
Submitted to:
VPT 2016

c© D. Horpácsi, J. Kőszegi & S. Thompson
This work is licensed under the
Creative Commons Attribution License.

Towards Trustworthy Refactoring in Erlang

Dániel Horpácsi
Eötvös Loránd Univeristy

Budapest, Hungary
daniel-h@elte.hu

Judit Kőszegi
Eötvös Loránd Univeristy

Budapest, Hungary
koszegijudit@elte.hu

Simon Thompson
University of Kent
Canterbury, U.K.

S.J.Thompson@kent.ac.uk

Tool-assisted refactoring transformations must be trustworthy if programmers are to be confident in
applying them on arbitrarily extensive and complex code in order to improve style or efficiency. We
propose a simple, high-level but rigorous, notation for defining refactoring transformations in Erlang,
and show that this notation provides an extensible, verifiable and executable specification language
for refactoring. To demonstrate the applicability of our approach, we show how to define and verify
a number of example refactorings in the system.

1 Introduction

If a user is to refactor their source code using a refactoring tool then they need to have confidence that
the tool can be trusted. There are a variety of approaches to making refactoring tools more reliable and
more trustworthy. Confidence may be established by carrying out extensive testing of transformations
and performing transparent changes, but complete guarantees can only be achieved by formal verification
of refactoring correctness. Defining verifiable refactoring transformations is still a significant challenge.

Informally-specified refactorings are typically implemented as conditional transformations on ab-
stract syntax trees; these trees contain details of every aspect of syntax, and so definitions using them are
low-level and complicated, which in turn makes understanding and verifying the transformations diffi-
cult. If the abstraction level of the description of the refactoring is higher (representation-independent),
then the definitions are more natural to read and write, as well as being more amenable to verification.

In this paper we present a high-level formalism, which provides a simple but rigorous way to define
conditional transformations. There is a large design space for transformation formalisations: we have
set two design goals for the work here. First, we aim to narrow down the scope from generic program
transformations to verifiable refactorings, and secondly, we aim to define refactorings for a particular
programming language, namely Erlang. This second goal means that we can leverage users’ knowledge
of Erlang to make the descriptions more powerful and accurate, as well as letting us define executable
and mechanically verifiable refactorings.

The paper makes the following contributions:

• A simple, executable formalism for defining refactoring transformations for Erlang.

• A design of a transformation formalism that reflects a particular programming language.

• High-level refactoring schemes for verifiable extensive transformations.

• A method for turning refactoring definitions into formally verifiable logic formulas.

The rest of the paper is structured as follows. In Section 2, we give a very brief overview on the
program model and refactoring framework we work with. In Section 3, we introduce how refactorings
are defined in our formalism, while in Section 4 we show the methods we use to mechanically verify
refactoring definitions. Section 5 summarises the related work, and Section 6 discusses some further
issues and concludes.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Towards Trustworthy Refactoring in Erlang

2 Background

Our solution is designed to support the Erlang [6] programming language, while the program model we
use is based on the concepts used in RefactorErl [3], a static analyser and refactoring tool for Erlang. This
section gives a brief overview on the background and previous work we build our presentation upon.

Erlang. The refactoring language we present is in some aspects specific to its object language, Erlang.
Erlang is a concurrent, impure, functional programming language. Programs written in Erlang are com-
posed of files, which consist of a set of forms encapsulating series of expressions. Files define modules,
and forms define program entities such as functions and records. Erlang is eagerly evaluated, and it is
strongly but dynamically typed. Because of the dynamic nature of the language, it is rather challenging
to provide static analysis and correct refactoring for its programs.

Program representation. Our solution supposes that the model – the underlying program represen-
tation – captures syntactic as well as semantic properties of code. In particular, the representation of
a program is a (labelled, directed) semantic program graph [3], which is the extension of the abstract
syntax tree with static semantic information. Each node has a unique identifier and thus our language
handles nodes as references.

Semantic information is represented in terms of semantic nodes as well as links between syntactic
and semantic units. For instance, a semantic node for a function stores (in its label) the function’s name,
arity and whether it is pure or not, while it is connected to syntax tree nodes defining it or referring to it.
The function is also linked to its containing module as well as to its call sites. When defining refactoring
side-conditions, we build upon these semantic properties and connections.

Refactoring framework. The implementation of our language relies on the capabilities of the under-
lying refactoring system. Since RefactorErl makes sure that the appearance of the code is preserved,
we only have to worry about behaviour preservation of transformations. Furthermore, our refactoring
definitions omit the formalisation as well as the implementation of meta-theory and static analysis for
Erlang, because these are provided by the framework [22].

The realisation exploits the various syntactic transformation and static analysis features present in
RefactorErl. Indeed, the representation-dependent steps of the refactoring function execution are imple-
mented by communicating with the underlying program model. For instance, the evaluation of semantic
side-conditions is implemented as looking up specific labels and paths in the semantic program graph,
while construction of new syntactic elements is carried out by instantiating an abstract syntactic pattern
in the model (concrete syntactic elements and their formatting are handled by the framework).

3 Refactoring Definitions

In this section, we introduce the formalism in which we define verifiable refactoring transformations,
i.e. proven-correct refactorings; we begin in Section 3.1 with a rationale for the design of our definition
formalism. In Section 3.2 we show how prime refactorings are defined from scratch, including both local
and extensive refactorings, as well as refactoring schemes; we illustrate each of these features by a series
of examples as we go. We conclude in Section 3.3 with a discussion of how composite refactorings are
described.

D. Horpácsi, J. Kőszegi & S. Thompson 3

3.1 Rationale

The design goals of our language are the following:

• Intuitive: there is no need for familiarity with term rewriting or static analysis.

• Representation-independent: only language-level concepts are used in the formalism (as opposed
to program representation-level concepts such as abstract syntax nodes).

• Verifiable: definitions can be verified as being refactorings.

• Executable: definitions are not only specifications, but implementations as well.

• Applicable: enables defining a wide range of real-world refactorings.

We made the following design decisions:

• Language-dependent: restricting to a single target language, Erlang in this case, we are able to
provide readability, ease of use and fidelity to the language.

• Interpreted DSL: we have implemented the formalism as an external domain specific language, so
that the definitions are executed by an interpreter implemented in Erlang.

The smaller the better. Our approach builds upon the idea of defining refactorings in terms of series
of simpler, so-called micro-refactorings [15]. Indeed, less complex definitions are easier to write and un-
derstand, and also they are more likely to be verifiable for semantics preservation. Moreover, sequencing
already verified refactoring transformations into more complex ones obviously results in correct refac-
toring definitions.

Refactoring functions. We define refactorings as functions with parameters that may be Erlang values
(such as numbers or strings) as well as references to program elements (represented by nodes of the
semantic program graph). The return value is always a program element, a node reference of the same
type as that of the refactoring target. As in Erlang, functions are identified by their name and arity; mod-
ules are not (yet) supported. Definitions are dynamically and loosely typed: implicit type conversions
might happen between values and syntactic nodes of constants, and between nodes of semantic entities
and their names. This makes it convenient to compose patterns and conditions, as values can be part of
syntactic patterns, while program elements can be intuitively used as their associated value.

Transformation or refactoring? It is worth clarifying that we are giving a formalism for defining
(conditional) program transformations. However, the formalism makes it possible to prove that the trans-
formations are indeed refactorings, i.e. they will preserve the semantics of programs. It is possible to
write non-refactoring transformations in the language, but they will not pass the verification phase. On
the other hand, it can also happen that correct refactorings do not pass the verification phase as the proof
system is only relatively complete; in this latter case, we do dynamic verification (see Section 4.4).

The target program element. Refactorings, or program transformations in general, replace a program
by a modified program. However, in practice, most of the code remains unchanged, only a few elements
are modified, even though they may be relocated. Therefore, we do not define refactorings as transfor-
mations that rewrite a whole program, but as changes to particular syntactic elements. In particular, our
refactoring functions always have an implicit parameter called THIS, a reference to a node (a program
element) in the model, resembling the implicit object parameter of method calls in OO languages. This
node determines the focus and scope of the change made by the transformation.

4 Towards Trustworthy Refactoring in Erlang

If the refactoring is local to a syntactic unit, the target should be set to the top of the subtree corre-
sponding to the unit, which will be transformed according to the rule(s) specified in the definition. The
refactoring definition is intended to only change the target node (and its corresponding subtree) without
affecting other parts of the model. Target nodes may be semantic as well, depending on the refactoring
definition.

On the other hand, if the refactoring consists of simultaneous changes to various syntactic elements
connected by semantic means, the target should be a semantic object (such as a variable or a function)
represented by a semantic node that groups together the syntactic nodes referring to the semantic unit.
This implies that the changed part of the graph is determined by the tree rooted at the semantic node. For
example, function renaming executed on a semantic function node transforms the definition clauses as
well as the referring application expressions, all of which are syntactic units.

The concept of target nodes further simplifies refactoring definitions as well as their verification.
They are not parametrised by values based on which the refactoring function determines its target node,
since this functionality will captured by the notion of node selectors.

Types of refactoring definitions. Refactorings of different complexity are expressed at different ab-
straction levels, with different notation. Figure 1 shows the refactoring definition types we employ in our
transformation formalisation.

Refactorings that cannot be expressed as a combination of other refactorings are called prime, while
refactorings expressible as a series of other refactoring steps are called composite. There might be dif-
ferent factorizations of composite refactorings. Prime refactorings are defined with conditional rewrite
rules on syntactic program patterns, and combinations of these. Some refactorings can be expressed with
a single rule, while others can only be defined as a combination of multiple rewrite rules. Refactorings
of the former kind define shorter, module-local changes and are called local, while the steps of the latter
kind are called extensive.

In the related work of formal refactoring definition, prime refactorings (or simple transformations in
general) are mostly considered to be already defined on a lower level (e.g. with an API, outside the refac-
toring language) and are therefore called ’primitive’ refactorings. In order to be able to verify complete
refactorings, we specify even the simplest prime transformations inside our refactoring language.

In order to simplify the definition and the verification of extensive transformations, we introduce
refactoring schemes that capture the general patterns underlying similar refactorings. These schemes
can be instantiated with one or more conditional rewrite rules, and expand to refactoring transforma-
tions provided that the rewrite rules meet some constraints (verification issues are discussed in detail in
Section 4.3).

REFACTORING

ww ((
PRIME

yy ''

COMPOSITE

LOCAL EXTENSIVE

Figure 1: Types of refactoring definitions

D. Horpácsi, J. Kőszegi & S. Thompson 5

3.2 Defining Prime Refactorings

3.2.1 Local Refactorings

The simplest (typically local) refactorings can be specified by a single (conditional) rewrite rule on first-
order syntactic terms. Note that the side-conditions of these transformations might be context-dependent,
but their effect on the model is local to a program element (such as an expression, a function or a module).

Conditional rewrite rules are the basis of refactoring definitions, providing a formalism for simple
transformations of code fragments. They consist of a matching pattern, a replacement pattern and a
conditions section. The patterns are specified with generalised program code, using concrete program
syntax, which makes the patterns independent of the representation as well as the rules easy to read.

1 REFACTORING <name > (<arguments >)

2 <matching pattern >

3 -----------------------

4 <replacement pattern >

5 WHEN

6 <conditions >

Using this high-level notation for simple refactorings is not only intuitive, but it is easily verifiable as
well, by building upon semantic equivalence of code patterns.

Example. Consider the following refactoring which simplifies list construction expressions by extract-
ing the fragment defining the head of the list. If the head is given by a compound expression, it makes
sense to simplify the expression by splitting it into two separate expressions by introducing a new vari-
able. The condition guarantees that the introduced variable name (stored in metavariable Var) is a fresh,
unbound name in the scope. Even though this is a context-sensitive condition, the transformation and its
syntactic changes are local to the target expression.

1 REFACTORING extract_listhead ()

2 [HeadExpr | TailExpr]

3 -------------------------

4 Var = HeadExpr ,

5 [Var | TailExpr]

6 WHEN

7 fresh(Var)

Listing 1: Refactoring definition: extract listhead/0

If the target node is not a top-level expression (that is, an element in the expression sequence of a clause),
the result is automatically wrapped into a begin-end block — we make use of this in the verification in
Section 4.2.

Patterns and metavariables. Patterns are first-order terms expressed in concrete syntax, i.e. gener-
alised syntactic terms involving metavariables that can match arbitrarily compound subterms. Metavari-
ables can be bound in two ways: they are matched against a syntactic subtree and get bound to the
reference of the top node, or they are set by a condition attached to the rewriting rule. Metavariables
are single-assignment, they cannot be overwritten and therefore provide referential transparency, even
across two or more rewrite rules combined. For the sake of simplicity, metavariables are denoted by
Erlang variables; literal variables are matched by using a special semantic predicate.

6 Towards Trustworthy Refactoring in Erlang

Ordinary metavariables match exactly one syntactic subterm (subtree); however, there are special
metavariables that can match zero, one or more consecutive, sibling subterms. These so-called list
metavariables are denoted by postfixing the variable name by two dots (Args..); not only they can
be used in patterns, but can be bound in conditions as well (for example, when the result of a semantic
function is a list rather than a single value). In addition, it is also possible to use multiple list metavari-
ables in one pattern; this may result in multiple match results, but if the conditions do not narrow down
the result set into exactly one solution, the matching fails.

In all prime refactoring definitions, the scope of a metavariable is the whole refactoring definition
(even if it consists of multiple transformations). We will use this to allow combined rules to “communi-
cate” via the metavariables used in the entire refactoring definition.

Example. The following refactoring definition demonstrates list metavariables. It matches simple
(module-local) function applications and turns them into module-qualified (external) calls, making it
explicit which module the called function belongs to. Since we match the arguments with a list metavari-
able, regardless of how many arguments the invoked function takes (zero or more), the expressions of
actual parameters are simply reused in the new call.

1 REFACTORING add_module_qualifier ()

2 Fun(Args ..)

3 -----------------

4 Mod:Fun(Args ..)

5 WHEN

6 atom(Fun) AND Mod = module(THIS)

Semantic functions and predicates. Side-conditions of rewrite rules are usually specified by means
of language-level concepts, e.g. “F is an exported function”, “expression A depends on expression B”
or “expression E is pure”. In our approach, such information is gathered via semantic functions and
predicates, which are intended to cover all kinds of data available in the refactoring system, and is
likely to be needed by refactoring definitions. Amongst others, there are semantic functions for querying
properties of semantic entities such as modules, functions or variables, while predicates tell whether
particular relationships exist between program units.

These functions are built-in and have a well-defined semantics, user-defined functions cannot be used
in the conditions. The idea is somewhat similar to guards in Erlang: restrictions help give guarantees.
When a rewrite rule is checked for being a refactoring, the rewrite patterns along with the conditions are
transformed into a matching logic formula.

Rule conditions. Rule conditions are first order formulas built upon semantic functions and predi-
cates. Formulas are applications of semantic predicates, or structural equivalence checks on values of
expressions; they are composed by negation, conjunction and disjunction. Expressions include constants,
metavariables, as well as applications of semantic functions.

Formulas are evaluated left-to-right, call-by-value. This is important, because they may have side-
effects: if the left hand side of a matching condition (equality check) is an unbound metavariable, the
value of the right hand side is bound to the metavariable. (Note that the semantics of this is very much
similar to the match expression in Erlang, except that there is no pattern matching, only variables are
allowed on the left.) Observe that metavariables bound this way can be used in the replacement pattern
to contribute to the new subtree.

D. Horpácsi, J. Kőszegi & S. Thompson 7

Example. The following example shows how matching conditions can be used to bind metavariables to
results of semantic functions. The refactoring rewrites an Erlang list comprehension into an application
of the map higher-order function, whereas the generated list as well as the head function are extracted
into auxiliary variables (List and Fun). The last expression in the result of this transformation might
serve as target for a “map to parallel map” refactoring; thus, the composition of the two transformations
would turn list comprehensions into parallel maps.

1 REFACTORING normalize_list_comp ()

2 [Head || GeneratorsFilters ..]

3 ---

4 List = [{Vars..} || GeneratorsFilters ..],

5 Fun = fun({Vars.. }) -> Head end ,

6 lists:map(Fun , List)

7 WHEN

8 Vars.. = intersect(bound_vars(GeneratorsFilters ..), vars(Head)))

9 AND fresh(List)

10 AND fresh(Fun)

Note that Head matches arbitrarily complex expressions, while Vars.. captures all variables that are
bound by the comprehension generators and are referred to in the comprehension head. The lists of
variables returned by the semantic functions vars and bound vars are intersected according to set inter-
section; the ordering in the final result is undefined – and irrelevant in this particular case.

Context-sensitivity. Although the pattern-based rewriting itself is context-insensitive, it is still pos-
sible to define seemingly complex, context-sensitive refactorings with single conditional rewrite rules.
This is because the refactoring functions may receive context information in their parameters, and also,
semantic predicates and functions are likely to return context-dependent data (for instance, in Listing 1,
the predicate fresh states a context-dependent claim on the variable name). Note that we work with node
references rather than terms, which is essential in querying context-dependent information on the various
syntactic elements. Also, observe that not only can we make the side-conditions context-dependent, but
via parameters and matching conditions, we can bind variables to context-dependent data and use them
in the replacement.

3.2.2 Extensive Refactorings

There are refactorings that cannot (practically) be expressed with a single rewrite rule. This is the case
when the refactoring involves changes at multiple locations in the program, and the connection between
these is purely semantic. Generally, such transformations are only refactorings if all the locations are
changed at the same time, thus preserving consistency.

For example, if we rename a function at its definition, we need to change the name at all the reference
sites as well, including directives, calls and other mentions. The connection between the elements to be
changed is the semantic entity (the function in this case), the locations to be modified are determined by
semantic relations such as “defines” and “calls”. Also, this example demonstrates the typical scheme of
extensive changes: there are some steps that make a twist in the semantics (changing a function name),
which are then compensated by a series of additional changes (correcting the name at the call sites as
well).

8 Towards Trustworthy Refactoring in Erlang

Combining rewrite rules. There are combinators in the language for composing rewrite rules into
extensive transformations. Two well-known rewrite rule combinators have been adopted: sequencing
(THEN) and left-choice (OR). The semantics of these operators are basically the same as in Stratego [5]:
A THEN B executes A first, and if it succeeds, executes B too. In contrast, A OR B executes A, and
proceeds to B only if A has failed for some reason.

Modifying rewrite rules. Although with combinators we can compose rewriting rules, without further
modification, they will apply on the same part of the program, i.e. the target of the extensive refactoring
function. We need additional operators to change the focus of the individual rewrite rules in the compo-
sition. Strategic rewriting solves this problem by using traversal operators that visit the children of the
actual node. We introduce a more expressive notation: modifiers evaluate expressions that determine the
nodes on which the rule applies.

The rewrite rules within extensive refactoring functions have their own target. By default, they inherit
the target node of the refactoring, but with the following modifiers we can set different targets for the
rewrite rule. The modifier ON takes an expression, evaluates it (the result should be a node reference
or a list of node references), and sets the target of the rule to the result. IN is very similar, but the rule
is applied not only on the result of the expression, but on all the nodes within its subtree. Furthermore,
there are modifiers for influencing the order in which the children of a node are visited.

Example. Consider renaming a function, which we have already used as an example for extensive
change. The following definition shows a simplified version of the refactoring, which checks whether
the new signature is free in the module and changes the name of the entity both in the defining clauses
as well as at the simplest function calls. This transformation is a refactoring only if all the references are
changed according to the modification in the definition.

1 REFACTORING rename_function(NewName)

2 ON function_clauses(THIS)

3 Name(Args ..) -> Body..

4 ---------------------------

5 NewName(Args ..) -> Body..

6 WHEN NOT function_exists(module(THIS), NewName , length(Args ..))

7 THEN ON function_references(THIS)

8 Name(Args ..)

9 -----------------

10 NewName(Args ..)

In fact, the definition of rename function would be much more complex than this, because there are a
number of other ways to refer to a function entity in Erlang, such as module-qualified and apply calls,
implicit fun expressions, export/import list entries, type and callback specifications. These all should be
handled by such a “function refactoring” definition, because failing to modify the name at a reference
will result in inconsistency: an incorrect reference.

In addition, there are many refactorings similar to “rename function”, such as “tuple function argu-
ments”, “reorder function arguments” or “add function argument” – what is common is the target, i.e.
the function entity that is altered by the change. The function signature determines the name as well as
the number and type of parameters the function takes. When we make a change in the signature, we
have to carry out modifications at every site where the function is referred to. This leads us to a generic
refactoring scheme, which covers all the function refactorings mentioned above. We look at that now.

D. Horpácsi, J. Kőszegi & S. Thompson 9

3.2.3 High-level Refactoring Schemes

It is not easy to compose complete extensive refactoring steps, and in general, it is rather difficult to
verify whether an extensive definition specifies a behaviour-preserving transformation, i.e. a refactoring.
However, most extensive refactorings are in line with some change scheme: they alter a semantic entity
such as a function, a variable, or a record, which has to be compensated by additional transformations.

In order to simplify the definition and verification of such refactorings, we introduce extensive change
schemes and provide a basic set of them. These refactoring schemes can be instantiated with one or more
rewrite rules (depending on the kind of the scheme). The instantiation results in a complex extensive
refactoring transformation, which may rely on complex semantic properties (e.g. data flow or control
flow) without the refactoring writer having to mention them explicitly. In some sense, the schemes can
be considered as special strategies that check and process the rewrite rules passed to them.

There are two main benefits of using schemes: on one hand, extensive refactoring definitions become
substantially simpler, and on the other, they become more easily verifiable. The schemes are built-in,
they are proved to result in refactorings under some conditions; this is the contract of the scheme. If the
instantiation is legal, the transformation is guaranteed to be a refactoring.

Function signature refactoring. All refactorings that change a function’s signature have to change the
definition as well as all the references, after checking whether there is no function with the new signature
in the same module. The difference between these function refactorings is the way that they modify
the name and the parametrisation of the function in question. Therefore, we provide a scheme for such
refactorings, which captures all the general parts so that only the actual change in the signature has to be
specified.

The function signature refactoring scheme makes it easy to define function-related refactorings: the
parametrisation is a single rewrite rule defining the way the name as well as the arguments are changed.
For example, the rename function refactoring becomes as simple as the following definition, and by using
the very same scheme, another well-known Erlang refactoring can easily be defined, namely tupling the
arguments of a function.

1 FUNCTION SIGNATURE REFACTORING

2 rename_function(NewName)

3 Name(Args ..)

4 -----------------

5 NewName(Args ..)

1 FUNCTION SIGNATURE REFACTORING

2 tuple_function_arguments ()

3 Name(Args..)

4 ----------------

5 Name({Args..})

There are schemes for changing other semantic entities as well, such as modules and records.

Forward dataflow refactoring. If we have a closer look at the function refactoring scheme, we might
observe that the references to be changed with the definition are dependent on the definition: data and
control (and therefore behavioural) dependencies are present between the referring expressions and the
function definition. These dependencies induce the need for changing the program elements according
to the same rule, at the same time.

10 Towards Trustworthy Refactoring in Erlang

This idea can be generalised, since such dependencies exist between various expressions, which
means changing the one requires changing the others as well. Data dependencies are mainly caused
by dataflow relations, so we provide a scheme for changing dataflow paths. If an expression construct-
ing a value is changed, all the expressions into which the value flows (and therefore induces data and
behavioural dependency) should be changed as well.

This skeleton is parametrised by a number of rules applied to either the construction site or a reference
site of the data. That is, one of the definition rules is applied on the defining expression (the target of
the refactoring), while the expressions referring to the data are transformed by one of the reference rules.
In our current model, all elements on the dataflow path starting with the expression constructing the
value are regarded as references. If the definition or any of the references cannot be transformed by a
corresponding rule, the refactoring fails.

Note that there is an important side-condition for this scheme. Refactorings created with it will fail
when any of the references to be compensated have any data sources (i.e. preceding dataflow nodes) other
than the originally selected refactoring target. It is worth mentioning that if the target for this refactoring
is the right hand side of a match expression, and the matching pattern is a single, unbound variable, the
previous conditions are apparently met.

Example. By instantiating the scheme, we can define a transformation eliminating the anonymous
function wrapping a pure expression. The definition rule extracts the value, while the reference rules
take care of the applications of the anonymous function. With a similar refactoring definition, we might
inline the unnamed function by referring to the body of the function in the reference rules.

1 FORWARD DATAFLOW REFACTORING fun2value ()

2 DEFINITION

3 fun() -> E end

4 ---------------- WHEN pure(E)

5 E

6 REFERENCE F

7 F()

8 -----

9 F

10 REFERENCE G

11 apply(G, [])

12 --------------

13 G

Listing 2: Forward dataflow refactoring example

In many cases, the definition and reference rules are inverse in some sense: even in this case, this intuition
helps understand the correspondence between the rules and their application. Let us see how this refac-
toring would change a simple code. Executing the ”fun2value” refactoring on the fun expression checks
if the value “apple” is side-effect free, and then it removes the unnecessary abstraction and application.

1 X = fun() -> apple end ,

2 . . . ,

3 atom_to_list(X())

f un2value()−−−−−−−→
1 X = apple ,

2 . . . ,

3 atom_to_list(X)

With this scheme, one might implement API-adaptation, or type-changing refactorings [11] as well. Nev-
ertheless, for such refactorings, data references should be gathered based on behavioural dependencies
rather than just ordinary dataflow.

D. Horpácsi, J. Kőszegi & S. Thompson 11

Backward dataflow refactoring. Changes in a dataflow path can be started from reference points as
well, but with more restrictive preconditions: instances of the scheme can only be applied if the data
sources of the selected expression do not flow anywhere but into the selected reference (this also means
that the selected expression is the end of the dataflow path). If the selected expression is a control
expression such that its data sources are its subexpressions, the condition is trivially met. Furthermore,
if the refactoring copies nodes between the definition and the references, the names referred to by the
copied units have to be common: in the following example, the unified tail may only refer to variables
bound outside the case expression.

Example. In this example, the constructed list is simplified into its head, while the tail is added to it
after the next control flow node. Metavariables bound in the matching pattern of the definition rule but
not used in the replacement thereof are treated as global in the transformation; this enables us to share
Xs among the data sources and obligate data sources to have the same tail.

1 BACKWARD DATAFLOW REFACTORING common_tail ()

2 DEFINITION

3 [X|Xs]

4 --------

5 X

6 REFERENCE Y

7 Y

8 --------

9 [Y|Xs]

Executing the above refactoring on the following case expression, the common tail is “unified”.

1 f([H|T]) ->

2 case H of

3 1 -> [2|f(T)];

4 3 -> [4|f(T)]

5 end.

common tail()−−−−−−−−→

1 f([H|T]) ->

2 [case H of

3 1 -> 2;

4 3 -> 4

5 end | f(T)].

3.3 Defining Composite Refactorings

As we said it in the beginning of the paper, the smaller the better, if it is about refactoring. Refactorings
that are expressible as series of other refactorings should indeed be decomposed and specified with
composite refactoring definitions.

The refactoring language has to help compose the already defined refactoring steps easily and safely.
Note that even though composite definitions can be seen as extensive definitions that compose refac-
torings rather than just transformations (or, on the contrary, extensive definitions are compositions of
transformations that are not all refactorings alone), we designed a separate formalism for composite def-
initions. The language enables easy and effective combination of refactoring definitions by allowing for
defining node selectors and using the results thereof as target nodes for refactoring functions.

Do notation. The composite refactoring, basically, executes refactoring transformations defined by
some control. It depends on the framework we use whether the steps are instrumented by branching and
loop constructs, or are fired by non-deterministic choices and recursion. In our refactoring language,
refactoring functions are applied to target nodes determined by metavariables and node selectors. By

12 Towards Trustworthy Refactoring in Erlang

default, should any of the executed refactorings fail, the whole composition fails, and the changes made
have to be rolled back.

By design, control is rather limited: unbounded recursion is not allowed in order to avoid non-
termination; instead, the ON construct can be used to repetitively apply steps on a set of targets. Branch-
ing is also omitted, selectors are intended to implement conditional refactoring.

Selectors and executors. Selectors are match-only functions which return node references without
making any changes in the model. They can be used to collect potential targets for refactoring steps,
as well as to gather context information passed to the refactoring function as a parameter. For example,
the following selector matches functions taking at least one formal parameter, and returns the pattern
expression belonging to the last parameter (the list metavariable Args.. matches all but the last).

1 SELECTOR last_arg ()

2 Name(Args.., Last) -> Body.. .

3 RETURN Last

Executors provide a simple formalism for refactoring execution on nodes selected for transformation.
When invoking a refactoring function, by default, its target is the target of the defining function. This
can be overridden by targeting the function on specific nodes defined by selector expressions (including
selector or semantic functions and metavariables). The modifier “ON A” executes the refactoring function
on the node(s) selected by A. In order to provide a more convenient formalism, a dot sign can shortcut
the ON construct, i.e. A.refac() is equivalent to refac() ON A, resembling OO method invocations.

Example. Let us demonstrate the composition formalism by quoting a snippet from the “generalise
function” refactoring definition. This is a fairly complex transformation that replaces a constant (or more
generally, an expression) by a variable, which becomes a new parameter to the function. This refactoring
produces a more general variant of the target function. We decomposed this transformation into multiple
simpler refactorings.

The below definition creates a copy of the original function and rewrites it to refer to the newly
generalised version. There are three main operations carried out: the target expression is wrapped into
an anonymous function (as it can have side effects), an identical but generalised copy of the containing
function is created, and finally, the copy is fold against the original definition as well as the generalisation
is performed in the original definition by replacing the value with the new parameter.

1 REFACTORING generalise_function ()

2 DO

3 OrigName = name(function(THIS))

4 Orig = function(THIS)

5

6 THIS.wrap_into_fun ()

7 FunExp = THIS.fun_part ()

8

9 Copy = Orig.copy_function(’tmp_name ’)

10 Copy.add_parameter ()

11 Copy.rename_function(OrigName)

12

13 LastArg = definition(Copy).last_arg ()

14 Copy.fold_entire_function(Orig , copy(FunExp))

15 FunExp.replace_val_by_var(copy(LastArg))

D. Horpácsi, J. Kőszegi & S. Thompson 13

We omit the definitions of the constituent refactorings, as our goal with this example is to demonstrate
the composition mechanism. Nevertheless, we refers to refactoring steps such as wrapping an expression
into an anonymous function (wrap_into_fun/0), copying a function (copy_function/1) and folding
a function body against another function that has an identical body (fold_entire_function/2). In-
terestingly, some of these helper refactorings are also decomposable into even smaller refactoring steps.

Note that since consecutive refactoring steps might depend on each others’ result, we store the results
of some refactoring functions into local variables: in this case, Orig captures the generalised function
object, while Copy is a reference to the copy of the function, which is being further transformed.

4 Verification

By correctness for a refactoring definition we mean that the refactoring preserves behaviour when applied
to any program of the object language. In this section we propose a verification technique that is suitable
for verifying local refactorings as well as extensive refactorings expressed with schemes. Since the
suggested proof system is not complete, we also address how to use a similar method for proving the
correctness of an application of the refactoring, i.e. that the original and the transformed code are
equivalent.

A great advantage of our formalism is that a refactoring definition is an executable specification, so
we can reason about the transformation directly avoiding the usual gap between the specification and
the implementation. To be able to formally verify refactorings, besides the formal specification of the
refactoring, we need to have 1) the formal semantics of the object language; 2) the formalization of the
semantic properties used in the conditions of the transformations; 3) a logic into which the language
semantics can be easily embedded as well as in which the behaviour-preservation property can be ex-
pressed; 4) a proof system for the logic.

The recently introduced reachability logic [18] (RL) can be a suitable all-in-one solution: it allows
us to define the operational semantics of programming languages as well as to specify and to reason
about program properties. The overall idea of the proposed approach is to define the semantics of Erlang
in terms of RL formulas, express the correctness property of a refactoring as an equivalence problem.
Then, by reducing partial equivalence to partial correctness according to Ciobaca [7], we become able to
use the proof system for RL to verify refactorings.

4.1 From Reachability Logic to Equivalence Checking

As reachability logic is not a mature, well-known logic, its definition and the corresponding proof sys-
tems have been constantly evolving in the various publications from the recent years. In this section, a
brief introduction is given to the related results [1, 7] on which we build our verification technique.

Matching logic. Reachability logic builds upon matching logic, which is a specialized many-sorted
first order logic with a distinguished sort Cfg, called configuration; additionally, it allows configuration
terms with variables (called basic patterns) as predicates. Let TCfg(Var) be the set of basic patterns, that
is, terms of sort Cfg over the variables Var.

A basic pattern is satisfied by all the configurations that match it. Formally, the matching logic
satisfaction relation |= can be defined inductively as in first-order logic, extended with the following for
basic patterns π ∈ TCfg(Var): (γ,ρ) |= π iff ρ(π) = γ , where γ is a configuration and ρ is a valuation.

14 Towards Trustworthy Refactoring in Erlang

Program states are represented as concrete configurations (ground configuration terms), while pro-
gram state specifications are represented as patterns, that is, first order logic formulas with basic patterns.
We use a special subset of patterns, called pure patterns, for defining the operational semantics of the Er-
lang language as well as for expressing program pattern equivalence relation, because they can be ported
directly to the K semantic framework we used for our semi-automatic method (see: 4.5). A pattern ϕ is
pure [7] (or elementary [1]) if it is given in the form π ∧ϕ ′, where π is a basic pattern and ϕ ′ is a simple
first-order logic fomula without any basic pattern, called the condition of the pattern.

Configurations. The configuration is usually a nested structure of cells containing semantic data. We
will use the following simplified configuration for Erlang program states: 〈〈. . .〉code 〈. . .〉env 〈. . .〉defs 〉cfg,
where 〈. . .〉cfg is a top-level container cell, 〈. . .〉code contains the code to be executed, 〈. . .〉env stores
variable assignments in a map, and 〈. . .〉defs contains function definitions. The following is a concrete
configuration:

〈〈 [f(X) | [2,3]] 〉code 〈X 7→ 1〉env 〈f(A)→ A+1〉defs〉cfg

A pure pattern that is satisfied by the above concrete configuration would be:

〈〈 [h | t] 〉code 〈e〉env 〈d〉defs〉cfg ∧ length(t)> 0

Note that X and A are Erlang program variables represented as constants in matching logic, whereas h, t,e
and d are mathematical variables.

Reachability logic. While matching logic is a logic of static configurations, reachability logic is a
logic of pairs of configurations representing dynamic behaviour: with RL one can express semantics of
a programming languages, as well as program properties. Given two matching logic formulas ϕ and ϕ ′,
one can construct the reachability rule ϕ ⇒ ϕ ′ stating that a configuration matching ϕ will advance into
a configuration matching ϕ ′.

Matching logic semantics. For the matching logic semantics of a language we need to define the
semantic domain and a set of reachability rules capturing the operational semantics of the language.
In practice, defining the semantic domain means to specify the abstract syntax of the programming
language as well as the syntax of the operations in the needed mathematical domains, and give the model
of configurations merged together with the mathematical domains.

The object language of our refactorings is Erlang, but presenting the matching logic semantics for
the entire language goes beyond the scope of this paper. Nevertheless, we show some example semantic
rules in the following, and for the sake of simplicity, we use the above shown configuration sort. In our
proof of concept, we have defined a deterministic, pure, single-module variant of Erlang. Due to the
modular nature of matching logic semantics, we can easily extend this language by adding new cells and
new reachability rules. Even though Erlang does not have an official formal semantics definition, the user
manual offers sufficient informal description about the meaning of language elements. Besides, we used
some ideas from the doctoral thesis of Fredlund [9], which defines a small-step operational semantics for
Erlang.

Let us show a formula defining the semantics of a begin-end block with an expression sequence
beginning with a match expression (a similar definition is given in [9]). We use ellipsis for the irrelevant
and unchanged parts of the configurations.

〈〈 begin pat = exp, exps end . . . 〉code . . .〉cfg∧length(exps)> 0 ⇒
〈〈 case exp of pat -> begin exps end end . . . 〉code . . .〉cfg

(1)

D. Horpácsi, J. Kőszegi & S. Thompson 15

A more complex formula shows one of the four semantic rules for case expressions. The predicate
isMatching checks whether the expression matches the pattern with respect to the variable environ-
ment, while getMatching returns the new variable assignments resulting from the match. The function
substVars substitutes variables by their values in the given expression.

〈〈 case exp1 of pat -> exp2 end . . . 〉code 〈e〉env . . .〉cfg
∧isMatching(exp1,pat,e)∧ e2 = getMatching(exp1,pat,e)⇒

〈〈 substVars(exp2,e2) . . . 〉code 〈e〉env . . .〉cfg
(2)

Program equivalence. In several cases we are able to derive the correctness of a refactoring to an
equivalence problem. However, in the general-purpose proof systems for RL we can only reason about
a property of a single program, but not about a relation of two programs. Ciobaca [7] shows that the
problem of establishing partial equivalence can be reduced to the problem of showing partial correctness
in a mechanically constructed aggregated language. (Partiality in this case means that we can only prove
the equivalence of terminating programs, but most of our refactoring definitions remain in scope.) In our
case, the configuration for the aggregated language is a pair of single program configurations:〈

〈〈. . .〉code 〈. . .〉env 〈. . .〉defs 〉cfg1 〈〈. . .〉code 〈. . .〉env 〈. . .〉defs 〉cfg2
〉
eq

For each semantic rule, we have to generate two new rules in order to make them applicable to either
the first or the second constituent of the aggregated configuration. Generally,

〈〈c1〉code 〈e1〉env 〈d1〉defs〉cfg∧ cond⇒ 〈〈c2〉code 〈e2〉env 〈d2〉defs〉cfg turns into〈
〈〈c1〉code 〈e1〉env 〈d1〉defs〉cfg1 . . .

〉
eq
∧ cond⇒

〈
〈〈c2〉code 〈e2〉env 〈d2〉defs〉cfg1 . . .

〉
eq

as well as a similar rule for 〈. . .〉cfg2.
For expressing the partial equivalence, we have to define an RL formula of form S1 ⇒ S2, where

S1 represents the initial state of the two programs with possible conditions, whilst S2 is a state pattern
expressing the equivalence.

Symbolic Circular Coinduction. A sound and relatively complete 7-rule proof system is available [7]
for RL, which is theoretically suitable for proving the correctness property expressing program equiva-
lence. However, this 7-rule proof system is rather complex, there is no practical strategy published for
building the proofs.

One of our goals is to have a semi-automatic system for verifying refactorings, so we have chosen
a simplified version of the above mentioned proof system introduced in a related technical report [1].
Symbolic Circular Coinduction (SCC) is coinduction-based extension of symbolic execution that can
be used for deductive verification of program properties specified by RL formulas. The proof system
consists of 3 inference rules, and can be easily implemented with a straightforward tactic. The report
presents a prototype tool that can automatically build proofs if we give a language definition and an
RL formula expressing some correctness property (see Section 4.5). Note that both the 7-rule and 3-
rule proof systems are sound only on deterministic languages. For non-deterministic languages they
introduced all-path reachability logic [20], but it is future work to examine how to express equivalence
in this logic.

4.2 Local Refactorings

In this section we show how to check the correctness of local refactoring definitions by constructing
an RL formula expressing the equivalence of the matching and the replacement pattern under the given
condition. We use the SCC proof system for verifying the RL formula.

16 Towards Trustworthy Refactoring in Erlang

We suppose that we have a set containing RL formulas that capture the semantics of Erlang. Let (3)⇒
(5) be the RL formula expressing the correctness property. We can mechanically construct the matching
logic formula (3) for a rule given in the form defined in Section 3.2.1. We fill in the configuration
specified for equivalence checking by putting matching and replacement patterns into the code cells of
cfg1 and cfg2, respectively. The metavariables of the patterns become mathematical variables of the
formula. As we would like to check whether the patterns are equivalent in any environment, we put
new mathematical variables into both the env cells and the defs cells. We append the condition to the
configuration with logical conjunction.〈

〈〈<matching pattern>〉code 〈e1〉env 〈d1〉defs 〉cfg1
〈〈<replacement pattern>〉code 〈e1〉env 〈d1〉defs 〉cfg2

〉
eq

∧<condition> (3)

The condition can contain various semantic functions and predicates. In order to be able to use them in
the proof, we have to axiomatize them with RL formulas and add the axioms to the set of the formulas
defining the object language. For example, the fresh predicate, specifying a variable name be fresh in
the scope of the expression, is defined as follows:〈

〈〈e1〉env . . .〉cfg1 〈. . .〉cfg2
〉
eq
∧fresh(x)⇒

〈
〈〈e1〉env . . .〉cfg1 〈. . .〉cfg2

〉
eq
∧ x /∈ keys(e1)∧isVar(x) (4)

Let us now define the formula expressing the equivalence relation. We say that the two configurations
(and therefore the original code patterns) are equivalent if we can reach a state in their symbolic evalua-
tion, where the code cells have exactly the same content as well as the variable environments are equal.
(We can ignore the function definitions as they cannot be changed with a rule applied to an expression.)〈

〈〈c2〉code 〈e2〉env . . . 〉cfg1 〈〈c2〉code 〈e2〉env . . . 〉cfg2
〉
eq

(5)

Example proof. We show a proof sketch for the extract listhead (Listing 1) refactoring definition. As
a first step, we compose a formula expressing the equivalence of the matching and replacement code
patterns of the rule: this is the initial goal of the proof.〈

〈〈 [h | t] 〉code 〈e1〉env 〈d1〉defs〉cfg1
〈〈 begin v = h, [v | t] end 〉code 〈e1〉env 〈d1〉defs〉cfg2

〉
eq

∧fresh(v)⇒ (5) (6)

An inference rule of SCC allows us to apply any of the formulas of the language semantics as a rewrite
rule on the left hand side of our goal. After using (1), performing a begin-end elimination and applying
(4) on the cfg2 cell, we acquire the following new goal:〈

〈〈 [h | t] 〉code 〈e1〉env 〈d1〉defs 〉cfg1
〈〈 case h of v -> [v | t] end 〉code 〈e1〉env 〈d1〉defs 〉cfg2

〉
eq

∧ v /∈ keys(e1)∧isVar(v)⇒ (5) (7)

Finally, after applying (2) on cfg2 we get:〈
〈〈 [h | t] 〉code 〈e1〉env 〈d1〉defs 〉cfg1
〈〈 [h | t] 〉code 〈e1〉env 〈d1〉defs 〉cfg2

〉
eq

⇒

〈
〈〈c2〉code 〈e2〉env . . . 〉cfg1
〈〈c2〉code 〈e2〉env . . . 〉cfg2

〉
eq︸ ︷︷ ︸

(5)

(8)

In the acquired formula, the left hand side implies the right hand side in the sense of matching logic,
which is the axiom in the proof system, so our initial goal is proven.

D. Horpácsi, J. Kőszegi & S. Thompson 17

4.3 Refactoring Schemes

In general, extensive refactoring definitions cannot be automatically verified. However, in many cases,
they can be split into two parts: 1) a mechanically verifiable generic transformation pattern, and 2) a
specific instantiation that can be automatically verified. We call the former part the refactoring scheme,
which is predefined, and it is proven to be correct with respect to an instantiation contract. On the other
hand, the specific part is called the parametrisation, and it is automatically checked for conformance with
the contract. In this section, we overview the contracts belonging to the schemes defined in Section 3.2.3
and we outline the technique we use to verify refactorings specified with schemes.

4.3.1 Function signature refactoring.

Refactorings of this scheme change the signature of a function according to a simple rewrite rule. Both
the definition as well as the referring expressions are to be adjusted, such that the data and control flow is
not altered. Consequently, every mention to the refactored function has to point to the modified signature
and has to maintain its effect. For instance, function calls have to expand to the same series of expressions
as well as their parameters have to bind as before.

We suppose that every syntactic element to be modified is identified by the static analysis framework
(the proof of this is beyond the scope of the paper); thus, the verification of the scheme lies in showing
that the various changes will be consistent. The name and the arguments are modified according to the
same rule at all definition and reference sites, so we only have to make sure that the rule is generic enough
to apply to all the change candidates, and it does not make the arguments any less or more general so that
the data and control flow is preserved. This leads to the following contract:

1. The matching pattern only contains metavariables, and the pattern for the arguments is linear. This
guarantees that the rule applies to all the definitions and references.

2. In the replacement pattern, the name is the same metavariable as in the matching pattern (holding
the old name) or a constant (determining a new name). The arguments contain the metavariables
present in the matching pattern, but no other metavariables or constants: this guarantees that the
new signature is compatible with the old one in terms of matching generality (i.e. calls have the
same formal to actual parameter assignments as earlier).

The contract is checked as follows. Suppose we have three operations on argument list patterns that
preserve generality: a) swapping two elements, b) duplicating elements and c) grouping elements into
lists or tuples. If the argument list’s matching pattern can be transformed into its replacement pattern
with the previous operations, they are compatible: applying the rule on the formal and actual parameters
of a function results in the same matching (this can be proven with the definition of getMatching).

4.3.2 Dataflow refactoring.

Refactorings defined with the forward or backward dataflow schemes modify elements along dataflow
paths. At least two rewrite rules have to be supplied as parameters: one for transforming data sources
and one for changing references.

As in the previous scheme, we rely on the correctness of the dataflow analysis, and only verify
whether the changes will be consistent if applied to all the data definitions and references on the flow.
The contract in this case is simple: every combination of the definition and reference rules have to result
in equivalent expressions.

18 Towards Trustworthy Refactoring in Erlang

The idea is based on the fact that the reference transformations are changing expressions where the
value flows into, so that we might replace the value by its definition. Thus, for every pairs of rules
we can mechanically construct an equivalence problem by replacing every occurrence of the reference
metavariable in the upper part of the reference rule by the upper part of the definition, and by replacing
the occurrences of the same metavariable in the lower part of reference rule with the lower part of the
definition. Observe that this equivalence problem can be proved exactly the same way as shown in
Section 4.2.

Example. From the rule of Listing 2, we acquire two equivalence formulas to be proven, which in this
case can be easily done by relying on the semantics of function invocation:

〈
〈〈 fun() -> x end () 〉code 〈e1〉env 〈d1〉defs 〉cfg1 〈〈 x 〉code 〈e1〉env 〈d1〉defs 〉cfg2

〉
eq
∧pure(x)⇒ (5)〈

〈〈 apply(fun() -> x end,[]) 〉code 〈e1〉env 〈d1〉defs 〉cfg1 〈〈 x 〉code 〈e1〉env 〈d1〉defs 〉cfg2
〉
eq
∧pure(x)⇒ (5)

4.4 Concrete Application of Refactorings

When we cannot verify the refactoring definition, we have the possibility to verify just one concrete
application of the refactoring. We would like to check whether the original and the resulted code have
the same behaviour, for one particular choice of refactoring and code. The difficulty with equivalence
checking of Erlang programs is that we do not have any main function or expression. Instead, since all of
the exported functions can be called from outside a module, we chose to check whether these functions
have their behaviour preserved by the transformation.

We can mechanically prove this by collecting all of the exported functions of the modules both from
the original and the transformed code, generate an RL formula for each pair of functions expressing their
equivalence, and finally, prove all of the RL formulas with SCC or with other suitable proof system.

In the left hand side of the RL formula there should be the eq configuration with function calls to the
function under consideration with the same (symbolic) variables as arguments in both code cells, with
all of the original and transformed function definitions in defs cell, and with empty env cells. The right
hand side of the formula should express the equivalence criteria: codes have to be derived to the same
(concrete or symbolic) value, and we do not care about env and defs, as there should not remain any
variable or function call in code cell.

4.5 Semi-automatic Method

The proposed proof system, SCC, has a prototype implementation [1], that is an extension of the rewrite-
based executable semantic framework called the K framework [10]. The parameters of a proof in the
system are a K language definition and a RL formula given in a simple, XML-like syntax. K and
matching logic fit well together, as RL formulas can be expressed as rewrite rules in K and, additionally,
the K framework offers many features that ease the definition of the semantics of a language.

We have defined a sublanguage of Erlang in the K framework, and using the prototype version of SCC
we have successfully specified and verified some of our simple refactorings automatically. Currently, we
have to specify RL formulas for the refactoring definitions by hand, but as a future work, we plan to
implement a translator for it.

D. Horpácsi, J. Kőszegi & S. Thompson 19

5 Related Work

It is a widely applied technique to employ context-free conditional rewrite rules and functional strate-
gies [5] to implement program transformations. Bravenboer and Olmos show that by adding dynamically
defined rewrite rules into the system [4], context-dependent (even data flow driven) transformations [14]
are definable; however, these definitions are hardly verifiable.

Effort has been put into formal specification, verification and implementation of refactorings. The
fundamental work of Opdyke [15] suggests refactorings be composed of basic steps called microrefac-
torings. For object-oriented languages, Schaefer [19] introduced a system in which he reasoned about
semi-formal definitions of a set of basic refactorings, but the proofs are mostly informal. Roberts [17]
applies a different definition style, with an emphasis on the side-conditions and proper composition of
the base refactorings. However, neither provides formally verified or executable definitions.

Semantics-aware, verifiable transformations can be specified by graph rewriting [13] as well, but
the resulting graphical descriptions are relatively complex compared to concrete syntax patterns. Padi-
oleau et al. [16] propose a transformation language incorporating semantic conditions into the textual
patterns; however, they use it for specifying patches rather than refactorings. Verbaere [23] proposes a
compact, representation-level formalism for executable definitions; it is language-independent, but does
not give support for verifying the correctness of refactorings. For Erlang, our previous work [2] drafts
a refactoring language, solely focusing on simplicity and interpretability. Also for Erlang, Li [12] de-
fines an API for describing microrefactorings and a feature-rich language for composition, but formal
verification is not addressed. There are some results [21] in defining provably correct refactorings for
simple languages, but for real-world cases, the question is still open. Our work aims to make a signifi-
cant step further, and offers not only refactoring-specific proofs, but a generic verification technique for
custom-defined transformations.

6 Conclusion

We have shown that it is possible to define a framework for describing refactorings for a particular
programming language – Erlang – in such a way that the descriptions are high-level and readable, but
at the same time they are executable. They are, moreover, amenable to verification using a rewriting
logic framework, and in some cases verifications of refactorings, or of particular applications of them,
are derivable automatically.

The methods and examples presented in the paper have been successfully implemented in our proto-
type. As [8] points out, refactoring consists of analysis plus transformation; we put the focus on transfor-
mation, whereas we made use of the analysis infrastructure present in RefactorErl. Consequently, even
though we focussed on verifying the transformations, our transformations are only correct if the static
analysis (and the language meta-theory) is correct.

Our formalism is intentionally restrictive: by providing a less general toolset to the refactoring pro-
grammer, we can give guarantees in return. For instance, the language lacks unbounded recursion, but
this way termination is not an issue. Also, formalising extensive refactorings with schemes is not always
obvious, but in exchange, the definitions are verifiable. It is to be investigated whether all the meaningful
Erlang refactorings can be phrased in the language or we have to get rid of some constraints and give
more control to the user. In the future we anticipate broadening the scope of the work to include more
constructs of Erlang, and to extend the verification capacity too.

20 Towards Trustworthy Refactoring in Erlang

Our approach is, at some points, language-specific: the semantic predicates and functions are in line
with the concepts of Erlang, and also, the high-level refactoring skeletons would probably be different
in other languages. Nevertheless, we believe that the main idea would be adaptable in refactoring tools
for other functional languages, and that the lesson of specialising the formalism to work smoothly with
a single language will be equally valid for other languages, functional or otherwise.

7 Acknowledgements

We are grateful to Andrei Arusoaie and Dorel Lucanu for providing us with the pre-release copy of the
SCC extension of K used to perform some of the verifications reported here.

This work has received funding from the European Institute of Innovation and Technology (EIT).
This European body receives support from the Horizon 2020 research and innovation programme.

This work has been supported by the European Union Framework 7 under contract no. 288570.
ParaPhrase: Parallel Patterns for Adaptive Heterogeneous Multicore Systems.

References

[1] Andrei Arusoaie, Dorel Lucanu & Vlad Rusu (2015): A Generic Framework for Symbolic Execution: Theory
and Applications. Research Report RR-8189, Inria. Available at https://hal.inria.fr/hal-00766220.

[2] István Bozó, Viktória Fördős, Dániel Horpácsi, Zoltán Horváth, Tamás Kozsik, Judit Kőszegi & Melinda
Tóth (2015): TFP ’14, chapter Refactorings to Enable Parallelization, pp. 104–121. Springer International
Publishing, Cham, DOI: 10.1007/978-3-319-14675-1_7. Available at http://dx.doi.org/10.1007/
978-3-319-14675-1_7.

[3] I. Bozó, D. Horpácsi, Z. Horváth, R. Kitlei, J. Kőszegi, Tejfel. M. & M Tóth (2011): RefactorErl - Source
Code Analysis and Refactoring in Erlang. In: Proceedings of SPLST’11, Tallin, Estonia, pp. 138–148.

[4] Martin Bravenboer, Arthur van Dam, Karina Olmos & Eelco Visser (2005): Program Transformation with
Scoped Dynamic Rewrite Rules. Fundam. Inf. 69(1-2), pp. 123–178. Available at http://dl.acm.org/
citation.cfm?id=1227247.1227253.

[5] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas & Eelco Visser (2008): Stratego/XT 0.17. A lan-
guage and toolset for program transformation. Science of Computer Programming 72(1–2), pp. 52 – 70, DOI:
http://dx.doi.org/10.1016/j.scico.2007.11.003. Available at http://www.sciencedirect.
com/science/article/pii/S0167642308000452.

[6] Francesco Cesarini & Simon Thompson (2009): Erlang Programming. O’Reilly Media, Inc.

[7] Stefan Ciobâca (2014): Reducing Partial Equivalence to Partial Correctness. In: Proceedings of SYNASC
’14, IEEE, pp. 164–171.

[8] Torbjörn Ekman, Max Schäfer & Mathieu Verbaere (2008): Refactoring is Not (Yet) About Transformation.
In: Proceedings of WRT ’08, ACM, New York, NY, USA, pp. 5:1–5:4, DOI: 10.1145/1636642.1636647.
Available at http://doi.acm.org/10.1145/1636642.1636647.

[9] Lars-Ake Fredlund (2001): A Framework for Reasoning about Erlang code. Ph.D. thesis, Royal Institute of
Technology, Stockholm, Sweden.

[10] K Framework. http://www.kframework.org. Accessed January, 2015.

[11] Sean Leather, Johan Jeuring, Andres Löh & Bram Schuur (2014): Type-changing Rewriting and Semantics-
preserving Transformation. In: Proceedings of PEPM ’14, ACM, New York, NY, USA, pp. 109–120, DOI:
10.1145/2543728.2543734. Available at http://doi.acm.org/10.1145/2543728.2543734.

https://hal.inria.fr/hal-00766220
http://dx.doi.org/10.1007/978-3-319-14675-1_7
http://dx.doi.org/10.1007/978-3-319-14675-1_7
http://dx.doi.org/10.1007/978-3-319-14675-1_7
http://dl.acm.org/citation.cfm?id=1227247.1227253
http://dl.acm.org/citation.cfm?id=1227247.1227253
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.11.003
http://www.sciencedirect.com/science/article/pii/S0167642308000452
http://www.sciencedirect.com/science/article/pii/S0167642308000452
http://dx.doi.org/10.1145/1636642.1636647
http://doi.acm.org/10.1145/1636642.1636647
http://www.kframework.org
http://dx.doi.org/10.1145/2543728.2543734
http://doi.acm.org/10.1145/2543728.2543734

D. Horpácsi, J. Kőszegi & S. Thompson 21

[12] Huiqing Li & Simon Thompson (2012): A Domain-specific Language for Scripting Refactorings in Er-
lang. In: Proceedings of FASE’12, Springer-Verlag, Berlin, Heidelberg, pp. 501–515, DOI: 10.1007/

978-3-642-28872-2_34. Available at http://dx.doi.org/10.1007/978-3-642-28872-2_34.
[13] Tom Mens, Niels Van Eetvelde, Serge Demeyer & Dirk Janssens (2005): Formalizing refactorings with graph

transformations. Journal of Software Maintenance and Evolution 17(4), pp. 247–276, DOI: 10.1002/smr.
316. Available at http://dx.doi.org/10.1002/smr.316.

[14] Karina Olmos & Eelco Visser (2005): Composing Source-to-Source Data-Flow Transformations with Rewrit-
ing Strategies and Dependent Dynamic Rewrite Rules. In Rastislav Bodik, editor: Compiler Construction,
LNCS 3443, Springer Berlin Heidelberg, pp. 204–220, DOI: 10.1007/978-3-540-31985-6_14.

[15] William F. Opdyke (1992): Refactoring Object-oriented Frameworks. Ph.D. thesis, University of Illinois.
[16] Yoann Padioleau, René Rydhof Hansen, Julia L. Lawall & Gilles Muller (2006): Semantic Patches for

Documenting and Automating Collateral Evolutions in Linux Device Drivers. In: Proceedings of the 3rd
Workshop on Programming Languages and Operating Systems: Linguistic Support for Modern Operating
Systems, PLOS ’06, ACM, New York, NY, USA, p. 10, DOI: 10.1145/1215995.1216005. Available at
http://doi.acm.org/10.1145/1215995.1216005.

[17] Donald Bradley Roberts (1999): Practical Analysis for Refactoring. Ph.D. thesis, University of Illinois.
[18] G. Rosu, A. Stefanescu, S. Ciobâca & B. M. Moore (2013): One-Path Reachability Logic. In: Logic in

Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium on, pp. 358–367, DOI: 10.1109/

LICS.2013.42.
[19] Max Schaefer & Oege de Moor (2010): Specifying and Implementing Refactorings. SIGPLAN Not.

45(10), pp. 286–301, DOI: 10.1145/1932682.1869485. Available at http://doi.acm.org/10.1145/
1932682.1869485.

[20] Andrei Ştefănescu, Ştefan Ciobâcă, Radu Mereuta, Brandon M. Moore, Traian Florin Şerbănută & Grigore
Roşu (2014): All-Path Reachability Logic. In: Proceedings of RTA-TLCA’14, LNCS 8560, Springer, pp.
425–440, DOI: http://dx.doi.org/10.1007/978-3-319-08918-8_29.

[21] Nik Sultana & Simon Thompson (2008): Mechanical Verification of Refactorings. In: Proceedings of PEPM
’08, ACM, New York, NY, USA, pp. 51–60, DOI: 10.1145/1328408.1328417. Available at http://doi.
acm.org/10.1145/1328408.1328417.

[22] Melinda Tóth & István Bozó (2012): Static Analysis of Complex Software Systems Implemented in Er-
lang. In: Proceedings of CEFP’11, Springer-Verlag, Berlin, Heidelberg, pp. 440–498, DOI: 10.1007/

978-3-642-32096-5_9. Available at http://dx.doi.org/10.1007/978-3-642-32096-5_9.
[23] Mathieu Verbaere, Ran Ettinger & Oege de Moor (2006): JunGL: A Scripting Language for Refactoring. In:

Proceedings of ICSE ’06, ACM, New York, NY, USA, pp. 172–181, DOI: 10.1145/1134285.1134311.
Available at http://doi.acm.org/10.1145/1134285.1134311.

http://dx.doi.org/10.1007/978-3-642-28872-2_34
http://dx.doi.org/10.1007/978-3-642-28872-2_34
http://dx.doi.org/10.1007/978-3-642-28872-2_34
http://dx.doi.org/10.1002/smr.316
http://dx.doi.org/10.1002/smr.316
http://dx.doi.org/10.1002/smr.316
http://dx.doi.org/10.1007/978-3-540-31985-6_14
http://dx.doi.org/10.1145/1215995.1216005
http://doi.acm.org/10.1145/1215995.1216005
http://dx.doi.org/10.1109/LICS.2013.42
http://dx.doi.org/10.1109/LICS.2013.42
http://dx.doi.org/10.1145/1932682.1869485
http://doi.acm.org/10.1145/1932682.1869485
http://doi.acm.org/10.1145/1932682.1869485
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-08918-8_29
http://dx.doi.org/10.1145/1328408.1328417
http://doi.acm.org/10.1145/1328408.1328417
http://doi.acm.org/10.1145/1328408.1328417
http://dx.doi.org/10.1007/978-3-642-32096-5_9
http://dx.doi.org/10.1007/978-3-642-32096-5_9
http://dx.doi.org/10.1007/978-3-642-32096-5_9
http://dx.doi.org/10.1145/1134285.1134311
http://doi.acm.org/10.1145/1134285.1134311

	Introduction
	Background
	Refactoring Definitions
	Rationale
	Defining Prime Refactorings
	Local Refactorings
	Extensive Refactorings
	High-level Refactoring Schemes

	Defining Composite Refactorings

	Verification
	From Reachability Logic to Equivalence Checking
	Local Refactorings
	Refactoring Schemes
	Function signature refactoring.
	Dataflow refactoring.

	Concrete Application of Refactorings
	Semi-automatic Method

	Related Work
	Conclusion
	Acknowledgements

