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Information flow analysis checks whether certain pieces of (confidential) data may affect the results
of computations in unwanted ways and thus leak information. Dynamic information flow analysis
adds instrumentation code to the target software to track flows at run time and raise alarms if a flow
policy is violated; hybrid analyses combine this with preliminary static analysis.

Using a subset of C as the target language, we extend previous work on hybrid information flow
analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array
elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely
while arrays of non-pointer types are summarized efficiently.

A prototype of our approach is implemented using the Frama-C program analysis and transfor-
mation framework. Work on a full machine-checked proof of the correctness of our approach using
Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness
argument.

Keywords. information flow, non-interference, termination insensitive non-interference, hybrid program
analysis, formal proof

1 Motivation

Information flow analysis is the study of how pieces of confidential data propagate through programs
and affect computations. Typically one wishes to enforce a security policy stating that confidential data
is forbidden from influencing ‘public’ outputs [5]. This concept was generalized as the non-interference

property which states that certain classes of computations must not affect others [7].
A wide range of non-interference analyses exist, both static and dynamic ones as well as hybrid

combinations. Dynamic analyses are popular because they are more permissive in general, i. e., they
reject fewer programs that are in fact safe, and they allow unsafe programs as long as only safe program
paths are executed. Further, they can be applied to programming languages such as JavaScript which are
not amenable to static analysis and commonly used in settings where code is loaded dynamically.

For example, web pages can include JavaScript code from several different servers. Each of these
pieces of code can both read and write the entire document that includes it; this means that confidential
personal information known to one server might be exfiltrated to others. Web browsers can use dynamic
information flow analysis to track the origins of each piece of data and forbid unwanted flows of possibly
sensitive data from one Internet domain to another [11, 9].

Not all applications of information flow analysis are directly related to security or privacy, however;
the analysis can also have more general software engineering uses to enforce application-specific prop-
erties. For example, an industry partner would like us to verify that their code handling the routing of
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network packets only depends on packet headers but not the payload. In terms of information flow anal-
ysis, the packet payload is treated as ‘confidential’ data that is not allowed to affect the handling of the
packet in any way.

In order to be able to enforce such properties, we are developing a hybrid information flow analysis,
trying to unify the best features of static and dynamic analyses. Our analysis is aimed at a large subset
of the C programming language with the goal of scaling the analysis to real-world safety-critical C
applications. The present paper is a step into this direction. We are also developing a machine-checked
proof of correctness of the entire approach.

The two main contributions of this paper are thus the following:

• An extension of a previous hybrid information flow analysis for a subset of C that included pointers
to scalars; our extension can deal with arrays and pointer arithmetic.

• The formalization of the underlying theory in the Isabelle/HOL proof assistant, a full machine-
checked proof of the correctness of our monitor semantics, and ongoing work on formalizing and
proving correct our program transformation.

The rest of the paper is organized as follows. Section 2 describes our model of information flow and
non-interference. Section 3 describes our fully formalized semantics for information flow monitoring and
its formal proof of soundness. Section 4 describes the program transformation implementing the flow
monitor for C programs. Section 5 mentions some features of our concrete implementation, Section 6
surveys related work, and Section 7 concludes.

2 Information flow tracking by example

We illustrate the problems of information flow tracking with pointers and arrays in a series of examples.
The goal of the information flow analysis is to ensure that all public outputs of the program are indepen-
dent of all secret inputs. That is, running the program twice with the same public inputs but different
secret inputs should give the same public outputs; this property is called non-interference. In our case,
the analysis dynamically tracks the public/secret status of variables and treats every variable that is public
at the end of the program as an output.

In general, there can be more security levels than just public and secret; in that case, they are required
to form a finite lattice with the bottom element as the ‘most public’ security level. We assume an attacker
who knows the program’s source code and is able to make perfect deductions about secret inputs from
observed public inputs and public outputs. We ignore timing, nontermination, and other side channels
that may also leak secret information.

For this informal presentation, assume that the variable seret is of type int and tagged as ‘secret’.
All other variables are initially public (non-confidential) and of type int unless declared otherwise. The
dynamic part of the analysis described in this paper works by instrumenting the code with additional
monitoring code. Each variable x is associated with one or more additional label variables marked here
by underlining the variable name and adding optional suffixes, e. g., x. Security levels are tracked as
integer values 0 (public) and 1 (secret). Where levels from different sources must be taken into account,
they are joined using the | (bitwise-or) operator, ensuring that the result is secret iff one of the inputs is
secret. Most of the examples in this section follow Assaf’s work [1].

Example 1. The code in Figure 1a exhibits explicit flows of secret information from seret to x and
then further to z; the information flows explicitly via assignments. The analysis must recognize these
two variables as secret; their values must not be output, otherwise some information about seret would
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x = seret;

z = x + y;

(a) Explicit flow

if (seret) {

x = 0;

} else {

y = 1;

}

(b) Implicit flow

int *p;

if (seret) {

p = &x;

} else {

p = &y;

}

*p = 1;

(c) Pointer-based flow

int array[2℄ = { 0, 0 };

array[seret & 1℄ = 1;

x = array[0℄;

(d) Array-based flow

Figure 1: Examples of the four kinds of information flow handled by our analysis.

leak. These flows can be monitored by instrumenting the code with the two assignments x = seret;

and z = x | y; mirroring the original assignments. �

Example 2. Conditional branches cause implicit flows from the condition to any assignment controlled
by the branch. In Figure 1b, there is an implicit flow from seret to x and y: Inspecting their values
may allow an inference whether seret is zero or nonzero. Implicit flows are tracked by the control
context in a variable pc (program counter status), with a new variant pc′, pc′′, . . . for each branching
statement. The initial value of the global pc is 0 (public), and every branching statement’s own pc

variable is computed as the combination of the directly enclosing pc variant and the branch condition’s
label. The current pc variable must be taken into account for any assignment.

Additionally, both branches must update the labels of any variables modified in the other branch to
ensure that the flow is captured regardless of the actual path taken.

pc′ = pc | secret;

if (seret) {

x = 0;

x = 0 | pc′;

y = y | pc′;

} else {

y = 1;

y = 0 | pc′;

x = x | pc′;

}

Note that constants are public and thus get the label 0. As this is the neutral element of the | operator,
constants have no influence on the containing expression’s status. �

Example 3. An assignment through a pointer introduces a flow from the pointer expression to every
possible pointer target. In our monitor, these targets are identified by static points-to analysis and updated
with the pointer’s label. A label pointer tracks the exact target of the pointer at run time. This means that
a pointer variable p gets two label variables, p for the label of the pointer itself and p_d1 (of type pointer
to label) for the label of p’s target. Whenever the program updates p to point to a target t, the monitor
updates p_d1 to point to the label t of t.

The example in Figure 1c is monitored as follows:

pc′ = pc | secret;

if (seret) {
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p = &x;

p = 0 | pc′;

p_d1 = &x;

} else {

p = &y;

p = 0 | pc′;

p_d1 = &y;

}

*p = 1;

*p_d1 = 0 | pc;

x = x | p | pc;

y = y | p | pc;

The updates of x and y are needed to ensure a sound approximation of the respective labels because it is
not known statically which of the two variables will actually be overwritten. �

Example 4. The main contributions of this paper concern the handling of arrays. Consider the problem
of writing to an array at a secret index as in Figure 1d. The analysis must again treat x (and all of array)
as a secret variable: Outputting x or any element of array at the end of the program would allow an
attacker to infer whether the least significant bit of seret is 1. A single secret write to an array element
thus taints the entire array. For efficient handling of flows through arrays, we introduce a summary label

for the entire array which is updated monotonically on each write access to the array.

int array[2℄ = { 0, 0 };

array = 0;

array[seret & 1℄ = 1;

array |= 0 | secret;

x = array[0℄;

x = 0 | array;

The |= operator updates array by combining its old value with the right-hand-side value, i. e., it per-
forms the equivalent of array = array | secret. Such updates are monotonic, so an array’s sum-
mary label can never decrease. As we will see later, we often also need field-sensitive tracking of array
fields in addition to the summary label. �

Note that all examples except the first share a common property: A piece of code modifies some
object, but it is not known statically which one of several objects (variables or array fields) is affected
in a concrete execution. The dynamic part of the analysis, i. e., the instrumentation code, must be aware
of all possible objects that may be affected and update their statuses to hold a safe over-approximation
of the actual status. The set of possible target objects is computed by a standard points-to analysis, the
static part of our analysis.

3 Monitor semantics

We can now formalize the intuitive explanations from the previous section as a system of information
flow monitoring semantics of programs. The semantics compute a label memory Γ which tracks the
labels of objects in memory. It is then possible to prove that this semantics satisfies the required non-
interference property.
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type-synonym loc = block ∗ int option

datatype val = Num int | Ptr loc

datatype block-val = ScalarVal val | ArrayVal (int⇒ val)

type-synonym environment = name⇒ block

type-synonym memory = block⇒ block-val

type-synonym label-memory = block⇒ label

Figure 2: Memory model of our simple programming language.

datatype lval = Var name offs | Deref expr

and expr = Const int | Lval lval | AddrOf lval

| BinOp expr expr (infixl ◦ 55) | PtrAdd expr expr (infix ⊕ 54)
and offs = NoOffset | Index expr

Figure 3: Abstract syntax of expressions in our simple programming language. The infix annotations in
parentheses define syntactic sugar for some operators.

The types, definitions, and proofs described in this section are fully formalized and checked in the
Isabelle/HOL proof assistant [15]. Their presentation in the paper was generated automatically, directly
from the Isabelle/HOL formalization. As the full development is 1900 lines long, we only show some
key parts and omit auxiliary definitions, lemmas, and proofs.1

3.1 Expression semantics

We formalize a simple imperative language corresponding to a subset of C. Figure 2 shows the basics of
the memory model. The types name and block are abstract; the type label is required to be some bounded
lattice with a bottom element ⊥, a join operation ⊔, and a corresponding partial order ⊑.

A location loc is a pair of a block and an optional offset. A value val is either a number or a pointer
to a loc. A block can hold a value block-val, which is either a scalar val or an array of unbounded size
represented as a function from int to val. To simplify the first version of our theory, there are no multi-
dimensional arrays: Array elements are scalars of type val. An environment E maps names to blocks, a
memory M maps blocks to block values, and a label memory Γ maps blocks to their security labels.

Figure 3 shows the abstract syntax of our expressions. The representation is designed to be as close
as reasonably possible to the one used by Frama-C [12], which in turn is based on CIL [14]. There is a
distinction between lvalue expressions lval which evaluate to objects and rvalue expressions expr which
evaluate to values. An lval may be based on a variable or a dereference expression. There is an auxiliary
type offs for optional offsets into objects, i. e., array indexing. An expr may be a constant, the value
of an lval (obtained using the Lval constructor), the address of an lval, or a binary operation on exprs.
We have a generic arithmetic operator ◦ that is intended to work on numbers and a pointer addition
operator ⊕ for adding a pointer and an integer. For simplicity, there are no arithmetic comparisons or
boolean operators.

Figure 4 shows the inference rules capturing our definition of the semantics of expressions. The

1The entire development is available online at http://www.omplang.tuwien.a.at/gergo/tini/ .
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rules describe both the concrete semantics, i. e., the value computed by an expression, and our monitor
semantics, i. e., the security label assigned to the expression. A judgement E,M,Γ ⊢ e→ v,s means that
in the context of an environment E , a memory M, and a label memory Γ, the expression e evaluates (as an
rvalue) to the value v and the security label s. There are corresponding relations← for the evaluation of
lvalue expressions to locations and→o for offset expressions to optional integers. Offsets Some i, which
arise from evaluating an Index offset expression, are used for array locations only. Scalar locations have
offset None, which is the value corresponding to a NoOffset offset expression.

As an example, consider the C expression arr[idx℄ where arr and idx are variables. It is repre-
sented in the abstract syntax as Var arr (Index (Lval (Var idx NoOffset))). For evaluating it as an lvalue,
the LVALVAR rule applies, and the memory block for arr is determined from the environment E . The
index expression idx can be evaluated to an integer offset using the OFFSIDX rule and further recursive
rule applications of LVALVAR and OFFSNONE.

Note that this presentation does not include static typing of expressions. Using scalar values with an
index or array values without an index is a type error, as is interchanging Num and Ptr values. As usual,
the semantics simply gets stuck in such cases. Note also that the generic binary operator ◦ is interpreted
by some unspecified eval-binop function whose details we do not care about.

Expressions’ security labels are computed by the semantics by merging the labels of subexpressions
using the label lattice’s ⊔ operation. Constants and the locations of variables are considered public (⊥),
while the labels of memory locations are read from the label memory Γ whenever the value of the memory
location is read from the memory M in the RVALSCALARLVAL and RVALARRAYLVAL rules.

3.2 Statement semantics

Figure 5 shows the abstract syntax of statements of our target language. The Skip statement, program
sequencing, If and While statements are standard. However, for technical reasons (to make proofs
tractable), we currently use two different forms of the assignment statement: Plain Assign if a value
is written to a scalar location and AssignArrayElem if a value is written to an array element.

Figure 6 shows the semantics of statements, again describing both concrete semantics (effects of the
program on the memory) and monitor semantics (effects on the security label memory). The judgements
take the form E,SP,pc ⊢ program,M,Γ⇒M′,Γ′. This means that in the context E,SP,pc, the program
program evaluated on a memory M and label memory Γ terminates with a new memory M′ and new
label memory Γ′. The meaning of the context element SP will be explained below. E is the environment,
and pc is the program counter label.

The concrete parts of the semantics, capturing the computation of the new memory M, are standard.
The memory can only be modified by assignment. In the ASSIGNSCALAR rule, the assignment’s left-
hand side x is evaluated to a location consisting of a memory block b without an offset, i. e., a scalar
location. The right-hand side e is evaluated to a value v. The new memory is obtained by updating the
value stored at block b in the memory to be ScalarVal v. The ASSIGNARRAYELEM rule is similar but
more involved. The assignment’s left-hand side x evaluates to memory block b with an integer index i.
The memory M must contain an array arr at block b. The new memory M′ is obtained by updating arr

at position i and storing this new array at block b.
The concrete semantics of If statements uses an unspecified function istrue of type val ⇒bool to

select one of the branches to execute. The concrete semantics of While loops evaluates the body once
if the condition is true, then re-applies a While inference rule in the new memory configuration. A loop
terminates iff the condition becomes false at some point, in which case the WHILEF rule applies and
performs no further changes to the memory.
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E x = b E, M, Γ ⊢ offs→o offset, s

E, M, Γ ⊢ Var x offs← (b, offset), s
LVALVAR

E, M, Γ ⊢ a→ Ptr (b, offs), s

E, M, Γ ⊢ Deref a← (b, offs), s
LVALMEM

E, M, Γ ⊢ Const c→ Num c, ⊥
RVALCONST

E, M, Γ ⊢ a← (b, None), sl M b = ScalarVal v Γ b = sr sl ⊔ sr = s

E, M, Γ ⊢ Lval a→ v, s
RVALSCALARLVAL

E, M, Γ ⊢ a← (b, Some idx), sl M b = ArrayVal arr arr idx = v Γ b = sr sl ⊔ sr = s

E, M, Γ ⊢ Lval a→ v, s

RVALARRAYLVAL

E, M, Γ ⊢ a← l, s p = Ptr l

E, M, Γ ⊢ AddrOf a→ p, s
RVALREF

E, M, Γ ⊢ a→ Num va, sa E, M, Γ ⊢ b→ Num vb, sb eval-binop va vb = v sa ⊔ sb = s

E, M, Γ ⊢ a ◦ b→ Num v, s

RVALBINOP

E, M, Γ ⊢ p→ Ptr (b, Some idx), sb

E, M, Γ ⊢ offs→ Num i, si l = (b, Some (idx + i)) s = sb ⊔ si

E, M, Γ ⊢ p ⊕ offs→ Ptr l, s
RVALPTRADD

E, M, Γ ⊢ NoOffset→o None, ⊥
OFFSNONE

E, M, Γ ⊢ i→ Num idx, s

E, M, Γ ⊢ Index i→o Some idx, s
OFFSIDX

Figure 4: Inference rules defining the semantics of expressions in our example programming language.
Judgements compute both concrete values and security label values of expressions.

datatype instr = Skip

| Assign lval expr (- ::= - 52)
| AssignArrayElem lval expr (- ::= ′ - 52)
| Seq instr instr (infixr ;; 51)
| If expr instr instr

| While expr instr

Figure 5: Abstract syntax of statements in the example programming language.
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E, SP, pc ⊢ Skip, M, Γ⇒ M, Γ
SKIP

E, M, Γ ⊢ x← (b, None), sl E, M, Γ ⊢ e→ v, sv s = sl ⊔ sv ⊔ pc

s ′= sl ⊔ pc M ′= M(b := ScalarVal v) Γ
′= Γ(b := s) Γ

′′= update SP (x ::= e) s ′ Γ ′

E, SP, pc ⊢ x ::= e, M, Γ⇒ M ′, Γ
′′

ASSIGNSCALAR

E, M, Γ ⊢ x← (b, Some i), sl E, M, Γ ⊢ e→ v, sv

s = sl ⊔ sv ⊔ pc s ′= sl ⊔ pc M b = ArrayVal arr M ′= M(b := ArrayVal (arr(i := v)))
Γ b = l Γ

′= Γ(b := s ⊔ l) Γ
′′= update SP (x ::= e) s ′ Γ ′

E, SP, pc ⊢ x ::= ′ e, M, Γ⇒ M ′, Γ
′′

ASSIGNARRAYELEM

E, SP, pc ⊢ c1, M, Γ⇒M ′, Γ
′ E, SP, pc ⊢ c2, M ′, Γ

′⇒M ′′, Γ
′′

E, SP, pc ⊢ c1 ;; c2, M, Γ⇒ M ′′, Γ
′′ COMP

E, M, Γ ⊢ cond→ v, s istrue v

pc ′= s ⊔ pc E, SP, pc ′ ⊢ then-body, M, Γ⇒ M ′, Γ
′

Γ
′′= update SP else-body pc ′ Γ ′

E, SP, pc ⊢ If cond then-body else-body, M, Γ⇒ M ′, Γ
′′ IFT

E, M, Γ ⊢ a→ v, s ¬ istrue v

pc ′= s ⊔ pc E, SP, pc ′ ⊢ else-body, M, Γ⇒ M ′, Γ
′

Γ
′′= update SP then-body pc ′ Γ ′

E, SP, pc ⊢ If a then-body else-body, M, Γ⇒ M ′, Γ
′′ IFF

E, M, Γ ⊢ cond→ v, s istrue v pc ′= s ⊔ pc

E, SP, pc ′ ⊢ body, M, Γ⇒ M ′, Γ
′ E, SP, pc ′ ⊢While cond body, M ′, Γ

′⇒M ′′, Γ
′′

E, SP, pc ⊢ While cond body, M, Γ⇒ M ′′, Γ
′′ WHILET

E, M, Γ ⊢ cond→ v, s ¬ istrue v pc ′= s ⊔ pc Γ
′= update SP body pc ′ Γ

E, SP, pc ⊢While cond body, M, Γ⇒M, Γ
′ WHILEF

Figure 6: Semantics of statements in the example programming language. Both concrete effects on
memory and effects on the security label memory are tracked.
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fun collect-updates :: alias-function⇒ instr⇒ block set where

collect-updates SP Skip = {} |
collect-updates SP (x ::= -) = SP x |
collect-updates SP (x ::= ′ -) = SP x |
collect-updates SP (Seq i1 i2) = collect-updates SP i1 ∪ collect-updates SP i2 |
collect-updates SP (If - i1 i2) = collect-updates SP i1 ∪ collect-updates SP i2 |
collect-updates SP (While - i) = collect-updates SP i

fun update :: alias-function⇒ instr⇒ label⇒ label-memory⇒ label-memory where

update SP prog s Γ = (λ b. if b ∈ (collect-updates SP prog) then Γ(b) ⊔ s else Γ(b))

Figure 7: Definition of the update function used to track the effects of aliasing and unexecuted program
paths on the label memory.

The monitor semantics deserves more detailed explanations. Consider first the expression Γ′ =
Γ(b := s) in the ASSIGNSCALAR rule. This updates the security label of the target block b to the new
label s, which is computed from the label sl of the assignment’s left-hand side’s location, the label sv of
the right-hand side value, and the current program counter label pc. This captures the direct information
flow as shown in Example 1. After this, the label memory is updated again; the final monitor is Γ′′ =

update SP (x ::= e) s′ Γ′. This captures pointer-induced flows as demonstrated in Example 3. If the
lvalue x is a pointer expression and may refer to different memory locations at runtime, the labels of
each corresponding memory block must be updated conservatively. This is done by the update function
defined in Figure 7. This function takes an alias analysis function SP, a program fragment, a label s and
a label memory Γ. It applies the auxiliary function collect-updates to find all memory blocks that may
be modified by the given program fragment, then produces a new label memory where the label of every
block possibly modified by the program fragment is joined with the label s. In the particular case of
the ASSIGNSCALAR rule, the program fragment passed to update is the assignment x ::= e itself, which
means that the set of blocks to be updated evaluates to just SP x. Correctness of the update depends on
a correctness criterion for the SP function itself. Our formalization uses a predicate admissible SP E M

program (shown in Figure 8) to express that a static analysis SP computes a safe overapproximation of
points-to sets with respect to the given program, environment, and starting memory. An alias function
is admissible for a program in a certain configuration if it captures every assignment’s target’s correctly
and is admissible for all possible configurations that arise in the evaluation of subprograms.

The ASSIGNARRAYELEM rule is similar to ASSIGNSCALAR in its handling of the label memory.
The only difference is in the computation Γ′ = Γ(b := s⊔ l) where l is the memory block’s old security
label. This means that an array block’s label can only ever increase monotonically, but never decrease.
This behavior corresponds to the discussion of Example 4.

The inference rules involving control flow also use the update function to capture implicit flows as
discussed in Example 2. After executing one of the branches of an If statement, update is used to adjust
the security labels of all the memory blocks that may be modified in the other branch. Both the actual
execution of one of the branches and the update of the other branch are performed using an updated
program counter label pc′. Similarly, even if a While loop never iterates, the labels of all the objects
that may be modified in its body are updated with pc′. All this ensures that implicit flows are correctly
captured: The labels of objects that may be modified under the control of the branch condition are at least
as high as the branch condition’s label. If the branch condition is secret, these objects become secret as
well, and no public information escapes that might allow attackers to infer anything about the condition.
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fun loc-block :: loc⇒ block where loc-block (b, -) = b

fun admissible where

admissible f E M Skip = True |
admissible f E M (x ::= e) = (∀Γ.∀ l.∀s. (E, M, Γ ⊢ x← l, s) −→ (loc-block l) ∈ f x) |
admissible f E M (x ::= ′ e) = (∀Γ.∀ l.∀s. (E, M, Γ ⊢ x← l, s) −→ (loc-block l) ∈ f x) |
admissible f E M (Seq a b) =
(admissible f E M a ∧
(∀Γ.∀pc.∀M ′.∀Γ ′. (E, f , pc ⊢ a, M, Γ⇒ M ′, Γ ′) −→ admissible f E M ′ b)) |

admissible f E M (If c t e) = (admissible f E M t ∧ admissible f E M e) |
admissible f E M (While c body) =
(admissible f E M body ∧
(∀M.∀Γ.∀pc.∀M ′.∀Γ ′. admissible f E M body−→ (E, f , pc ⊢ body, M, Γ⇒ M ′, Γ ′) −→

admissible f E M ′ body))

Figure 8: Definition of the admissible predicate on alias functions.

3.3 Proof of monitor correctness

After describing the monitor semantics, we can now proceed to its proof of correctness. Recall that the
goal is to prove non-interference: If a program is run twice on equivalent public inputs but possibly
different secret inputs, all the public outputs must be the same on both runs. This ensures that the
program’s (public) output doesn’t allow any inferences about the secret inputs.

The equivalence of public inputs is formalized in the following definition of s-equivalence. Two
memories M1 and M2 are equivalent up to a security label s if they have the same contents for every
memory block whose label in a certain security memory Γ is below s:

definition s-equivalence :: label-memory⇒ label⇒ memory⇒ memory⇒ bool (-, - ⊢ - ∼ -) where

Γ, s ⊢ M1 ∼M2 ≡ (∀ b::block. Γ(b) ⊑ s −→ mem-equal M1 M2 b)

(The mem-equal predicate captures equality of the values stored in block b in both memories. We
omit its definition for brevity.) Somewhat similarly to s-equivalence on memories, we define a predicate
imposing a partial ordering on label memories, saying that Γ2 is less restrictive than Γ1 up to s if it
respects the ⊑ ordering on all blocks whose labels are below s:

definition less-restrictive-up-to :: label⇒ label-memory⇒ label-memory⇒ bool (- ⊢ - ⊑ -) where

s ⊢ Γ2 ⊑ Γ1 ≡ (∀ b::block. Γ1(b) ⊑ s −→ Γ2(b) ⊑ Γ1(b))

With these definitions, we can state an important lemma saying that the evaluation of expressions
in s-equivalent memories is deterministic in a certain sense:

lemma expr-evaluation-with-s-equivalence:
assumes s ⊢ Γ2 ⊑ Γ1

and Γ1, s ⊢ M1 ∼M2

shows ∀s1 v2 s2. s1 ⊑ s −→ (E, M1, Γ1 ⊢ a→ v1, s1) −→ (E, M2, Γ2 ⊢ a→ v2, s2) −→ v1 = v2 ∧ s2 ⊑ s1

and ∀s1 b2 s2. s1 ⊑ s −→ (E, M1, Γ1 ⊢ b← b1, s1) −→ (E, M2, Γ2 ⊢ b← b2, s2) −→ b1 = b2 ∧ s2 ⊑ s1

and ∀s1 i2 s2. s1 ⊑ s −→ (E, M1, Γ1 ⊢ c→o i1, s1) −→ (E, M2, Γ2 ⊢ c→o i2, s2) −→ i1 = i2 ∧ s2 ⊑ s1

This lemma expresses that if expression evaluation yields a value with a label below s, then evaluating
the same expression in an s-equivalent configuration will yield the same value and a smaller (or equal)
label. The proof (omitted here) proceeds by mutual induction on the semantics of evaluation of the
different kinds of expressions.

Our main result is the formal proof of the following soundness theorem:
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theorem monitor-soundness:
assumes E, SP, pc1 ⊢ program, M1, Γ1 ⇒ M1

′, Γ1
′

and admissible SP E M1 program

and admissible SP E M2 program

and pc2 ⊑ pc1

and s ⊢ Γ2 ⊑ Γ1

and Γ1, s ⊢M1 ∼M2

shows (E, SP, pc2 ⊢ program, M2, Γ2⇒ M2
′, Γ2

′) −→ (s ⊢ Γ2
′⊑ Γ1

′) ∧ (Γ1
′, s ⊢ M1

′∼M2
′)

This theorem shows that running the same program twice in s-equivalent memories M1 and M2

(and corresponding side conditions on the program counter labels and security memories) preserves s-
equivalence. Inspection of memory blocks whose labels are below s in Γ′1 does not yield any information
to an attacker. The result only holds if the static analysis SP is admissible for the given program, i. e., it
safely overapproximates all aliasing in the program when started from a given memory configuration.

Proof sketch. The proof of the soundness theorem proceeds by rule induction on the semantics. We will
sketch the main idea of the soundness argument for assignments to scalars and for one branch of the
evaluation of the If statement. In either case, the idea is to show preservation of s-equivalence and the
‘less restrictive up to’ relation by considering how the value and label of an arbitrary memory block b is
modified by the program.

Rule ASSIGNSCALAR. We may assume that there exist derivations in the semantics showing both
E,SP,pc1 ⊢ x ::= e,M1,Γ1⇒M′1,Γ

′
1 and E,SP,pc2 ⊢ x ::= e,M2,Γ2⇒M′2,Γ

′
2. In these derivations, name

the memory block referenced by x as b1 and b2 and the label of evaluating x as an lvalue as s1 and s2,
respectively. Assume also that there is some arbitrary memory block b where Γ′1(b) ⊑ s, i. e., after the
assignment the label of b is below s. It suffices to show that Γ′2(b)⊑ Γ′1(b) and M′1(b) = M′2(b).

Making a case distinction, assume first that b ∈ SP x. This means that b may be modified by this as-
signment according to the static analysis. It follows that s1 ⊑ s since otherwise the update function would
have changed b’s label such that Γ′1(b) ⊑ s would not hold. Using s1 ⊑ s we can apply the expression
evaluation lemma from above to obtain b1 = b2, i. e., the same block is assigned in both executions. Fur-
ther, if b1 = b, i. e., this is indeed the block that is modified by the assignment, another application of the
lemma ensures that the same value is assigned (showing M′1(b) = M′2(b)) and that the expression’s labels
in the two derivation trees respect the ⊑ ordering, establishing Γ′2(b)⊑ Γ′1(b). Otherwise, if b1 6= b, then
the memory at b is not modified at all, and its label is updated safely using update, again establishing the
intended results.

Finally, in the other case b /∈ SP x. Because SP is an admissible analysis, it follows that b is not mod-
ified by this assignment. Hence the semantics rule modifies neither the memory nor the label memory,
and the result follows directly from the assumptions.

Rule IFT. Assume there is a derivation showing E,SP,pc1 ⊢ If c then-body else-body,M1,Γ1⇒M′1,Γ
′′
1

where the condition c evaluates to a true value with label s1. From the evaluation of the true branch then-

body in the starting context with updated program counter pc′1 = s1 ⊔ pc1 obtain a label memory Γ′1
where Γ′′1 = update SP else-body pc′1 Γ′1. Assume further there is a derivation showing E,SP,pc2 ⊢
If c then-body else-body,M2,Γ2 ⇒ M′2,Γ

′′
2 . Note that we do not assume that this derivation enters the

same branch. Fix again a block b with Γ′′1(b)⊑ s.
Making a case distinction, assume s1 ⊑ s. Using the expression evaluation lemma, the branch condi-

tion c evaluates to a true value in the second configuration as well, so the same branch is executed. The
required result follows by induction on the execution of then-body.

Otherwise, s1 6⊑ s. The two derivations may execute different branches; we show that the block b

is not affected by the If statement at all, so the different executions make no difference to its value or
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label. First, we have b /∈ collect-updates SP else-body because otherwise the update function on else-

body would have raised its label such that the assumption Γ′′1(b) ⊑ s could not hold. Otherwise, if b ∈
collect-updates SP then-body were to hold, then at some point during the execution of the If statement its
label would have to be raised to at least s1, again violating the assumption. Thus we obtain Γ′′2(b)⊑Γ′′1(b)
and M′1(b) = M′2(b).

The rules for the other branch of the If and for the While statement follow similar reasoning. Finally,
the proof for evaluation of Skip is trivial, and the proof for program composition follows directly from
the induction hypothesis for the subprograms.

The full, completely machine-checked Isabelle/HOL proof of this theorem is about 600 lines long,
plus about 200 lines of proofs of key auxiliary lemmas. The structure of the proof itself follows the work
of Assaf [1], which gives a manually typeset paper proof of a little more than five pages (without handling
arrays). We were able to reproduce the paper proof mostly faithfully, repairing some typographical errors
and minor glitches along the way. The most important issue was that Assaf’s proof of the assignment
rule is too weak: His proof only shows Γ′2(b) ⊑ s (for a block b modified by the assignment) rather than
the stronger result Γ′2(b) ⊑ Γ′1(b) ⊑ s needed to establish the goal s ⊢ Γ′2 ⊑ Γ′1. However, it was easy to
reuse the structure of the given proof and strengthen it to prove the necessary condition.

4 Program transformation

Given the abstract semantics from the previous section, we now turn to the question of how to implement
the security monitor in practice. We want to insert monitoring code into a given program that tracks
security labels. At the end of the execution of the program, the label variable x for each original program
variable x should have the same value as Γ(E(x)) in the monitor semantics. The soundness proof of the
monitor then carries over to the analysis code.

4.1 Information flow monitoring without pointers

Without pointers or arrays, inlining the dynamic analysis code is simple: Whenever a variable x is read
or written, we insert appropriate reads or writes of the corresponding label variable x. Additionally, for
every statement affecting control flow, a new program counter status variable is created and updated as
in the monitor semantics in Figure 6. Additional assignments are inserted to model the effects of the
control flow branch not taken, as with the update function in the monitor semantics.

The difficulties arise when pointers are used: What is the label variable corresponding to a pointer
dereference expression *p? In the abstract theory, such expressions evaluate to memory blocks b which
are used to access both the memory M and the label memory Γ. However, these memory blocks are not
available as first-class objects in C, so we need a different way of finding the correct label variable to
access.

4.2 Information flow monitoring with pointers to scalars

The solution for tracking pointers developed by Assaf [1], which we follow, is to mirror all pointer
structures in the original program in the information flow monitor. For this purpose, each pointer p of
type T∗(n) (i. e., that may be dereferenced n times) is associated with n label pointers p_d1, . . . , p_dn.

The intention is to ensure that at any point in the program, the expression ∗(i)p_di for all 1 ≤ i ≤ n

evaluates to the label of ∗(n)p.
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For example, if pointer p is made to point to variable x by an assignment p = &x in the original
program, a corresponding label pointer variable p_d1 is made to point to the label variable x by the
inserted assignment p_d1 = &x. Reads and writes through *p can then be mirrored in the analysis as
reads and writes through *p_d1. Assaf gives a formal definition of this transformation and proves that
it preserves the invariant that for all pointers in the program, a pointer p points to a target x iff the
corresponding label pointer points to the target’s label. This allows a proof of the correctness of the
transformation, i. e., it establishes that the instrumented program computes the same security labels as
the label memory Γ in the underlying semantics.

4.3 Information flow monitoring with arrays

We extended the approach described above to handle arrays. Note that the monitor semantics in Figures 4
and 6 assume that the memory block storing an array has a single security label, not individual labels
for individual array elements. The reason for this was touched on in Example 4: If an array element is
written at a secret index, reading another array element and finding it has a non-secret label would leak
information about the value of the index.

For this reason, we associate each array a with a single label variable a called the summary label.
As in the ASSIGNARRAYELEM inference rule in the semantics, every write to an array element triggers
a weak update of this label: The summary label l is not overwritten by the new label s (which incorporates
the labels of the index and the value to be written) but with the joined value s⊔ l. As security labels form
a lattice, we have s⊑ s⊔ l and l ⊑ s⊔ l. This means that over a sequence of assignments to elements of
the array with labels s1, . . . ,sn, the values of the summary label l1, . . . , ln always form an ascending chain
with respect to ⊑. Furthermore, at any point, the current li is a safe overapproximation of all s1, . . . ,si−1

written so far. Our analysis ensures that the label of any read from array a incorporates its summary
label a. This means that, if at any point in the program a secret value or secret index is used in an
assignment to an element of a, all future reads will be treated as secret. This property ensures the
equivalence of a to the label Γ(E(a)) and hence the soundness of our information flow analysis in this
aspect.

The summary field also plays an important role in handling pointers to array elements as well as
pointer arithmetic. Consider the following program fragment:

p = &a[i℄;

p++;

*p = 42;

This code assigns the address of array element a[i℄ to pointer p, increments p to point to the next array
element, then writes to memory through p. This final write affects an element of the array a, so we must
ensure that our analysis updates the summary label a correctly.

To this end we must ensure that a label pointer associated with p always points to the target’s sum-
mary label and is not moved by pointer arithmetic. In the example above, a summary pointer p_summary
must be generated by the analysis and pointed to the address of a. This pointer is not affected by index-
ing or pointer arithmetic, i. e., it always points to a regardless of the value of the index expression i and
regardless of the pointer increment using ++. The assignment through *p can then be mirrored in the
analysis by a weak update through *p_summary, which results in a weak update of a as required.

In the presence of arrays of pointers, a summary label is not enough, however: We must additionally
track pointer relationships in an array-field-sensitive way. Consider a slightly modified version of the
example above, where a is now an array of pointers rather than an array of numbers as before, and p is
therefore a pointer to a pointer:
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datatype type = TInt | TPtr type | TArray type nat

datatype label-kind = Exact | Summary

datatype label-type = Label label-kind nat type

fun ptr-label where ptr-label (Label kind d t) = Label kind (d+1) (TPtr t)
fun array-label where array-label len (Label kind d t) = Label kind d (TArray t len)

fun labels-aux where

labels-aux TInt = [Label Exact 0 TInt] |
labels-aux (TPtr t) =
[Label Exact 0 TInt, Label Summary 1 (TPtr TInt)] @ map ptr-label (labels-aux t) |

labels-aux (TArray t len) = map (array-label len) (labels-aux t)

fun labels where

labels (TArray t len) = [Label Summary 0 TInt] @ labels-aux (TArray t len) |
labels t = labels-aux t

Figure 9: Computation of label types in the presence of arrays and pointers.

p = &a[i℄;

p++;

a[i+1℄ = &x;

**p = y;

Here the final assignment through **p is an assignment to the variable x, and the dynamic information
flow analysis must therefore be able to execute an appropriate update of its label x. Thus there must be
an appropriate label pointer p_d2 where **p_d2 is the object x.

We achieve this by associating a second label with each array of pointers a[n℄: Besides the scalar
summary label a, we also use an array of label pointers a_d1[n℄. The intention is to ensure that if a[i℄

points to x, then a_d1[i℄ points to x. In the example above, we can let **p_d2 point to a_d1[i℄

initially and then mirror the pointer arithmetic p++. We arrive at the following fragment of monitoring
code (ignoring summary labels for simplicity):

p_d2 = &a_d1[i℄;

p_d2++;

a_d1[i+1℄ = &x;

**p_d2 = y | p;

The generated code ensures that at the last assignment, p_d2 points to a_d1[i+1℄, which in turn points
to x. The last assignment thus updates x as required.

We can thus summarize the requirements for our analysis: Every array a needs a summary label a
and an array of exact labels a_d0. Every pointer p needs a label p for the pointer itself as well as a
summary label pointer p_d1_summary to point to p’s target’s summary label and a label pointer p_d1
to point to p’s exact target’s label. These rules must be applied recursively for types of nested pointers
or arrays, adjusting the number of possible dereferences (d). Figure 9 shows how we compute the list
of types and dereferencing levels using the function labels. The recursive computation is captured in the
function labels-aux. The most subtle issue is that labels must add an outermost summary label for array
types.

For a C type declaration int *b[10℄, encoded as TArray (TPtr TInt) 10, this system computes the
following label types, which our program transformation turns into the appropriate type declarations:
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p = &a[i℄;

*p = 42;

p += seret;

*p = 43;

p = & a[i℄;

p = 0 | (i | pc);

p_d1_summary = & a;

p_d1 = & a_d0[i℄;

*p = 42;

*p_d1_summary |= 0 | (p | pc);

*p_d1 = 0 | (p | pc);

p += seret;

p |= secret | pc;

p_d1_summary = p_d1_summary;

p_d1 += secret;

*p = 43;

*p_d1_summary |= 0 | (p | pc);

*p_d1 = 0 | (p | pc);

Figure 10: Example of dynamic information flow monitoring with arrays and pointer arithmetic. The
original program (left) is turned into the program with inlined analysis code (right). Our transformation
tool’s output was modified to make status variable names more readable, changing names like p_status
to p.

[Label Summary 0 TInt, int b_status;

Label Exact 0 (TArray TInt 10), int b_status_d0[10℄;

Label Summary 1 (TArray (TPtr TInt) 10), int *b_status_d1_summary[10℄;

Label Exact 1 (TArray (TPtr TInt) 10)] int *b_status_d1[10℄;

Putting everything together, Figure 10 shows another variant of the examples above and the complete
dynamic information flow monitoring code generated by our system. In the statement performing pointer
arithmetic, we use a variable seret to make the flow more visible: When the pointer p has been offset
by seret, its label is joined with seret’s label. At the subsequent assignment to *p, this label is
propagated to the target’s label. Observe also how pointer expressions for summary labels perform weak
updates (using the |= operator), but the corresponding exact labels receive strong updates.

The remaining challenge is to complete the formalization of this program transformation in Is-
abelle/HOL. The key is a precise statement of the invariant that whenever a pointer expression p points to
a variable x, the corresponding label pointer expression p points to x. We will then show that the assign-
ments inserted by the program transformation preserve this invariant, which will allow us to establish a
complete soundness proof.

5 Implementation notes

We have implemented the program transformation sketched above as a plugin in the modular C analysis
and transformation framework Frama-C [12]. The current prototype handles programs with arrays and
pointers. For the alias analysis SP needed by the transformation, we rely on Frama-C’s built-in Value
analysis, which computes both aliases for pointers and value approximations for numeric variables using
intervals and other domains. The transformation is implemented as a transformation of the Frama-C
AST, which can then be output as C code. At the time of writing, some details of real-world C programs
are not yet handled by the analysis, which precludes us from giving a detailed experimental evaluation.
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Using Frama-C’s support for code annotations, we allow security levels of variables to be specified
as /*� publi */ or /*� private */ at the point of declaration. The corresponding label variables
are then initialized accordingly. Labels are tracked as integer values of 0 (public) and 1 (private) and are
efficiently combined using the bitwise-or operator |. We do not currently support more general lattices;
however, extending the current implementation to lattices that can be represented as bitvectors (up to 64
bits) is straightforward.

Users may also insert annotations like /*� assert seurity_status(x) == publi; */ in their
programs. Such annotations may also occur as function preconditions using Frama-C’s annotation lan-
guage ACSL; for example, any output function could require its arguments to be public. This allows
users full freedom to specify their application-specific information flow policies. For example, functions
that may cause information to be written to network sockets (such as the common send(1) system call)
may have contracts requiring their inputs to be public. As another example, cryptographic code may
be annotated to ensure that branch conditions are always independent of the cryptographic keys; other-
wise, key-dependent control flow may cause differences in timing or other side-channels observable by
attackers [3, 6]. Without such annotations, our analysis never reports a policy violation, i. e., without a
user-defined policy everything is permitted. As such policies are inherently application-specific, we want
to keep our analysis as general as possible and do not specialize it for particular flow policies.

Transformed, annotated programs often contain enough information for the Value analysis to be able
to prove such assertions without having to execute the instrumented program at all. Thus our hybrid
analysis combined with the powerful components of the Frama-C framework can often be used as a
powerful static analysis as well.

6 Related work

As mentioned several times throughout the paper, our work is heavily based on the formulation of in-
formation flow monitoring by Assaf et al. [2, 1]. This work only handles pointers to scalars; we have
formalized this theory in Isabelle/HOL, extended it to handle arrays, and are working on extending it fur-
ther. Our concrete implementation of the analysis in Frama-C is also based on the prototype developed
by Assaf.

Besides this prototype, we are aware of two implementations of dynamic information flow analysis
that aspire to handle real-world programs. Both of these are designed for JavaScript and intended for
settings with dynamic code loading. In contrast, our approach assumes a complete program in a C-like
language on which a static points-to analysis can be run. The approach by Kerschbaumer et al. [11]
handles arrays, but the details are not described; the authors only mention that an array may ‘consist[. . . ]
of heterogeneously labeled fields’. This heterogeneous labeling is something our approach consciously
avoids for soundness reasons, to avoid information leaks through array indices. In our approach, reading
an array element always involves reading the array’s summary label (see Example 4). The authors do not
describe any formal or informal proof of non-interference for their analysis.

The other well-developed analysis for JavaScript is JSFlow [9] with its extended hybrid version [8].
Both track the labels of array elements precisely, but a different notion of non-interference from ours
is used: In this variant, it is not allowed to assign secret values to locations that previously held public
values (the converse, overwriting a secret value by a public value, is allowed). The monitor aborts the
program if a violation of this policy is detected. In our approach, this would correspond to adding an
assertion to every assignment statement. In contrast, our approach is more permissive and only uses such
constraints at user-defined program points; as discussed above, our analysis is completely independent
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of any specific flow policy. The authors prove non-interference of both versions of JSFlow.
In the literature, there are various static information flow analyses, often formulated as flow-sensitive

type systems [17, 10], as well as further hybrid static/dynamic analyses somewhat comparable to ours [13,
16]. Arrays are occasionally mentioned in connection with type systems [17] but, to our knowledge,
never for the systems involving some dynamic monitoring. As our work shows, arrays raise subtle
soundness issues, in particular when combined with pointers and pointer arithmetic; to our knowledge,
we are the first ones to handle these issues in detail for a C-like language.

The terminology of weak and strong updates is borrowed from pointer analysis [4].

7 Conclusions and future work

We presented a hybrid information flow analysis for the C programming language with pointers, arrays,
and pointer arithmetic. Our analysis is implemented by instrumentation code that tracks information
flows by managing security labels associated with each object in the program. As in previous work,
pointers to labels mirror pointers to data in the original program. We extend this to arrays, tracking flows
both in a field-sensitive way and as a safe overapproximation in a separate summary field for each array.
Our analysis is implemented using the Frama-C program analysis and transformation framework.

A machine-checked proof of the correctness of the monitor semantics was formalized using Is-
abelle/HOL. We will also formalize the program transformation and prove its correctness; adding the
required static typing support to our dynamically typed semantics is ongoing work.

We will further extend this work to handle structures in a field-sensitive way. We also intend to use
pointer analysis information to allow us to handle type casts between pointer types.
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