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Algorithmic skeletons are used as building-blocks to ease the task of parallel programming by ab-
stracting the details of parallel implementation from the developer. Most existing libraries provide
implementations of skeletons that are defined over flat data types such as lists or arrays. However,
skeleton-based parallel programming is still very challenging as it requires intricate analysis of the
underlying algorithm and often uses inefficient intermediate data structures. Further, the algorithmic
structure of a given program may not match those of list-based skeletons. In this paper, we present
a method to automatically transform any given program to one that is defined over a list and is more
likely to contain instances of list-based skeletons. This facilitates the parallel execution of a trans-
formed program using existing implementations of list-based parallel skeletons. Further, by using an
existing transformation called distillation in conjunction with our method, we produce transformed
programs that contain fewer inefficient intermediate data structures.

1 Introduction

In today’s computing systems, parallel hardware architectures that use multi-core CPUs and GPUs
(Graphics Processor Units) are ubiquitous. On such hardware, it is essential that the programs developed
be executed in parallel in order to effectively utilise the computing power that is available. To enable
this, the parallelism that is inherent in a given program needs to be identified and exploited. However,
parallel programming is tedious and error-prone when done by hand and is very difficult for a compiler
to do automatically to the desired level.

To ease the task of parallel programming, a collection of algorithmic skeletons [1, 2] are often used
for program development to abstract away from the complexity of implementing the parallelism. In
particular, map, reduce and zipWith are primitive parallel skeletons that are often used for parallel pro-
gramming [3, 4]. Most libraries such as Eden [5], SkeTo [6], Data Parallel Haskell (DPH) [7], and
Accelerate [8] provide parallel implementations for these skeletons defined over flat data types such as
lists or arrays. However, there are two main challenges in skeleton-based programming:

1. Using multiple skeletons in a program often introduces inefficient intermediate data structures
[9, 10].

2. There may be a mismatch in data structures and algorithms used by the skeletons and the program
[11, 12].

For example, consider the matrix multiplication program shown in Example 1.1, where mMul com-
putes the product of two matrices xss and yss. The function map is used to compute the dot-product
(dot p) of each row in xss and those in the transpose of yss, which is computed by the function transpose.
Note that this definition uses multiple intermediate data structures, which is inefficient.
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Example 1.1 (Matrix Multiplication)
mMul :: [[a]] → [[a]] → [[a]]
mMul xss yss
where
mMul [] yss = []
mMul (xs : xss) yss = (map (transpose yss []) (dot p xs)) : (mMul xss yss)
map [] f = []
map (x : xs) f = ( f x) : (map xs f )
dot p [] ys = 0
dot p (x : xs) [] = 0
dot p (x : xs) (y : ys) = (x∗ y)+(dot p xs ys)
transpose [] yss = yss
transpose (xs : xss) yss = transpose xss (rotate xs yss)
rotate [] yss = yss
rotate (x : xs) [] = [x] : (rotate xs yss)
rotate (x : xs) (ys : yss) = (append ys [x]) : (rotate xs yss)
append [] ys = ys
append (x : xs) ys = x : (append xs ys)

A version of this program defined using the built-in map, reduce and zipWith skeletons is shown in
Example 1.2.

Example 1.2 (Hand-Parallelised Matrix Multiplication)
mMul xss yss
where
mMul [] yss = []
mMul (xs : xss) yss = (map (dot p xs) (transpose yss [])) : (mMul xss yss)
dot p xs ys = reduce (+) 0 (zipWith (∗) xs ys)
transpose [] yss = yss
transpose (xs : xss) yss = transpose xss (rotate xs yss)
rotate xs yss = zipWith (λx.λys.append ys [x]) xs yss
append [] ys = ys
append (x : xs) ys = x : (append xs ys)

As we can observe, though defined using parallel skeletons, this implementation still employs mul-
tiple intermediate data structures. For instance, the matrix constructed by the transpose function is
subsequently decomposed by map. It is challenging to obtain a program that uses skeletons for parallel
evaluation and contains very few intermediate data structures.

Therefore, it is desirable to have a method to automatically identify potential parallel computations in
a given program, transform them to operate over flat data types to facilitate their execution using parallel
skeletons provided in existing libraries, and reduce the number of inefficient intermediate data structures
used.

In this paper, we present a transformation method with the following aspects:

1. Reduces inefficient intermediate data structures in a given program using an existing transforma-
tion technique called distillation [13]. (Section 3)

2. Automatically transforms the distilled program by encoding its inputs into a single cons-list, re-
ferred to as the encoded list. (Section 4)

3. Allows for parallel execution of the encoded program using efficient implementations of map and
map-reduce skeletons that operate over lists. (Section 5)

In Section 6, we present concluding remarks on possible improvements to our transformation method
and discuss related work.
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2 Language

We focus on the automated parallelisation of functional programs because pure functional programs are
free of side-effects, which makes them easier to analyse, reason about, and manipulate using program
transformation techniques. This facilitates parallel evaluation of independent sub-expressions in a pro-
gram. The higher-order functional language used in this work is shown in Definition 2.1.

Definition 2.1 (Language Grammar)
e ::= x Variable
| c e1 . . .eN Constructor Application
| e0 Function Definition

where
f p1

1 . . . p1
M x1

(M+1) . . .x
1
N = e1 . . . f pK

1 . . . pK
M xK

(M+1) . . .x
K
N = eK

| f Function Call
| e0 e1 Application
| let x1 = e1 . . . xN = eN in e0 let–expression
| λx.e λ–Abstraction

p ::= x | c p1 . . . pN Pattern

A program in this language is an expression, which can be a variable, constructor application, func-
tion definition, function call, application, let-expression or λ -expression. Variables introduced in a λ -
expression, let-expression, or function definition are bound, while all other variables are free. Each con-
structor has a fixed arity. In an expression c e1 . . .eN , N must be equal to the arity of the constructor c. Pat-
terns in a function definition header are grouped into two – pk

1 . . . pk
M are inputs that are pattern-matched,

and xk
(M+1) . . .x

k
N are inputs that are not pattern-matched. The series of patterns p1

1 . . . p1
M, . . . , pK

1 . . . pK
M

in a function definition must be non-overlapping and exhaustive. We use [] and (:) as short notations for
the Nil and Cons constructors of a cons-list and ++ for list concatenation. The set of free variables in an
expression e is denoted as f v(e).

Definition 2.2 (Context)
A context E is an expression with holes in place of sub-expressions. E[e1, . . . ,eN ] is the expression
obtained by filling holes in context E with the expressions e1, . . . ,eN .

The call-by-name operational semantics of our language is defined using an evaluation relation as
shown in Definition 2.3.

Definition 2.3 (Evaluation Relation)
e r
 , iff ∃e′.e r

 e′ e ⇓, iff ∃v.e ⇓ v

e ⇓ v, iff e r∗
 v∧¬(v r

 ) e ⇑, iff ∀e′.e r∗
 e′⇒ e′ r

 

Here, ⇓ is an evaluation relation between closed expressions and values, where values are expressions
in weak head normal form (constructor applications and λ–abstractions). e ⇓ denotes that e converges,
e ⇓ v denotes that e evaluates to the value v, and e ⇑ denotes that e diverges. e r

 denotes reduction
of expression e using the one-step reduction relation shown in Definition 2.4. The reduction can be f
(unfolding of function f ) or β (beta-substitution). The transitive closure of the reduction relation is

denoted by r∗
 .
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Definition 2.4 (One-Step Reduction Relation)

(
(λx.e0) e1

) β
 
(
e0{x 7→ e1}

) e0
r
 e′0

(e0 e1)
r
 (e′0 e1)

e1
r
 e′1

(e0 e1)
r
 (e0 e′1)(

f p1 . . . pN = e
)
∧
(
∃θ · ∀n ∈ {1, . . . ,N} · en = pnθ

)
( f e1 . . .eN)

f
 eθ(

let x1 = e1 . . . xN = eN in e0
) β
 
(
e0{x 7→ e1, . . . ,xN 7→ eN}

)
A program can also contain data type declarations of the form shown in Definition 2.5. Here, T is

the name of the data type, which can be polymorphic, with type variables α1, . . . ,αM. A data constructor
ck may have zero or more components, each of which may be a type variable or a type application.

Definition 2.5 (Data Type Declaration)
data T α1 . . .αM ::= c1 t1

1 . . . t
1
N | . . . | cK tK

1 . . . tK
N

t ::= αm | T t1 . . . tM Type Component

3 Distillation

Objective: A given program may contain a number of inefficient intermediate data structures. In order
to reduce them, we use an existing transformation technique called distillation.

Distillation [13] is a technique that transforms a program to remove intermediate data structures and
yields a distilled program. It is an unfold/fold-based transformation that makes use of well-known trans-
formation steps – unfold, generalise and fold [14] – and can potentially provide super-linear speedups
to programs. The syntax of a distilled program de{} is shown in Definition 3.1. Here, ρ is the set of
variables introduced by let–expressions; these are not decomposed by pattern-matching. Consequently,
de{} is an expression that has fewer intermediate data structures.

Definition 3.1 (Distilled Form Grammar)
deρ ::= x deρ

1 . . .deρ

N Variable Application
| c deρ

1 . . .deρ

N Constructor Application
| deρ

0 Function Definition
where
f p1

1 . . . p1
M x1

(M+1) . . .x
1
N = deρ

1 . . . f pK
1 . . . pK

M xK
(M+1) . . .x

K
N = deρ

K
| f x1 . . .xN Function Application

where f p1
1 . . . p1

M x1
(M+1) . . .x

1
N = deρ

1 . . . f pK
1 . . . pK

M xK
(M+1) . . .x

K
N = deρ

K

∀n ∈ {1, . . . ,N} ·
(
xn ∈ ρ ⇒ ∀k ∈ {1, . . . ,K} · pk

n = xk
n
)

| let x1 = deρ

1 . . . xN = deρ

N in deρ ∪ {x}
1 let–expression

| λx.deρ λ–Abstraction
p ::= x | c p1 . . . pN Pattern

Example 3.1 shows the distilled form of the example matrix multiplication program in Example 1.1.
Here, we have lifted the definitions of functions mMul2 and mMul3 to the top level using lambda lifting
for ease of presentation.
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Example 3.1 (Distilled Matrix Multiplication)
mMul xss yss
where
mMul xss yss = mMul1 xss yss yss
mMul1 [] zss yss = []
mMul1 xss [] yss = []
mMul1 (xs : xss) (zs : zss) yss = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in (mMul2 zs xs yss v) : (mMul1 xss zss yss)
mMul2 [] xs yss v = []
mMul2 (z : zs) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul3 xs yss v) : (mMul2 zs xs yss v′)
mMul3 [] yss v = 0
mMul3 (x : xs) [] v = 0
mMul3 (x : xs) (ys : yss) v = (x+(v ys))+(mMul3 xs yss v)

In this distilled program, function mMul1 computes the product of matrices xss and yss, and func-
tions mMul2 and mMul3 compute the dot-product of a row in xss and those in the transpose of yss. This
version of matrix multiplication is free from intermediate data structures. In particular, distillation re-
moves data structures that are constructed and subsequently decomposed as a part of the algorithm that
is implemented in a given program.

Consequence: Using the distillation transformation, we obtain a semantically equivalent version of the
original program that has fewer intermediate data structures.

4 Encoding Transformation

Objective: The data types and the algorithm of a distilled program, which we want to parallelise, may
not match with those of the skeletons defined over lists. This would inhibit the potential identification
of parallel computations that could be encapsulated using the map or map-reduce skeletons. To resolve
this, we define a transformation that encodes the inputs of a distilled program into a single cons-list. The
resulting encoded program is defined in a form that facilitates identification of list-based parallel skeleton
instances.

To perform the encoding transformation, we first lift the definitions of all functions in a distilled program
to the top-level using lambda lifting. Following this, for each recursive function f defined in the top-level
where-expression of the distilled program, we encode the inputs p1, . . . , pM that are pattern-matched in
the definition of f . Other inputs x(M+1), . . . ,xN that are never pattern-matched in the definition of f are
not encoded. Further, we perform this encoding only for the recursive functions in a distilled program
because they are potential instances of parallel skeletons, which are also defined recursively. The three
steps to encode inputs x1, . . . ,xM of function f into a cons-list, referred to as the encoded list x, are
illustrated in Figure 1 and described below. Here, we encode the pattern-matched inputs x1, . . . ,xM

into a cons-list of type [Tf ], where Tf is a new type created to contain the pattern-matched variables in
x1, . . . ,xM.

Consider the definition of a recursive function f , with inputs x1, . . . ,xM,x(M+1), . . . ,xN , of the form
shown in Definition 4.1 in a distilled program. Here, for each body ek corresponding to function header
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x1 . . . xM -
f

out put

�
�

�
�

?

encode f

?

Transformation using
Encoded List Type [Tf ]

x -
f ′

out put

�
�

�
�

Figure 1: Steps to Encode Inputs of Function f

f pk
1 . . . pk

M xk
(M+1) . . .x

k
N in the definition of f , we use one of the recursive calls to function f that may

appear in ek. All other recursive calls to f in ek are a part of the context Ek.

Definition 4.1 (General Form of Recursive Function in Distilled Program)
f x1 . . .xM x(M+1) . . .xN
where
f p1

1 . . . p1
M x(M+1) . . .xN = e1

...
...

f pK
1 . . . pK

M x(M+1) . . .xN = eK

where ∃k ∈ {1, . . . ,K} · ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
The three steps to encode the pattern-matched inputs are as follows:

1. Declare a new encoded data type Tf :
First, we declare a new data type Tf for elements of the encoded list. This new data type corresponds
to the data types of the pattern-matched inputs of function f that are encoded. The rules to declare
type Tf are shown in Definition 4.2.

Definition 4.2 (Rules to Declare Encoded Data Type for List)
data Tf α1 . . .αG ::= c1 T 1

1 . . .T 1
L | . . . | cK T K

1 . . .T K
L

where
α1, . . . ,αG are the type variables of the data types of the pattern-matched inputs
∀k ∈ {1, . . . ,K}·
ck is a fresh constructor for Tf corresponding to pk

1 . . . pk
M of the pattern-matched inputs〈

T k
1 , . . . ,T

k
L
〉
=

{〈
T | (x :: T ) ∈

(
f v(Ek)\{x(M+1), . . . ,xN}

)〉
, if ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]〈
T | (x :: T ) ∈

(
f v(ek)\{x(M+1), . . . ,xN}

)〉
, otherwise

where f pk
1 . . . pk

M x(M+1) . . .xN = ek

Here, a new constructor ck of the type Tf is created for each set pk
1 . . . pk

M of the pattern-matched inputs
x1 . . .xM of function f that are encoded. As stated above, our objective is to encode the inputs of a
recursive function f into a list, where each element contains the pattern-matched variables consumed
in an iteration of f . To achieve this, the variables bound by constructor ck correspond to the variables
in pk

1 . . . pk
M that occur in the context Ek (if ek contains a recursive call to f ) or the expression ek

(otherwise). Consequently, the type components of constructor ck are given as defined in the sequence〈
T k

1 , . . . ,T
k

L
〉
.

2. Define a function encode f :
For a recursive function f of the form shown in Definition 4.1, we use the rules in Definition 4.3 to
define function encode f to build the encoded list, in which each element is of type Tf .
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Definition 4.3 (Rules to Define Function encode f )
encode f x1 . . .xM
where
encode f p1

1 . . . p1
M = e′1

...
...

encode f pK
1 . . . pK

M = e′K
where

∀k ∈ {1, . . . ,K} · e′k =



[
ck zk

1 . . .z
k
L
]
++(encode f xk

1 . . .x
k
M), if ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
where {zk

1, . . . ,z
k
L}= f v(Ek)\{x(M+1), . . . ,xN}[

ck zk
1 . . .z

k
L
]
, otherwise

where {zk
1, . . . ,z

k
L}= f v(ek)\{x(M+1), . . . ,xN}

where f pk
1 . . . pk

M x(M+1) . . .xN = ek

Here, for each pattern pk
1 . . . pk

M of the pattern-matched inputs, the encode f function creates a list
element. This element is composed of a fresh constructor ck of type Tf that binds zk

1, . . . ,z
k
L, which

are the variables in pk
1 . . . pk

M that occur in the context Ek (if ek contains a recursive call to f ) or the
expression ek (otherwise). The encoded input of the recursive call f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N is then

computed by encode f xk
1 . . .x

k
M and appended to the element to build the complete encoded list for

function f .

3. Transform the distilled program :
After creating the data type Tf for the encoded list and the encode f function for each recursive function
f , we transform the distilled program using the rules in Definition 4.4 by defining a recursive function
f ′, which operates over the encoded list, corresponding to function f .

Definition 4.4 (Rules to Define Encoded Function Over Encoded List)
f ′ x x(M+1) . . .xN
where
f ′
(
(c1 z1

1 . . .z
1
L) : x1

)
x(M+1) . . .xN = e′1

...
...

f ′
(
(cK zK

1 . . .zK
L ) : xK

)
x(M+1) . . .xN = e′K

where

∀k ∈ {1, . . . ,K} · e′k =

{
Ek

[
f ′ xk xk

(M+1) . . .x
k
N

]
, if ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
ek, otherwise

where f pk
1 . . . pk

M x(M+1) . . .xN = ek

Here,

• In each function definition header of f , replace the pattern-matched inputs with a pattern to de-
compose the encoded list, such that the first element in the encoded list is matched with the cor-
responding pattern of the encoded type. For instance, a function header f p1 . . . pM x(M+1) . . .xN

is transformed to f ′ p x(M+1) . . .xN , where p is a pattern to match the first element in the encoded
list with a pattern of the type Tf .
• In each call to function f , replace the pattern-matched inputs with their encoding. For instance,

a call f x1 . . .xM x(M+1) . . .xN is transformed to f ′ x x(M+1) . . .xN , where x is the encoding of the
pattern-matched inputs x1, . . . ,xM.

The encoded data types, encode functions and encoded program obtained for the distilled matrix
multiplication program from Example 3.1 are shown in Example 4.1.
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Example 4.1 (Distilled Matrix Multiplication with Inputs Encoded to cons-list)
data TmMul1 a ::= c1 | c2 | c3 [a] [a]
data TmMul2 a ::= c4 | c5
data TmMul3 a ::= c6 | c7 | c8 a [a]
encodemMul1 [] zss = [c1]
encodemMul1 xss [] = [c2]
encodemMul1 (xs : xss) (zs : zss) = [c3 xs zs]++(encodemMul1 xss zss)
encodemMul2 [] = [c4]
encodemMul2 (z : zs) = [c5]++(encodemMul2 xs yss zs)
encodemMul3 [] yss = [c6]
encodemMul3 (x : xs) [] = [c7]
encodemMul3 (x : xs) (ys : yss) = [c8 x ys]++(encodemMul3 xs yss)
mMul′ xss yss
where
mMul′ xss yss = mMul′1 (encodemMul1 xss yss) yss
mMul′1 (c1 : x) yss = []
mMul′1 (c2 : x) yss = []
mMul1

(
(c3 xs zs) : x

)
yss = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in (mMul′2 (encodemMul2 zs) xs yss v) : (mMul′1 x yss)
mMul′2 (c4 : x) xs yss v = []
mMul′2 (c5 : x) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul′3 (encodemMul3 xs yss) v) : (mMul′2 x xs yss v′)
mMul′3 (c6 : x) v = 0
mMul′3 (c7 : x) v = 0
mMul′3

(
(c8 x ys) : x

)
v = (x∗ (v ys))+(mMul′3 x v)

4.1 Correctness

The correctness of the encoding transformation can be established by proving that the result computed by
each recursive function f in the distilled program is the same as the result computed by the corresponding
recursive function f ′ in the encoded program. That is,(

f x1 . . .xM x(M+1) . . .xN
)
=
(

f ′ x x(M+1) . . .xN
)

where x = encode f x1 . . .xM

Proof:
The proof is by structural induction over the encoded list type [Tf ].

Base Case:
For the encoded list xk =

(
(ck zk

1 . . .z
k
L) : []

)
computed by encode f pk

1 . . . pk
M,

1. By Definition 4.1, L.H.S. evaluates to ek.

2. By Definition 4.4, R.H.S. evaluates to ek.

Inductive Case:
For the encoded list xk =

(
(ck zk

1 . . .z
k
L) : xk

)
computed by encode f pk

1 . . . pk
M,

1. By Definition 4.1, L.H.S. evaluates to Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
.
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2. By Definition 4.4, R.H.S. evaluates to Ek

[
f ′ xk xk

(M+1) . . .x
k
N

]
.

3. By inductive hypothesis,
(

f x1 . . .xM x(M+1) . . .xN
)
=
(

f ′ x x(M+1) . . .xN
)
.

Consequence: As a result of the encoding transformation, the pattern-matched inputs of a recursive
function are encoded into a cons-list by following the recursive structure of the function. Parallelisation
of the encoded program produced by this transformation by identifying potential instances of map and
map-reduce skeletons is discussed in Section 5.

5 Parallel Execution of Encoded Programs

Objective: An encoded program defined over an encoded list is more likely to contain recursive func-
tions that resemble the structure of map or map-reduce skeletons. This is because the encode f function
constructs the encoded list in such a way that it reflects the recursive structure of the map and map-reduce
skeletons defined over a cons-list. Therefore, we look for instances of these skeletons in our encoded
program.

In this work, we identify instances of only map and map-reduce skeletons in an encoded program. This
is because, as shown in Property 5.1, any function that is an instance of a reduce skeleton in an en-
coded program that operates over an encoded list cannot be efficiently evaluated in parallel because the
reduction operator will not be associative.

Property 5.1 (Non-Associative Reduction Operator for Encoded List)
Given an encoded program defined over an encoded list, the reduction operator ⊕ in any instance of a
reduce skeleton is not associative, that is ∀x,y,z · (x⊕ (y⊕ z)) 6= ((x⊕ y)⊕ z).

Proof:

1. From Definition 4.4, given an encoded function f ′,

f ′ :: [Tf ] → T(M+1) . . . TN → b

where [Tf ] is the encoded list data type.
T(M+1), . . . ,TN are data types for inputs that are not encoded.
b is the output data type.

2. If f ′ is an instance of a reduce skeleton, then the type of the binary reduction operator is given by
⊕ :: Tf → b→ b.

3. Given that Tf is a newly created data type, it follows from (2) that the binary operator ⊕ is not
associative because the two input data types Tf and b cannot not be equal.

5.1 Identification of Skeletons

To identify skeleton instances in a given program, we use a framework of labelled transition systems
(LTSs), presented in Definition 5.1, to represent and analyse the encoded programs and skeletons. This
is because LTS representations enable matching the recursive structure of the encoded program with that
of the skeletons rather than finding instances by matching expressions.
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Definition 5.1 (Labelled Transition System (LTS))
A LTS for a given program is given by l = (S , s0, Act, →) where:

• S is the set of states of the LTS, where each state has a unique label s.

• s0 ∈S is the start state denoted by start(l).

• Act is one of the following actions:

– x, a free variable or let-expression variable,

– c, a constructor in an application,

– λ , a λ -abstraction,

– @, an expression application,

– #i, the ith argument in an application,

– p, the set of patterns in a function definition header,

– let, a let-expression body.

• →⊆ S ×Act×S relates pairs of states by actions in Act such that if s ∈S and s α−→ s′ then s′ ∈S where
α ∈ Act.

The LTS corresponding to a given program e can be constructed by L JeK s0 /0 /0 using the rules L
shown in Definition 5.2. Here, s0 is the start state, φ is the set of previously encountered function calls
mapped to their corresponding states, and ∆ is the set of function definitions. A LTS built using these
rules is always finite because if a function call is re-encountered, then the corresponding state is reused.

Definition 5.2 (LTS Representation of Program)
L JxK s φ ∆ = s→ (x,0)
L Jc e1 . . .eNK s φ ∆ = s→ (c,0),(#1,L Je1K s1 φ ∆), . . . ,(#N,L JeNK sN φ ∆)
L Je0 where δ1 . . .δJK s φ ∆ = L Je0K s φ

(
∆∪{ f1 7→ δ1, . . . , fJ 7→ δJ}

)
where ∀ j{1, . . . ,J} ·δ j = f j p1

1 . . . p1
M x1

(M+1) . . .x
1
N = e1 . . . f j pK

1 . . . pK
M xK

(M+1) . . .x
K
N = eK

L J f K s φ ∆ =

{
l where φ( f ) = start(l), if f ∈ dom(φ)
L J∆( f )K s (φ ∪{ f 7→ s}) ∆, otherwise

L

u

w
v

f p1
1 . . . p1

M x1
(M+1) . . .x

1
N = e1

...
...

f pK
1 . . . pK

M xK
(M+1) . . .x

K
N = eK

}

�
~s φ ∆ =


s→ (p1

1 . . . p1
M x1

(M+1) . . .x
1
N , l1), . . . ,

(pK
1 . . . pK

M xK
(M+1) . . .x

K
N , lK)

where ∀k ∈ {1, . . . ,K} · lk =
(
L JekK sk φ ∆

)
L Je0 e1K s φ ∆ = s→ (@,L Je0K s0 φ ∆),(#1,L Je1K s1 φ ∆)
L Jlet x1 = e1 . . . xN = eN in e0K s φ ∆ = s→

(
let,L Je0K s0 φ ∆),
(x1,L Je1K s1 φ ∆), . . . ,(xN ,L JeNK sN φ ∆)

L Jλx.eK s φ ∆ = s→ (λ ,L JeK s1 φ ∆)

Definition 5.3 (LTS Substitution)
A substitution is denoted by θ = {x1 7→ l1, . . . ,xN 7→ lN}. If l is an LTS, then lθ = l{x1 7→ l1, . . . ,xN 7→ lN}
is the result of simultaneously replacing the LTSs sn→ (xn,0) with the corresponding LTS ln in the LTS
l while ensuring that bound variables are renamed appropriately to avoid name capture.

Potential instances of skeleton LTSs can be identified and replaced with suitable calls to correspond-
ing skeletons in the LTS of an encoded program l by S JlK /0 〈〉 ω using the rules presented in Definition
5.4.
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Definition 5.4 (Extraction of Program from LTS with Skeletons)

S JlK ρ σ ω =



f e1 . . .eN , if ∃( f x1 . . .xN , l′) ∈ ω,θ · l′θ = l
where
θ = {x1 7→ l1, . . . ,xN 7→ lN}
∀n ∈ {1, . . . ,N} · en = (S JlnK ρ σ ω)

f e1 . . .eN , if ∃(s, f ) ∈ ρ · start(l) = s
where σ = 〈e1, . . . ,eN〉
S ′JlK ρ σ ω , otherwise


, if ∃s ∈ states(l),α · s α→ start(l)

S ′JlK ρ σ ω , otherwise
S ′Js→ (x,0)K ρ σ ω = x e1 . . .eN where σ = 〈e1, . . . ,eN〉
S ′Js→ (c,0),(#1, l1), . . . ,(#N, lN)K ρ σ ω = c (S Jl1K ρ σ ω) . . .(S JlNK ρ σ ω)

S ′

t
s→ (p1

1 . . . p1
M x1

(M+1) . . .x
1
N , l1), . . . ,

(pK
1 . . . pK

M xK
(M+1) . . .x

K
N , lK)

|

ρ σ ω =



f e1 . . .eN
where
f p1

1 . . . p1
M x1

(M+1) . . .x
1
N = e′1

...
...

f pK
1 . . . pK

M xK
(M+1) . . .x

K
N = e′K

where f is fresh, σ = 〈e1, . . . ,eN〉
∀k ∈ {1, . . . ,K} · e′k =

(
S JlkK ρ ′ 〈〉 ω

)
ρ ′ = ρ ∪{(s, f )}

S ′Js→ (@, l0),(#1, l1)K ρ σ ω = S Jl0K ρ 〈(S Jl1K ρ ω 〈〉) : σ〉 ω

S ′Js→ (let, l0),(x1, l1), . . . ,(xN , lN)K ρ σ ω = let x1 = (S Jl1K ρ σ ω) . . . xN = (S JlNK ρ σ ω)
in (S Jl0K ρ σ ω)

S ′Js→ (λ , l)K ρ σ ω = λx.(S JlK ρ σ ω) where x is fresh

Here, the parameter ρ contains the set of new functions that are created and associates them with
their corresponding states in the LTS. The parameter σ contains the sequence of arguments of an appli-
cation expression. The set ω is initialised with pairs of application expression and corresponding LTS
representation of each parallel skeleton to be identified in a given LTS; for example, (map xs f , l) is a
pair in ω where map xs f is the application expression for map and l is its LTS representation.

The definitions of list-based map and map-reduce skeletons whose instances we identify in an en-
coded program are as follows:

map :: [a]→ (a→ b)→ [b]
map [] f = []
map (x : xs) f = ( f x) : (map xs f )
mapReduce :: [a]→ (b→ b→ b)→ b→ (a→ b)→ b
mapReduce [] g v f = v
mapReduce (x : xs) g v f = g ( f x) (mapReduce xs g v f )

Property 5.2 (Non-Empty Encoded List)
Given rules in Definition 4.3 to encode inputs into a list, ∀ f ,x1, . . . ,xM ·

(
encode f x1 . . .xM

)
6= [].

Proof:
From Definition 4.3, ∃k ∈ {1, . . . ,K} · pk

1 . . . pk
M that matches inputs x1 . . .xM.

Consequently,
(
encode f x1 . . .xM

)
= [ck zk

1 . . .z
k
L] ++

(
encode f xk

1 . . .x
k
M
)
. Therefore, the list computed

by encode f x1 . . .xM is at least a singleton.

From Property 5.2, it is evident that the encoded programs produced by our transformation will
always be defined over non-empty encoded list inputs. Consequently, to identify instances of map and
mapReduce skeletons in an encoded program, we represent only the patterns corresponding to non-empty
inputs, i.e. (x : xs), in the LTSs built for the skeletons.

As an example, the LTSs built for the map skeleton and the mMul′1 function in the encoded program
for matrix multiplication in Example 4.1 are illustrated in Figures 2 and 3, respectively. Here, we observe
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that the LTS of mMul′1 is an instance of the LTS of map skeleton. Similarly, the LTS of mMul′3 is an
instance of the LTS of mapReduce skeleton.

@

@

(x : xs) f

(:) #1

@

3

#1

2

#2

@

@(map)

#1

1

#1

3

#1

xs

#1

f

Figure 2: LTS for map Skeleton.

@

@

(c1 : x) yss

[ ]

(c2 : x) yss

[ ]

((c3 xs zs) : x) yss

let

(:) #1

. . .

#2

@

#1

@(mMul′1)
2

#1

1

v

. . .

#1

x

#1

yss

Figure 3: LTS for mMul′1 Function.

5.2 Parallel Implementation of Skeletons

In order to evaluate the parallel programs obtained by our method presented in this chapter, we require
efficient parallel implementations of the map and map-reduce skeletons. For the work presented in this
paper, we use the Eden library [5] that provides parallel implementations of the map and map-reduce
skeletons in the following forms:

parMap :: (Trans a, Trans b) ⇒ (a→ b)→ [a]→ [b]
parMapRedr :: (Trans a, Trans b) ⇒ (b→ b→ b)→ b→ (a→ b)→ [a]→ b
parMapRedl :: (Trans a, Trans b) ⇒ (b→ b→ b)→ b→ (a→ b)→ [a]→ b

The parMap skeleton implemented in Eden creates a separate process for each application of the map
operation, i.e. as many processes as the list elements. The parallel map-reduce skeletons, parMapRedr
and parMapRedr, are implemented using the parMap skeleton described above. The result of parMap is
reduced sequentially using the conventional foldr and foldl functions, respectively.

Currently, the map-reduce skeletons in the Eden library are defined using the foldr and foldl functions
that require a unit value for the reduction/fold operator to be provided as an input. However, it is evident
from Property 5.2 that the skeletons that are potentially identified will always be applied on non-empty
lists. Therefore, we augment the skeletons provided in Eden by adding the following parallel map-reduce
skeletons that are defined using the foldr1 and foldl1 functions, which are defined for non-empty lists,
thereby avoiding the need to obtain a unit value for the reduction operator.

parMapRedr1 :: (Trans a, Trans b) ⇒ (b→ b→ b)→ (a→ b)→ [a]→ b
parMapRedl1 :: (Trans a, Trans b) ⇒ (b→ b→ b)→ (a→ b)→ [a]→ b

To execute the encoded program produced by our transformation in parallel, we replace the identified
skeleton instances with suitable calls to the corresponding skeletons in the Eden library. For example,
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by replacing functions mMul′1 and mMul′3, which are instances of map and mapReduce skeletons respec-
tively, with suitable calls to parMap and parMapRedr1, we obtain the transformed matrix multiplication
program mMul′′ shown in Example 5.1.

Example 5.1 (Encoded Matrix Multiplication Defined Using Skeletons)
mMul′′ xss yss
where
mMul′′1 xss yss = mMul′′1 (encodemMul1 xss yss) yss
mMul′′1 x yss = parMap f x

where
f c1 = []
f c2 = []
f (c3 xs zs) = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in mMul′′2 (encodemMul2 zs) xs yss v
mMul′′2 (c4 : x) xs yss v = []
mMul′′2 (c5 : x) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul′′3 (encodemMul3 xs yss) v) : (mMul′′2 x xs yss v′)
mMul′′3 x v = parMapRedr1 g f x

where
g x y = x+ y
f c6 = 0
f c7 = 0
f (c8 x ys) = x∗ (v ys)

Consequence: By automatically identifying instances of list-based map and map-reduce skeletons, we
produce a program that is defined using these parallelisable skeletons. Using parallel implementations
for these skeletons that are available in existing libraries such as Eden, it is possible to execute the
transformed program on parallel hardware.

6 Conclusion

6.1 Summary

We have presented a transformation method to automatically identify parallel computations in a given
program that can be encapsulated using parallelisable map or map-reduce skeletons defined over lists.
This is achieved by encoding the inputs of each recursive function in the given program into a cons-list
by using the algorithmic structure of the function. By transforming recursive functions to operate over
lists, we facilitate the identification of skeleton instances, in particular map and map-reduce skeletons,
that are defined over lists. By using the distillation transformation in conjunction with our method, we
also reduce inefficient intermediate data structures that are present in the original program. As a result,
we produce encoded programs that are potentially defined using calls to parallelisable map and map-
reduce skeletons and contain fewer inefficient intermediate data structures, which is difficult to achieve
for non-trivial problems. Importantly, the language on which we propose our transformation does not
impose any restrictions on the program to be transformed or its inputs. Further, we use the parallel
implementations of the skeletons provided in the Eden library for efficient execution of our transformed
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programs on parallel hardware. It is evident from our detailed evaluations that it is possible to identify
instances of other versatile skeletons such as the accumulate skeleton [15], which allows parallelisation
of computations that build results using accumulating parameters.

6.2 Related Work

Previously, following the seminal works by Cole [1] and Darlington et. al. [2] on skeleton-based program
development, a majority of the work that followed [3, 9, 16, 8] catered to manual parallel programming.
To address the difficulties in choosing appropriate skeletons for a given algorithm, Hu et. al. proposed the
diffusion transformation [17], which is capable of decomposing recursive functions of a certain form into
several functions, each of which can be described by a skeleton. Even though diffusion can transform
a wider range of functions to the required form, this method is only applicable to functions with one
recursive input. Further they proposed the accumulate skeleton [15] that encapsulates the computational
forms of map and reduce skeletons that use an accumulating parameter to build the result. However, the
associative property of the reduce and scan operators used in the accumulate skeleton have to be verified
and their unit values derived manually.

The calculational approaches to program parallelisation are based on list-homomorphisms [18] and
propose systematic ways to derive parallel programs. However, most methods are restricted to programs
that are defined over lists [19, 20, 21, 22]. Further, they require manual derivation of operators or their
verification for certain algebraic properties to enable parallel evaluation of the programs obtained. Mori-
hata et. al. [23] extended this approach for trees by decomposing a binary tree into a list of sub-trees
called zipper, and defining upward and downward computations on the zipper structure. However, such
calculational methods are often limited by the range of programs and data types they can transform.
Also, a common aspect of these calculational approaches is the need to manually derive operators that
satisfy certain properties, such as associativity to guarantee parallel evaluation. To address this, Chin
et. al. [24] proposed a method that systematically derives parallel programs from sequential definitions
and automatically creates auxiliary functions that can be used to define associative operators needed for
parallel evaluation. However, their method is restricted to a first-order language and applicable to func-
tions defined over a single recursive linear data type, such as lists, that has an associative decomposition
operator, such as ++ .

As an alternative to calculational approaches, Ahn et. al. [25] proposed an analytical method to trans-
form general recursive functions into a composition of polytypic data parallel skeletons. Even though
their method is applicable to a wider range of problems and does not need associative operators, the
transformed programs are defined by composing skeletons and employ multiple intermediate data struc-
tures.

Previously, the authors proposed a method to transform the input of a given program into a cons-list
based on the recursive structure of the input [26]. Since this method does not use the recursive structure
of the program to build the cons-list, the transformed programs do not lend themselves to be defined
using list-based parallel skeletons. This observation led to creating a new encoded data type that matches
the algorithmic structure of the program and hence enables identification of polytypic parallel map and
reduce skeletons [27]. The new encoded data type is created by pattern-matching and recursively con-
suming inputs, where a recursive components is created in the new encoded input for each recursive
call that occurs in a function body using the input arguments of the recursive call. Consequently, the
data structure of the new encoded input reflects the recursive structure of the program. Even though this
method leads to better identification of polytypic skeletons, it is not easy to evaluate the performance
of the transformed programs defined using these skeletons because existing libraries do not offer imple-
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mentations of skeletons that are defined over a generic data type. Consequently, the proposed method of
encoding the inputs into a list respects the recursive structures of programs and allows evaluation of the
transformed programs using existing implementations of list-based parallel skeletons.
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