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1 Introduction

In this paper, we study the role of interpolant tree automata during refinement in Horn clause verification.
Recently, Kafle et al. [27] described an abstraction-refinement scheme for Horn clause verification. In
their approach refinement is based on operations over finite tree automata (FTA), where a single spurious
counterexample is removed in each iteration of the abstraction-refinement loop. In contrast to [27], we
generalise a spurious counterexample corresponding to any infeasible trace by interpolant tree automaton
possibly recognizing infinite number of spurious counterexamples and eliminating them in one go of
the abstraction-refinement loop. Following [33], we construct an interpolant tree automaton from an
infeasible trace. Finally, we use them in Horn clause verification and present some experimental results
on some software verification benchmarks. The results show some improvements over the previous
approaches. We make the following contributions in this paper:

1. we combine abstract interpretation over the domain of convex polyhedra with interpolant tree
automata in an abstraction-refinement scheme for Horn clause verification (Section 4);

2. we evaluate the effectiveness of this combination on a set of software verification benchmarks
(Section 4.1).

2 Preliminaries

A constrained Horn clause (CHC) is a first order predicate logic formula of the form ∀(φ ∧ p1(X1)∧
. . .∧ pk(Xk)→ p(X)) (k ≥ 0), where Xi,X are (possibly empty) vectors of distinct variables, φ is a first
order logic formula (constraint) with respect to some background theory expressed in terms of Xi, X ;
p1, . . . , pk, p are predicate symbols, p(X) is the head of the clause and φ ∧ p1(X1)∧ . . .∧ pk(Xk) is the
body. There is a distinguished predicate symbol false which is interpreted as false. We call clauses
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c1. fib(A, B):- A>=0, A=<1, B=1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

Figure 1: Example CHCs Fib: it defines a Fibonacci function.

whose head is f alse integrity constraints. Following the notation used in constraint logic programming
a clause is usually written as H ← φ ,B1, . . . ,Bk where H,B1, ...,Bk stand for atomic formulas (atoms)
p(X), p1(X1), ..., pk(Xk). The unifiers are encoded with constraints. A program is a set of CHCs, normally
represented by P.

An interpretation of a set of CHCs P is represented as a set of constrained facts of the form A← φ

where A is an atom and φ is a satisfiable formula (not necessarily satisfiable) with respect to some
background theory. An interpretation that makes each clause in P true is called a model of P. In some
works [6, 28], a model is also called a solution and we use them interchangeably in this paper.
Definition 1 (Horn clause verification problem) Given a set of CHCs P with integrity constraint(s),
the CHC verification problem is to check whether there exists a model of P.

An example set of CHCs, encoding the Fibonacci function is shown in Figure 1. Since its derivations
are trees, it serves as an interesting example from the point of view of interpolant tree automata.

Horn clause derivations can be captured using a formal representation known as finite tree automaton.
Definition 2 (Finite tree automaton) An FTA A is a tuple (Q,Q f ,Σ,∆), where Q is a finite set of states,
Q f ⊆Q is a set of final states, Σ is a set of function symbols, and ∆ is a set of transitions. We assume that
Q and Σ are disjoint.

We assume that each CHC is associated with an identifier. An identifier is a function symbol
whose arity is the same as the number of atoms in the clause body. For instance a clause p(X)←
φ , p1(X1), . . . , pk(Xk) is assigned a function symbol with arity k. Given a set of CHCs and a set Σ of
ranked function symbols, we define idP : P→ Σ to be a mapping from clauses to function symbols. An
identifier could be the name of a clause, but we want the name to be ranked so that we can get more
information regarding the clause.
Definition 3 (Trace FTA for a set of CHCs) Let P be a set of CHCs. Define the trace FTA for P as
AP = (Q,Q f ,Σ,∆) where
• Q = {p | p is a predicate symbol o f P}∪{false};
• Q f = {false};
• Σ is a set of function symbols;

• ∆ = {c j(p1, . . . , pk) → p | where c j ∈ Σ, p(X) ← φ , p1(X1), . . . , pk(Xk) ∈ P, c j = idP(p(X) ←
φ , p1(X1), . . . , pk(Xk))}.

The elements of L (AP) are called trace-terms or trace-trees or simply traces for P.
Example 1 Let P be the set of CHCs in Figure 1. Let idP map the clauses to c1,c2,c3 respectively. Then
AP = (Q,Q f ,Σ,∆) where:

Q = {fib,false}
Q f = {false}
Σ = {c1,c2,c3}
∆ = {c1→ fib, c2(fib,fib)→ fib,

c3(fib)→ false}
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Definition 4 (FTA for a trace-term) Let P be a set of CHCs and let t ∈L (AP). There exists an FTA
At such that L (At) = {t}. We illustrate the construction via an example. We assume that each node in
the trace-tree is labelled by an identifier.

Example 2 (Trace FTA) Consider the FTA in Example 1. Let t = c3(c2(c1,c1)) ∈ AP. Each ei (i =
1..4) represents an identifier in the trace-tree. Then At = (Q,Q f ,Σ,∆) is defined as:

Q = {e1,e2,e3,e4}
Q f = {e1}
Σ = {c1,c2,c3,c4}
∆ = {c1→ e3, c1→ e4, c2(e3,e4)→ e2,

c3(e2)→ e1}
and Σ is the same as in AP.

For each trace-term there exists a corresponding derivation tree called an AND-tree, which is unique
up to variable renaming [32, 12].
Definition 5 (AND-tree for a trace term) Let P be a set of CHCs and let t ∈ L (AP). An AND-tree
corresponding to t, denote by T (t), is the following labelled tree, where each node of T (t) is labelled by
a clause, an atom and a formula.

1. For each sub-term c j(t1, . . . , tk) of t there is a corresponding node in T (t) labelled by (a renamed
variant of) some clause p(X)← φ , p1(X1), . . . , pk(Xk) such that c j = idP(p(X)← φ , p1(X1), . . . , pk(Xk)),
an atom p(X) and a formula φ ; the node’s children (if k > 0) are the nodes corresponding to
t1, . . . , tk and are labelled by p1(X1), . . . , pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a clause, the local
variables in the clause body do not occur outside the subtree rooted at n.

We assume that each node in T (t) is uniquely identified by a number (Id). We omit t from T (t) when it is
clear from the context.

The trace-tree c3(c2(c1,c1)) and its corresponding AND-tree is shown in Figure 2.

Figure 2: (a) left: a trace-term of Fib and (b) right: its AND-tree, where
φ1 ≡ A> 5∧B< A;φ2 ≡ A> 1∧A2= A−2∧A1= A−1∧B= B1+B2;φ3 ≡ A2≥ 0∧
A2≤ 1∧B2= 1;φ4 ≡ A1≥ 0∧A1≤ 1∧B1= 1. The node labels are node Id, clause, atom and
formula respectively.

The formula represented by an AND-tree T , represented by F(T ) is
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1. φ , if T is a single leaf node labelled by the clause of form H← φ ; or

2. φ ∧
∧

i=1..n(F(Ti)) if the root node of T is labelled by the clause H← φ ,B1, . . . ,Bn and has subtrees
T1, . . . ,Tn.

The formula of the AND-tree in Figure 2(b) is
F(t) = A> 5∧B< A∧A> 1∧A2= A−2∧A1= A−1∧B= B1+B2

∧A2≤ 1∧B2= 1∧A1≥ 0∧A1≤ 1∧B1= 1.
We say that an AND-tree T is satisfiable or feasible if F(T ) is satisfiable, otherwise unsatisfiable or

infeasible. Similarly, we say a trace-term is satisfiable (unsatisfiable) iff its corresponding AND-tree is
satisfiable (unsatisfiable). The trace t in Figure 2 is unsatisfiable since F(t) is unsatisfiable.

From this point on, a trace represents a trace of L (AP) and an AND-tree (derivation tree) represents
a tree corresponding to a trace of L (AP) unless otherwise stated.

3 Interpolant tree automata

In this section, we describe a procedure for computing an interpolant tree automaton from an infeasible
trace-tree. The automaton serves as a generalisation of the trace-tree; and we apply this construction in
Horn clause verification.

Definition 6 ((Craig) Interpolant [9]) Given two formulas φ1,φ2 such that φ1 ∧ φ2 is unsatisfiable, a
(Craig) interpolant is a formula I with (1) φ1 → I; (2) I ∧ φ2 → false; and (3) vars(I) ⊆ vars(φ1) ∩
vars(φ2). An interpolant of φ1 and φ2 is represented by I(φ1,φ2).

The existence of an interpolant implies that φ1∧φ2 is unsatisfiable [29]. Similarly, If the background
theory underlying the CHCs P admits (Craig) interpolation [9], then every infeasible derivation using the
clauses in P has an interpolant [28].

Example 3 (Interpolant example) Let φ1 ≡ A2≤ 1∧A > 1∧A2 = A−2∧A1 = A−1∧B = B1+B2
and φ2 ≡ A > 5∧B < A such that φ1 ∧ φ2 is unsatisfiable. Since the formula I ≡ A ≤ 3 fulfills all the
conditions of the definition 6, it is an interpolant of φ1 and φ2.

Given a node i in an AND-tree T , we call φi the formula label of node i, F(Ti) the formula of the
sub-tree rooted at node i and G(Ti), the formula F(T ) except the formula F(Ti), which is defined as
follows:

1. true, if T is a single leaf node labelled by the clause of form H← φ and the node id i; or

2. φ , if T is a single leaf node labelled by the clause of form H← φ and the node id different from i;
or

3. true, if the root node of T is labelled by the clause H← φ ,B1, . . . ,Bn and the node id i; or

4. φ ∧
∧

l=1..n(G(Tl)) if the root node of T is labelled by the clause H ← φ ,B1, . . . ,Bn and the node
id different from i and has subtrees T1, . . . ,Tn.

Definition 7 (Tree Interpolant of an AND-tree) Let T be an infeasible AND-tree corresponding to a
trace-term of P. A tree interpolant T I(T ) for T is a tree constructed as follows:

1. The root node i of T I(T ) is labelled by i, the atom of the node i of T and the formula false;

2. Each leaf node i of T I(T ) is labelled by i, the atom of the node i of T and by I(F(Ti),G(Ti));
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Figure 3: (a) left: AND tree of Figure 2 and (b) right: its tree interpolant . The node labels are node
Id, atom and interpolant respectively. Let I j represents an interpolant of the node j. Then we have:
I1 ≡ false; I4 ≡ I(φ4,φ3∧φ1∧φ2) ; I3 ≡ I(φ3,φ1∧φ2∧ I4); I2 ≡ I(I3∧ I4∧φ2,φ1).

3. Let i be any other node of T . We define F1 as (φi∧
∧n

k=1 Ik) where
∧n

k=1 Ik (n≥ 1) is the conjunction
of formulas representing the interpolants of the children of the node i in T I(T ). Then the node i of
T I(T ) is labelled by i, the atom of the node i of T and the formula I(F1,G(Ti)).

The tree interpolant corresponding to AND tree in Figure 2(b) is shown in Figure 3(b).
Since there is a one-one correspondence between an AND-tree and a trace-term, we can define a tree

interpolant for a trace-term as follows:

Definition 8 (Tree Interpolant of a trace-term) Given an infeasible trace-term t, its tree interpolant,
represented as T I(t), is the tree interpolant of its corresponding AND-tree.

Definition 9 (Interpolant mapping ΠT I) Given a tree interpolant T I, ΠT I is a mapping from the labels
atom and Id of each node in T I to the label formula such that ΠT I(A j) = φ where A is the atom label
and φ is the formula label at node j.

For our example program ΠT I is the following:

{ f alse1 7→ false, f ib2(A,B) 7→ A≤ 3, f ib3(A2,B2) 7→ A≤ 1, f ib4(A1,B1) 7→ true}

Property 1 (Tree interpolant property) Let T I(T ) be a tree interpolant for some infeasible AND-tree
T corresponding to a trace-term of P. Then

1. ΠT I(ri) = false where r is the atom label of the root of T I(T );

2. for each node j with children j0, ..., jn (n≥ 0) the following property holds:
(
∧n

k=0 ΠT I(A jk))∧φ j→ΠT I(A j) where φ j is the formula label of the node j of T ;

3. for each node j the following property holds:
vars(ΠT I(A j)) ⊆ (vars(F(Tj))∩ vars(G(Tj))), where the formula F(Tj) and G(Tj) corresponds
to T .

Now we define an injective mapping σ : Atom× J→ FTA States where σ maps an atom occurring
in a set of CHCs and an index to a FTA state.
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Definition 10 (Interpolant tree automaton for Horn clauses [33]) Let P be a set of CHCs, t ∈L (AP)
be any infeasible trace-term and T I(t) be a tree interpolant of t. Define ρ : PredJ→ Pred which maps a
predicate name with superscript to a predicate name of P. Then the interpolant automaton of t is defined
as an FTA A I

t =(Q,Q f ,Σ,∆) such that

• Q = {σ(A, i) : A is the atom label o f the node i o f T I(t)};

• F = {σ(A, i) : A is the atom label o f the root o f T I(t)};

• Σ is a set of function symbols of P;

• ∆= {c(p j1
1 , . . . , p jk

k )→ p j | cl = p(X)← φ , p1(X1), . . . , pk(Xk)∈P, c= idP(cl), ρ(pi)= p , ρ(pi
m)=

pm f or m = 1..k and ΠT I(p j)(X)← φ ,ΠT I(p j1
1 )(X1), . . . ,ΠT I(p jk

k )(Xk)}.

Example 4 (Interpolant automata for c3(c2(c1,c1)))

Q = {fib2,fib3,fib4,error}
Q f = {error}
Σ = {c1,c2,c3}
∆ = {c1→ fib2,c1→ fib3,c1→ fib4,

c2(fib
2,fib2)→ fib4,c2(fib

2,fib3)→ fib2,
c2(fib

2,fib3)→ fib4,c2(fib
2,fib4)→ fib4,

c2(fib
3,fib2)→ fib2,c2(fib

3,fib2)→ fib4,
c2(fib

3,fib3)→ fib2,c2(fib
3,fib3)→ fib4,

c2(fib
3,fib4)→ fib2,c2(fib

3,fib4)→ fib4,
c2(fib

4,fib2)→ fib4,c2(fib
4,fib3)→ fib2,

c2(fib
4,fib3)→ fib4,c2(fib

4,fib4)→ fib4,
c3(fib

2)→ error,c3(fib
3)→ error}

The construction described in 10 recognizes only infeasible traces terms of P which is stated in the
Theorem 1.

Theorem 1 (Soundness) Let P be a set of CHCs and t ∈L (AP) be any infeasible trace-term. Then the
interpolant automaton A I

t recognises only infeasible trace-terms of P.

Definition 11 (Conjunctive interpolant mapping) Given an interpolant mapping ΠT I of a tree inter-
polant T I, we define a conjunctive interpolant mapping for an atom label A of any node in T I, represented
as Πc

T I(A), to be the following formula Πc
T I(A) =

∧
j ΠT I(A j), where j ranges over the nodes of T I. It

is the conjunction of interpolants of all the nodes of T I with atom label A. The conjunctive interpolant
mapping of T I is represented is Πc

T I = {Πc
T I(A) | A is the atom label o f T I}.

It is desirable that the interpolant tree automata of a trace t ∈L (AP) recognize as many infeasible
traces as possible, in an ideal situation, all infeasible traces of P. This is possible under the condition
described in Theorem 2.

Theorem 2 (Model vs. Interpolant Automata ) Let t ∈L (AP) be any infeasible trace-term. If Πc
T I(t)

is a model of P, then the interpolant automaton of t recognises all infeasible trace-terms of P.
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4 Application to Horn clause verification

An abstraction-refinement scheme for Horn clause verification is described in [27] which is depicted in
Figure 4. In this, a set of CHCs P is analysed using the techniques of abstract interpretation over the
domain of convex polyhedra which produces an over-approximation M of the minimal model of P. The
set of traces used during the analysis can be captured by an FTA AP. This automaton recognizes all
trace-terms of P except some infeasible ones. Some of the infeasible trace-terms are removed because of
abstract interpretation. P is solved or has model if false 6∈M. If this is not the case, a trace-term t ∈AP

is selected and checked for feasibility. If the answer is positive, P has no model, that is, P is unsolved.
Otherwise t is considered spurious which drives the refinement process. The refinement in [27] consists
of constructing an automaton A ′

P which recognizes all traces in L (AP)\L (At) and generating a refined
set of clauses from P and A ′

P. The automata difference construction refines a set of traces (abstraction),
which induces refinement in the original program. The refined program is again fed to the abstract
interpreter. This process continues until the problem is solved, unsolved or the resources are exhausted.
We call this approach Refinement of Abstraction in Horn clauses using Finite Tree automata, RAHFT in
short. This approach [27] lacks generalisation of spurious counterexamples during refinement. But in
our current approach, we generalise a spurious counterexample through the use of interpolant automata.
Section 3 describes on how to compute an interpolant automaton (adapted from [33]) corresponding to
an infeasible Horn clause derivation. We first construct an interpolant automaton viz. A I

t corresponding
to t. In Figure 4, this is shown by a blue line (in the middle) connecting the Abstraction and Refinement
boxes. The refinement proceeds as in RAHFT with the only difference that A ′

P now recognizes all traces
in L (AP)\L (A I

t ). We call this approach Refinement of Abstraction in Horn clauses using Interpolant
Tree automata, RAHIT in short.

FTAM – Finite tree automata manipulation CG – Clauses generation

Abstraction Refinement

CHC P

AI
AP

M

solved
no

unsolved

yes and feasible

AP

A I
t

At

CHC P1

CHC P

f alse ∈M?
t ∈L (AP)

FTAM
A ′

P
CG

Figure 4: Abstraction-refinement scheme in Horn clause verification [27]. M is an approximation pro-
duced as a result of abstract interpretation. A ′

P recognizes all traces in L (AP)\L (At).

Next we briefly describe on how to generate an abstract FTA corresponding to a set of clauses P
which captures all trace-terms of P except some infeasible ones using abstract interpretation and show
some experimental results using our current approach on some software verification benchmarks.

In Figure 5, we present an algorithm, which constructs an abstract FTA corresponding to P from
an approximation of the minimal model of P. Note that the FTA produced by the algorithm is same as
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procedure ABSTRACT AUTOMATA CONSTRUCTION USING CONVEX POLYHE-
DRAL APPROXIMATION FOR HORN CLAUSES(Input: CHCs P and polyhedral ap-
proximation M, Output: AP = (Q,Q f ,Σ,∆))

∆← /0;
Q← /0;
Σ←{idP(cl) : cl ∈ P}

for all c : p(X)← φ , p1(X1) . . . pk(Xk)(k ≥ 0) ∈ P do
. where c = idP(p(X)← φ , p1(X1), . . . , pk(Xk)

if SAT(φ ∧ γ(p1(X1),M)∧ . . .∧ γ(p1(X1),M)) then
∆← ∆∪{c(p1, . . . , pk)→ p}
Q← Q∪{p, p1, . . . pk}

end if
end for
Q← Q∪{false}
Q f ←{false}
return AP = (Q,Q f ,Σ,∆)

end procedure

Figure 5: Generation of abstract automata using Convex Polyhedral Analysis. Let γ : A ×M →F be
an injective mapping. γ(A,M) returns a formula φ ∈F corresponding to an atom A ∈A in M ∈M .

AP (definition 3) except that transitions corresponding to clauses whose bodies are not satisfiable in the
convex polyhedral approximation are omitted, since they cannot contribute to feasible derivations. We
refer to [21] for details on how to construct an over-approximation of the minimal model of P using
abstract interpretation over the domain of convex polyhedra. An over-approximation of a set of CHCs
is represented as a set of constrained facts of the form A← φ (one for each A) where A is an atomic
formula p(Z1, . . . ,Zn) where Z1, . . . ,Zn are distinct variables and φ is a formula over Z1, . . . ,Zn with
respect to some background theory.

Given an over-approximation M, the algorithm in Figure 5 generates an abstract FTA for P. The
idea is as follows: for each of the clause of the form c : p(X)← φ , p1(X1) . . . pk(Xk)(k ≥ 0) ∈ P, if the
conjunction of over-approximation of the body atoms p1(X1) . . . pk(Xk) under M is satisfiable (see if ...
then condition in Figure 5), then we add the corresponding transition {c(p1, . . . , pk)→ p} to the set of
transitions, and the corresponding set of states {p, p1, . . . pk} to the set of states. The alphabet Σ is the set
of clause identifiers of P and the set of final states is the singleton set {false}.

Lemma 1 (Soundness of Algorithm 5) Let P be a set of clauses and M be an over-approximation of
the minimal model of P, then the abstract FTA generated for P using the procedure described in Figure
5 recognizes all feasible trace-terms of P.

Example 5 (Abstract FTA produced as a result of abstract interpretation) For our example program
in Figure 1, the convex polyhedral abstraction produces an over-approximation M which is represented
as follows in textual form: {fib(A,B):-[A>=0,B>=1,-A+B>=0]}. Since there is no constrained fact
for false in M, this is a model for the example program. Our abstraction-refinement approach terminates
at this point. However for the purpose of example, we show the abstract FTA constructed for the example
program using M. Since the bodies of each clauses except the integrity constraint are satisfied under M,
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the abstract FTA is same as the one depicted in Example 1 except the transition c3(fib)→ false, which
is removed because of abstract interpretation.

4.1 Experiments

For our experiment, we have collected a set of 68 programs from different sources:

1. a set of 30 programs from SV-COMP’15 repository1 [3] (recursive category) and translated them to
Horn clauses using inter-procedural encoding of SeaHorn [17, 16] producing (mostly) non-linear
Horn clauses;

2. a set of 38 problems taken from the source repository2, compiled by the authors of the tool Eldar-
ica3. This set consists of problems, among others, from the NECLA static analysis suite, from the
paper [25]. These tasks are also considered in [33] and are over integer linear arithmetic.

The goal of this experiment is to study the role of interpolant tree automata in Horn clause veri-
fication following the scheme described in [27]. For this purpose, we made the following comparison
between the tools:

1. compare RAHIT with RAHFT, which compares the effect of removing a set of traces rather than a
single trace; and

2. compare RAHIT with the trace-abstraction tool [33] (TAR from now on), which differs in using
polyhedral approximation rather than property-based abstraction, and in explicitly removing the
traces by program transformation.

The results are summarized in Table 1.

Implementation: Most of the tools in our tool-chain depicted in Figure 4 are implemented in Ciao
Prolog [22] except the one for determinisation of FTA, which is implemented in Java following the
algorithm described in [13]. Our tool-chain obtained by combining various tools using a shell script
serves as a proof of concept which is not optimised at all. For handling constraints, we use the Parma
polyhedra library [1] and the Yices SMT solver [11] over linear real arithmetic. The construction of
tree interpolation uses constrained based algorithm presented in [30] for computing interpolant of two
formulas.

Description: In Table 1, Program represents a verification task, Time (secs) RAHFT and Time (secs)
RAHIT - respectively represent the time in seconds taken by the the tool RAHFT and RAHIT respectively
for solving a given task. Similarly, the number of abstraction-refinement iteration needed in these cases
to solve a task are represented by #Itr. RAHFT and #Itr. RAHIT. Similarly, Time (secs) TAR and #Itr.
TAR represent the time taken and the number of iterations by the tool TAR. The experiments were run on
a MAC computer running OS X on 2.3 GHz Intel core i7 processor and 8 GB memory.

1http://sv-comp.sosy-lab.org/2015/benchmarks.php
2https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA/Eldarica
3http://lara.epfl.ch/w/eldarica



10 Interpolant tree automata and its application in Horn clause verification

Discussion: The comparison between RAHFT and RAHIT would reflect purely the role of interpolant
tree automata in Horn clause verification (Table 1) since the only difference between them is the refine-
ment part using (interpolant) tree automata. The results show that RAHIT is more effective in practice
than its counterpart RAHFT. This is justified by the number of tasks 61/68 solved by RAHIT using fewer
iterations compared to RAHFT, which only solves 56/68 tasks. This is due to the generalisation of a spu-
rious counterexample during refinement, which also captures other infeasible traces. Since these traces
can be removed in the same iteration, it (possibly) reduces the number of refinements, however the solv-
ing time goes up because of the cost of computing an interpolant automaton. It is not always the case
that RAHIT takes less iterations for a task (for example Addition03 false-unreach) than RAHFT. This is
because the restructuring of the program obtained as a result of removing a set of traces may or may
not favor polyhedral approximation. It is still not clear to us how to produce a right restructuring which
favors polyhedral approximation. RAHIT times out on cggmp2005 true-unreach due to the cost of
generating interpolant automata whereas RAHFT solves it in 5 iterations. In average, RAHIT needs 2.08
iterations and 11.40 seconds time to solve a task whereas RAHIT needs 2.32 iterations and 10.55 seconds.

The use of interpolant tree automata for trace generalisation and the tree automata based operations
for trace-refinement are same in both RAHIT and TAR. Since TAR is not publicly available, we chose
the same set of benchmarks (tasks 31-68 in Table 1) used by TAR for the purpose of comparison and
presented the results (the results corresponding to TAR are taken from [33]). RAHIT solves more than
half of the problems only with abstract interpretation over the domain of convex polyhedra without
needing any refinement, which indicates its power. RAHIT solves 33/38 problems where as TAR solves
28/38 problems. In average, RAHIT takes less time than TAR. In many cases TAR solves a task faster
than RAHIT, however it spends much longer time in some tasks which gives high average. In average
(for tasks 31-68 in Table 1), RAHIT needs less than one iteration and 8.78 seconds to solve a task
whereas TAR needs almost 38 iterations and 9.52 seconds. We made an interesting observation with the
problems boustrophedon.c, boustrophedon expansed.c and cousot.correct. If we replace greater than >
and lesser than < constraints with greater equal ≥ and lesser equal ≤ for integer problems (for example
replace X > Y with X ≥ Y + 1), then we can solve the above mentioned problems only with abstract
interpretation without refinement which were unsolved before the transformation. This points out that
if we use our underlying solver over linear integer arithmetic then the results may differ. But RAHIT
times out for mergesort.error whereas TAR solves it in a single iteration. This shows that the choice of a
spurious counterexample and the quality of interpolant generated from it for generalisation have effects
on verification.

5 Related work

Horn Clauses, as an intermediate language, have become a popular formalism for verification [5, 14],
attracting both the logic programming and software verification communities [4]. As a result of these,
several verification techniques and tools have been developed for CHCs, among others, [16, 15, 26, 10,
27, 24, 23]. To the best of our knowledge, the use of automata based approach for abstraction-refinement
of Horn clauses is relatively new [27, 33], though the original framework proposed for imperative pro-
grams goes back to [18, 19].

The work described in [27] uses FTA based approach for refining abstract interpretation over the
domain of convex polyhedra [7], which is similar in essence to trace abstraction [18, 20, 33] with the
following differences. In [27], there is an interaction between state abstraction by abstract interpretation
[8] and trace abstraction by FTA but there is no generalisation of spurious counterexamples. On one hand,
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Nr. Program Time (secs) RAHFT #Itr. RAHFT Time (secs) RAHIT #Itr. RAHIT Time (secs) TAR [33] #Itr. TAR
1 Primes true-unreach 16 4 4 1 NA NA
2 sum 10x0 false-unreach 5 2 12 2 NA NA
3 afterrec false-unreach 2 1 3 1 NA NA
4 id o3 false-unreach 6 3 7 3 NA NA
5 cggmp2005 variant true-unreach 2 1 3 1 NA NA
6 recHanoi01 true-unreach 8 3 10 3 NA NA
7 cggmp2005b true-unreach 3 1 3 1 NA NA
8 gcd02 true-unreach 11 4 11 4 NA NA
9 diamond false-unreach 3 1 3 1 NA NA
10 Addition03 false-unreach 6 2 13 5 NA NA
11 diamond true-unreach-call1 2 1 3 1 NA NA
12 id i5 o5 false-unreach 19 8 12 5 NA NA
13 diamond true-unreach-call2 6 1 5 1 NA NA
14 cggmp2005 true-unreach 10 5 TO - NA NA
15 gsv2008 true-unreach 3 1 3 1 NA NA
16 Fibonacci01 true-unreach 52 10 29 6 NA NA
17 id b3 o2 false-unreach 5 2 3 1 NA NA
18 Ackermann02 false-unreach 68 17 25 7 NA NA
19 mcmillan2006 true-unreach 2 1 3 1 NA NA
20 ddlm2013 true-unreach TO - 17 7 NA NA
21 sum 2x3 false-unreach 2 1 3 1 NA NA
22 fibo 5 true-unreach TO - 77 7 NA NA
23 Addition01 true-unreach 6 2 5 2 NA NA
24 Ackermann04 true-unreach TO - 59 8 NA NA
25 Addition02 false-unreach 4 2 5 2 NA NA
26 id i10 o10 false-unreach TO - 39 10 NA NA
27 gcd01 true-unreach 9 4 5 2 NA NA
28 id o10 false-unreach TO - 38 10 NA NA
29 gcnr2008 false-unreach 13 4 6 2 NA NA
30 Fibonacci04 false-unreach TO - 91 11 NA NA
31 addition 1 0 1 0 0.26 3
32 anubhav.correct 2 0 2 0 1.72 9
33 bfprt 1 0 1 0 0.43 6
34 binarysearch 2 0 2 0 0.36 5
35 blast.correct 5 1 11 1 8.93 65
36 boustrophedon.c TO - TO - 53.65 193
37 boustrophedon expansed.c TO - TO - 69.06 340
38 buildheap 44 9 44 9 TO -
39 copy1.error 11 0 11 0 12.79 19
40 countZero 1 0 1 0 TO -
41 cousot.correct TO - TO - TO -
42 gopan.c 3 0 3 0 TO -
43 halbwachs.c TO - TO - TO -
44 identity 1 0 1 0 7.67 34
45 inf1.error 4 1 9 1 0.51 6
46 inf6.correct 5 1 5 1 1.96 33
47 insdel.error 2 0 2 0 0.17 1
48 listcounter.correct 1 0 1 0 TO
49 listcounter.error 9 1 9 1 0.21 1
50 listreversal.correct 4 0 4 0 35.79 149
51 listreversal.error 9 0 9 0 0.3 1
52 loop.error 3 0 3 0 3 3
53 loop1.error 8 0 8 0 10.87 19
54 mc91.pl 139 24 7 3 0.57 7
55 merge 2 0 2 0 0.86 10
56 mergesort.error TO - TO - 0.32 1
57 palindrome 2 0 2 0 0.61 6
58 parity 3 1 4 1 0.62 7
59 rate limiter.c 3 0 3 0 49.96 130
60 remainder 1 0 1 0 1.5 17
61 running 3 1 8 2 0.4 5
62 scan.error 3 0 3 0 TO -
63 string concat.error 6 0 6 0 TO -
64 string concat1.error TO - TO - TO -
65 string copy.error 3 0 3 0 TO -
66 substring.error 5 0 5 0 0.55 1
67 substring1.error 15 0 15 0 2.84 5
68 triple 27 10 13 1 0.86 6

average (over 68) 10.55 2.32 11.40 2.08 - -
average (over 38) - - 8.78 0.93 9.52 38.64
solved/total 56/68 - 61/68, 33/38 - 28/38

Table 1: Experiments on software verification problems. In the table “TO” means time out which is set
for five minutes, “-” means not relevant and “NA” means not available.
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[18, 20, 33] use trace-abstraction with the generalisation of spurious counterexamples using interpolant
automata and may diverge from the solution due to the lack of right generalisation. On the other hand,
abstract interpretation [8] is one of the most promising techniques for verification which is scalable but
suffers from false alarms. When combined with refinement false alarms can be minimized. Our current
work takes the best of both of these approaches.

6 Conclusion

We used the notion of interpolant tree automata for generalising a spurious counterexample in an
abstraction-refinement scheme for Horn clause verification. Experimental results on a set of software
verification benchmarks using this scheme demonstrated their usefulness in practice; showing improve-
ments over the previous approaches. In the future, we plan to evaluate its effectiveness in a larger set
of benchmarks, compare our approach with other similar approaches and improve the implementation
aspects of the tool-chain.
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