stack behaviour, are able to generate
languages with very long words, but it seems they are not able to generate languages with words having
a complex structure. It would be interesting to find some practical problems, which can be solved with
the power of Turchin’s relation (or homeomorphic embedding) on the call stack configurations for call-
by-name computations.

A. Nepeivoda 19

Acknowledgements

I would like to thank A. P. Nemytykh for many fruitful advices and help in improving the paper, and the
anonymous referees for the useful feedback.

References
[1] A. Ahmed, A. Lisitsa & A. Nemytykh (2013): Cryptographic Protocol Verification via Supercompilation (A

Case Study). In Alexei Lisitsa & Andrei Nemytykh, editors: VPT 2013, EPiC Series 16, EasyChair, pp.
16–29.

[2] D. Caucal (1992): On the regular structure of prefix rewriting. Theoretical Computer Science 106, pp. 61–86.
[3] D. Dolev & A.C. Yao (1983): On the security of public key protocols. Transactions on Information Theory

29, pp. 198–208.
[4] S. Greibach (1965): A New Normal-Form Theorem for Context-Free Phrase Structure Grammars. Journal of

the ACM 12(1).
[5] G. W. Hamilton & N. D. Jones (2012): Distillation with labelled transition systems, pp. 15–24. IEEE Com-

puter Society Press.
[6] J. E. Hopcroft & J. D. Ullman (1979): Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley.
[7] A.K. Joshi, K.V. Shanker & D. Weir (1990): The Convergence of Mildly Context-Sensitive Grammar For-

malisms. Technical Report.
[8] I. Klyuchnikov (2014): Nullness Analysis of Java Bytecode via Supercompilation over Abstract Values. In:

Fourth International Valentin Turchin Workshop on Metacomputation, pp. 161–176.
[9] A. Lisitsa & A. Nemytykh (2014): A Note on Program Specialization. What Syntactical Properties of Resid-

ual Programs Can Reveal?, pp. 52–65. 28, EPiC Series, EasyChair.
[10] A. Lisitsa & A. P. Nemytykh (2008): Reachability Analysis in Verification via Supercompilation. Interna-

tional Journal of Foundations of Computer Science 19(4), pp. 953–970.
[11] A. P. Nemytykh (2007): The Supercompiler Scp4: General Structure. URSS, Moscow.
[12] A. Nepeivoda (2013): Ping-Pong protocols as prefix grammars and Turchin’s relation. In: VPT 2013. First

International Workshop on Verification and Program Transformation, 16, EPiC Series, EasyChair, pp. 74–87.
[13] A. Nepeivoda (2014): Turchin’s Relation and Subsequence Relation in Loop Approximation. In: PSI 2014.

Ershov Informatics Conference. Poster Session, 23, EPiC Series, EasyChair, pp. 30–42.
[14] Y. Saouter (1995): Halting Problem for One-State Turing Machines. Research Report.
[15] M.H. Sørensen (1994): Turchin’s Supercompiler Revisited. Ms.Thesis.
[16] V. F. Turchin (1986): The Concept of a Supercompiler. ACM Transactions on Programming Languages and

Systems 8(3), pp. 292–325.
[17] V. F. Turchin (1989): Refal-5, Programming Guide and Reference Manual. New England Publishing Co.,

Holyoke, Massachusetts. Electronic version:http://www.botik.ru/pub/local/scp/refal5/.
[18] V.F. Turchin (1988): The algorithm of generalization in the supercompiler. Partial Evaluation and Mixed

Computation, pp. 341–353.

http://www.botik.ru/pub/local/scp/refal5/

	Introduction
	Preliminaries
	Multi-layer Prefix Grammars
	Modelling Call Stack Behaviour by Multi-layer Grammars
	Language
	Multi-layer grammars as call stack behaviour models

	Turchin's Relation and Multi-Layer Grammars
	Turchin's theorem for multi-layer grammars
	Bounds on the bad sequences length

	Conclusion

