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We present a new method for inferring complexity properties for a class of programs in the form of
flowcharts annotated with loop information. Specifically, our method can (soundly and completely)
decide if computed values are polynomially bounded as a function of the input; and similarly for
the running time. Such complexity properties are undecidable for a Turing-complete programming
language, and a common work-around in program analysis is to settle for sound but incomplete
solutions. In contrast, we consider a class of programs that is Turing-incomplete, but strong enough
to include several challenges for this kind of analysis. For a related language that has well-structured
syntax, similar to Meyer and Ritchie’s LOOP programs, the problem has been previously proved to be
decidable. The analysis relied on the compositionality of programs, hence the challenge in obtaining
similar results for flowchart programs with arbitrary control-flow graphs. Our answer to the challenge
is twofold: first, we propose a class of loop-annotated flowcharts, which is more general than the class
of flowcharts that directly represent structured programs; secondly, we present a technique to reuse
the ideas from the work on structured programs and apply them to such flowcharts. The technique
is inspired by the classic translation of non-deterministic automata to regular expressions (which are
compositional), but we obviate the exponential cost of constructing such an expression, obtaining a
polynomial-time analysis. These ideas may well be applicable to other analysis problems.
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1 Introduction

Devising algorithms that deduce complexity properties of a given program is a classic problem of pro-
gram analysis [33, 30, 23], and has received considerable attention in recent years. Ideally, a static-
analysis tool will warn us in compilation-time whenever our program fails a complexity specification.
For instance, we could be warned of algorithms whose running time is not polynomially bounded, or
algorithms that compute super-polynomially large values.

While practical tools typically attempt to infer explicit bounds, as a theoretical problem it is suf-
ficiently challenging to look at the classification problem—polynomial or not. Since deciding such a
property for all programs in a Turing-complete language is impossible, there are two ways to approach
the problem. There is much work (as the above-cited) which targets a Turing-complete language and
settles for an incomplete solution. Other works investigate the decidability of the problem in restricted
languages. In [6], the problem of polynomial boundedness is shown decidable (moreover, in PTIME) for
a “core” imperative language LBJK with a bounded loop command1. The language of [6] only has numeric
variables, with the basic operations of addition and multiplication. Figure 1 shows the syntax of the lan-
guage; its semantics is almost self-explanatory. Importantly, the language has non-deterministic choice
instead of conditionals, and bounded loops (“do at most n times”) which are also non-deterministic.

1Since we consider explicitly-bounded loops, the problem of classifying the time complexity of the program is equivalent
to the problem of classifying growth rates of variables.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Flowchart Programs

X,Y ∈ Variable ::= X1 | X2 | X3 | . . . | Xn

e ∈ Expression ::= X | X + Y | X * Y

C ∈ Command ::= skip | X:=e | C1;C2 | loop X {C} | choose C1 or C2

Figure 1: Syntax of the BJK08 structured core language.

The design of this core language is influenced by the approach “abstract and conquer.” This means
that while we are solving a subproblem, this could be used also as a partial solution to the “real” problem
(handling a realistic language) by using it as a back end, assuming that some front end analyser translates
source programs, in a conservative fashion, into core programs. Abstraction (e.g., making branches non-
deterministic by simply hiding the conditionals) is clearly doable, while sophisticated static analysis
technology may allow the construction of more precise front ends. Importantly, current static analysis
techniques allow for computing loop bounds [1, 2, 17] and thus transforming an arbitrary loop into our
bounded-loop form. These intentions motivate the choice of including non-determinism in our core
language.

Another reason for making the core language non-deterministic is, frankly, that otherwise we couldn’t
solve the problem. In fact, including precise test as conditionals (say, testing for equality of variables) is
easily seen to lead to undecidability, and [7] shows that having a deterministic loop (with precise iteration
count, rather than just a bound) breaks decidability, too.

To carry this research forward, we ask: in what ways can the core language be extended, while
maintaining decidability? In this paper we consider an extension that involves the control structure of
the program: we extend from nested loop programs to unstructured (“flowchart”) programs. The details
of this extension are motivated, as we will explain, by looking at the way certain complexity analysers
for realistic programs work, trying to break the process into a front-end and a back-end, and make the
back-end decision problem solvable. Theoretically, the result is a polynomial-time decidability result
for a language FC that strictly extends LBJK. Our analysis algorithm for the FC language is obtained
by a technique that is more general than the particular application. The technique arose from trying to
adapt the analysis of [6]. The challenge was that the analysis was compositional and essentially based
on the well-nested structure of the core language. How can such an analysis be performed on arbitrary
control-flow graphs? Our solution is guided by the standard transformation of a finite automaton (NFA)
to a regular expression. A regular expression is a sort of well-structured program. In order to make this as
explicit as possible, we define a programming language which is written in a syntax similar to regexp’s.
However, semantically it is an extension of LBJK (thus, as a by-product, we find a structured language with
precisely the expressivity of FC). We show that by composing the NFA-to-regexp transformation with an
analysis of the structured language (a natural extension of the analysis of [6]) we obtain an analyzer for
FC that runs in polynomial time (somewhat surprising, as the general construction of regular expressions
is exponential-time). We believe that many static analysis algorithms that process general control-flow
graphs may implicitly use the same approach, but that we are first to make it explicit.

The rest of this paper is structured as follows: first we motivate, then formally define, our concept
of loop-annotated flowcharts. Then, we define the regexp-like language, called Loop-Annotated Regular
Expressions, and explain how we translate flowcharts to LARE. Finally we give the algorithm that ana-
lyzes LARE. Some of the more technical definitions and proofs, and in particular, the correctness proofs
of the analysis algorithm, which are long and complex, are deferred to appendices.
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2 Loop-Annotated Flowchart Programs: Motivation

The algorithm presented in this paper analyzes programs in a language which we call Loop-Annotated
Flowchart Programs. This language has the important features that (i) program form is an arbitrary
control-flow graph with instructions on arcs; (ii) variables hold non-negative integers2 (iii) the instruction
set is highly limited; (iv) information about loop bounds is supplied as “annotations,” presented in the
next section. The design results from two goals, on one hand we are looking for a decidable case; on
the other hand we are motivated by looking at tools that analyze real-world programs. We next explain
this motivation informally, focusing on the tool [2]. The tool obtains a program as a control-flow graph
where arcs carry both guards and updates; for example, the C program shown in Figure 2 (a)3 might be
represented as in Figure 2 (b).

The tool uses a linear-programming based algorithm to find ranking functions for well-nested sub-
sets of the graph. A ranking function is a combination of the program variables that is non-increasing
throughout the subgraph while on certain arcs it is non-negative and strictly decreasing. This implies a
bound on the number of times one can take such transitions (let us say that the transition counts towards
this bound). If there remains a strongly-connected subgraph for which an iteration bound is not implied,
a ranking function for the subgraph is necessary. For example, in Figure 2, the algorithm of [2] reports
the function i+n, holding throughout the strongly-connected component of the graph, and strictly de-
creasing on the bottom arc from (3) to (2); this implies an upper bound of 2n (the initial value of this
function) on the number of times one can take this arc while staying within the component. The algo-
rithm next excludes this arc and function) on the number of times one can take this arc while staying
within the component. The algorithm next excludes this arc and finds the ranking function i+ j for
the remaining cycle (note that j would have sufficed; ranking functions are not unique). The second
function implies the bound i+n on the number of iterations through that cycle (in terms of the values
of variables on entrance to this loop). Thus, the analysis decomposes the program into two nested loops
(Figure 2 (c)), also establishing, for each loop, an iteration bound in terms of variables that do not change
in the loop. Note that this decomposition is not evident from the program text (where there is just one
loop construct), and is not unique, in general. Moreover, it depends on semantic analysis and cannot be
determined just from the graph structure. Our focus in this work is on the analysis of a program that
is already decomposed and annotated with bounds. Thus the above discussion should be understood
purely as motivation; we do not deal with the art of abstracting real programs. For simplicity, in our
input language, loop bounds will always be specified as a single variable. This is not a restriction, since
if we are considering a given program where a loop bound is a combination of variables (as above) we
can generate an auxiliary variable to store the loop bound.

Another motivation to handle flowcharts is the usage of abstraction refinement techniques, where the
control-flow graph representing a program is expanded to represent additional properties of the current
or past states [29]. Even when starting from a structured program, the resulting control-flow graph might
not correspond to a structured program. As an example, Pineles [28] extends the language treated here
with reset assignments X := 0. We note that in [4], such assignments were added to LBJK, and were
handled by a non-trivial addition to the analysis algorithm. In contradiction, [28] handles the extension
by program transformation: we refine the control-flow graph with respect to the history of resets. This
allows for eliminating the resets, so the growth-rate analysis does not have to handle them. However, it
also changes the graph structure so it no longer corresponds to the original, structured program.

2Extension to allow negative integers is easy but will cloud the presentation.
3This program appears in the test suite of Alias et al. but originates from [13].
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assume (n >=0);

i = n;

j = n;

while (i > 0) {

if (j>0) {

j = j-1;

} else {

j = n;

i = i-1;

}

}

(a) (b) (c)

Figure 2: Illustration of the decomposition of a flowchart (coming from a C program) into nested loops.
Note that this is not a program in our language but in the intermediate language of [2], which is, hopefully,
self-explanatory. We only present it to illustrate, informally, the considerations in Section 2.

3 Loop-Annotated Flowchart Programs

3.1 Program form and informal semantics

Data Our programs operate on a finite (per program) set of variables, each holding a single number.
The variables are typically denoted by X1, . . . ,Xn, and a state of the program’s storage is thus a vector
(x1, . . . ,xn). It is most convenient to assume that the only type of data is nonnegative integers. More
generality is possible, e.g., considering signed integers. This will be left out of the present paper.

Instructions Atomic commands, or instructions, modify variables. A core instruction set for our work,
corresponding to the instructions of LBJK, consists of the instructions

X := Y, X := Y + Z, X := Y * Z, skip, X := **

where X, Y and Z are variable names. The skip instruction is a no-op and could be replaced with
X := X. The last form means “set X to an unknown value,” which of course will have no upper bound in
terms of the input; it is included because it is useful in abstracting realistic programs. We remark that,
with an eye to abstraction of real programs, we may also use the weak assignment forms

X :≤ Y, X :≤ Y + Z, X :≤ Y * Z,
which set X to a non-determined value between 0 and the right-hand side. As a consequence of al-
lowing only monotone arithmetic operations, these assignment forms are interchangeable with ordinary
assignments for the purpose of our analysis.

Our analysis will be presented in terms of this core instruction set. This means that it can be easily
extended to handle assignments where the r.h.s. is any monotone polynomial in the program variables.

Definition 3.1. A flowchart-program p consists of:

• A finite set of variables X1, . . . ,Xn.

• A control-flow graph (CFG) which is a directed graph Gp = (Locp,Arcp). The nodes Locp are
called locations.

• A map Inst() from CFG arcs to instructions, where the set of possible instructions remains to be
specified.
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• A non-empty set of entry nodes (nodes with no predecessors), Pentry, and a non-empty set of
terminal nodes (nodes with no successors), Pterm.

• A loop structure, defined next.

Definition 3.2. A loop structure for program p is a set Lp of subsets of Arcp, called loops, which form
a rooted tree, called the nesting tree. Loops nested in L ∈Lp are disjoint, strict subsets of L. The root
is the whole CFG. With each non-root L ∈Lp is associated a variable, called its bound; technically, we
denote by Bound(L) this variable’s index. In addition, a “cut set” Cutset(L) is provided, which consists
of arcs that belong to L but not to its descendants. In a valid program, if a ∈ L, instruction Inst(a) must
not modify XBound(L). In addition, every cycle C in the CFG must include an arc from the cutset of the
lowest loop L containining C.

For intuition, we might think of cut-set instructions as maintaining a counter which ensures that
flow passes through such arcs at most XBound(L) times. We make the assumption—for convenience—that
cut-set arcs do not perform any computation on the variables; i.e., their only role is the loop control.
We shall use the symbol ¢ to mark these arcs in a diagram. Note that the notion of “a loop” is very
flexible. It is a set of arcs, in particular is not required to be strongly connected (though this would be the
natural situation). One benefit of this flexibility is that this loop information can persist through program
transformations.

Semantics of programs is mostly straight-forward. The loop information is interpreted as follows:
once a loop L is entered, at most B cutset arcs of L may be traversed before the loop is exited, where B is
the value of the loop bound. For full details of the definition, see Appendix A.

3.2 Growth-rate analysis

The polynomial-bound analysis problem is to find, for a given program, which output variables are
bounded by a polynomial in the initial values of all variables. This is the problem we focus on; the
following variants can be easily reduced to it: (1) feasibility—find whether all the values generated
throughout any computation (rather than outputs only) are polynomially bounded in the initial values.
(2) Polynomial running time—find whether the worst-case time complexity of the program (i.e., number
of steps) is polynomial.

3.3 Flowcharts versus structured programs

Flowcharts are more expressive than structured programs over the same instruction set, since they can
have complex “non-structured” control flow; we now propose a formal argument to support this claim.
It is natural to say that a flowchart F is strongly equivalent to a program P if they have the same set of
traces, a trace being the sequence of atomic instructions performed in a computation. More precisely,
let TF(~x) (respectively TP(~x)) be the set of traces of the flowchart (resp. structured program) when
the initial state is ~x; say that F and P are equivalent if TF(~x) = TP(~x) for all ~x. This clearly implies⋃
~x TF(~x) =

⋃
~x TP(~x), an equality that we call weak equivalence. This last set is a regular language

over the alphabet of instructions. Note that by, basically, by ignoring the semantics of instructions and
considering them as abstract symbols, a flowchart is reduced to a finite automaton (NFA). A structured
program can be easily seen to correspond to a regular expression. By [15], a flowchart that includes, in

the scope of a single loop, the 2-node digraph •
%% ** •

yy
jj (labeled with distinct instructions) has

the property that any weakly-equivalent structured program has star-height of 2 at least (i.e., it includes
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the pattern (...(...)∗...)∗ ). Now, the flowchart program, as it has a single loop, has linear running time,
whereas the structured program will have a worst-case running time quadratic at least. Hence, they
cannot be strongly equivalent. In other words, such an annotated flowchart has no equivalent structured
program (though both have polynomial running time; indeed, a FC-to-LBJK transformation that preserves
polynomiality follows from our results, but it has another drawback—an exponential blow-up in size).

4 Loop-Annotated Regular Expression Programs

In this section we introduce Loop-Annotated Regular Expression Programs, LARE, which is a program
form designed to exploit the analogy of structured programs to regular expressions and flowcharts to
automata. This language is based on regular expressions but it represents programs in a superset of LBJK,
and is endowed with computational semantics. However, occasionally we do refer to the standard se-
mantics of a regular expression as the set of strings that match it. To emphasize the former interpretation,
we may use the term “program” instead of “expression”.

Definition 4.1. The class of Loop-Annotated Regular-Expression Programs LARE is constructed as
follows. First, atomic expressions are:

1. A set Σ of basic instructions, which serve as symbols of the expressions.

2. An additional, special symbol, ¢, called the cut-arc symbol.

3. The empty-string constant ε .

Secondly, expressions (atomic or not) can be combined in the following ways

1. Concatenation: EF where E, F are LARE expressions.

2. Alternation (or non-deterministic choice), E|F where E, F are expressions.

3. Iteration: E∗ where E is an expression.

4. Loop annotation: if E is an expression and X` a variable, we can form the expression [`E], provided
that all instructions in E preserve the value of X`. The pair of syntactic elements [`. . . ] is called
loop brackets.

The loop annotation is a no-op when we consider the set of strings generated by an expression, but has
a significance to its computational semantics, like the annotations of our flowcharts. In a well formed
expression, every iteration construct E∗ must appear inside some pair of loop brackets. Moreover, every
string that matches E must include a ¢. E.g., (a(¢b)∗d)∗ is invalid, because the expression (a(¢b)∗d)
generates the ¢-free string ad. An expression [`E], where E is star-free, is valid but pointless.

Parentheses will be used to indicate expression structure, as usual (also using standard precedence
and associativity for operators).

Semantically, an LARE program executes a sequence of instructions that matches the regular expres-
sion (ignoring the loop annotations). However, the sequence also has to satisfy the loop bounds, in the
sense that the number of ¢’s encountered in a subsequence generated by expression [`E], discounting
those in the scope of any inner pair of brackets, is bounded by X`.

The above definition makes possible the correspondence between LARE and flowcharts. Here, one
translation should be obvious, and we state it without details:

THEOREM 4.2. A LARE program can be represented as a semantically-equivalent loop-annotated
flowchart over the same set of instructions.
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loop X4 {
X3:=X1 +X2;

X2:=X3
}

[4(¢( X3 := X1 +X2 X2 := X3 ) )∗]

loop X4 {
choose X2:=X1+X4
or X2:=X2+X4;

}

[4(¢( X2 := X1 +X4 | X2 := X2 +X4 ) )∗]

Figure 3: program and LARE examples.

It should also be pretty obvious that the structured core language LBJK can be embedded in LARE—
this is really just a change of syntax, where, importantly, a loop loop X` {C} becomes [`(¢E)∗], where
E represents C. Hence, in this translation, the iteration operator (star), cut-arc symbol and loop brack-
ets always work together. Generally, this is not required in LARE, allowing more flexibility which is
required for their equivalence to flowcharts.

Example Figure 3 shows two LBJK programs and their expression in LARE form. The placement of
the ¢ is somewhat arbitrary, as in LBJK there is no explicit maintenance of a loop counter.

5 Translating flowchart programs into LARE

We now arrive at the translation of a flowchart program into LARE, which was the point of introducing it.
This translation is not difficult, but since our analysis rests on it, we give it in some detail. Our algorithm
is based on the classical Rip algorithm to transform an NFA into a regular expression ([32, Sec. 1.3]),
which we extend in order to handle loops correctly. We present the algorithm in some stages, bottom-up,
starting with a part which is just as in the NFA algorithm.

Notation: the algorithm manipulates a graph which has LARE expressions on each arc (this gen-
eralizes an ordinary flowchart, where each arc carries a single instruction, in the same way the GNFA
generalizes an NFA in [32]). Denote by Rexe the expression on the arc e (we may write uv for e when
there is a single arc from u to v).

5.1 Ripping a node

By “ripping” a node we remove it from the graph, but retain the semantics of the graph.

Algorithm RIPONE(g,v):
accepts a control-flow graph g annotated with LARE expressions, and an internal node v (i.e., v has both
in-going and out-going arcs).

1. Merge parallel arcs in g, if any, by combining the expressions with the alternation operator.

2. For every path of length two, uvw, add an arc e′ from u to w and let Rexe′ be Rexuv(Rexvv)
∗Rexvw

(if v has no self-loop, we get RexuvRexvw).

3. Remove v from the graph.

5.2 Contracting a loop

Next we define a procedure to contract a subgraph g, representing a leaf loop (that has no child loops),
by ripping its internal nodes. We assume that the graph has some entry nodes (with no in-going arcs)
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and some exit nodes (no out-going arcs) and that these are the only nodes that connect to the rest of the
program. The effect of the contraction procedure below is that only entry and exit nodes remain; and
arcs connect entries to exits.

Algorithm CONTRACTSIMPLE(g, l), where g is a control-flow graph and l, an index of a loop variable:

1. For every node v which is not an entry or exit node in g, perform RIPONE(g,v).

2. For every arc e in this bipartite graph, replace its label Rexe by [l Rexe ].

The full CONTRACT procedure handles a loop in the context of a larger flowchart. Since loops may
in general, share nodes, we first isolate the loop from the rest of the graph and ensure that it has well-
defined entry and exit nodes, by creating new nodes for this purpose, which we call virtual entry/exit
nodes. More precisely, a boundary node of a subgraph is a node which is incident to arcs outside the
subgraph as well as within. If v is such a node, it is replaced (in the most general case) by four nodes: vL
for paths that stay outside the loop, vin to enter the loop, vout to exit it, and vL for paths that go through
v but stay inside the loop (this may be best understood with a drawing—see Figure 4). Note that we are
not handling nested loops yet.

Algorithm CONTRACT(L)

1. For every boundary node v of L, create new nodes vL, vL, vin and vout . Any arc incident to v is
replaced by two arcs as shown in Figure 4).

2. Let g′ consist of the subgraph spanned by internal (non-boundary) nodes of L, plus, for a boundary
node v, the nodes vin,vout ,vL.

3. Perform CONTRACTSIMPLE(g′,XBound(L)). This removes all the internal nodes of L, leaving only
the entry and exit nodes.

This procedure is illustrated in Figure 5.

5.3 Converting a whole program

The algorithm to convert a whole flowchart program to LARE now follows easily. The input to the
algorithm is a flowchart as defined in Section 3; the argument to the next procedure indicates a loop in
the loop tree, and we shall call it with the root loop to convert the entire flowchart.

Algorithm CONVERTFC(L)

1. Perform recursive calls to CONVERTFC for all the children of L. In these recursive calls, any
virtual nodes created will be shared (i.e., if v is a specific node of L and it has incident arcs in two
subloops, there will still be only one node vin and only one vout . This subtlety arises because our
loops are defined to be edge-disjoint but not vertex-disjoint).

2. Perform CONTRACTSIMPLE(L,XBound(L)).

As an exception, for the root loop we simplify CONTRACT by not creating virtual nodes. This works
because it has entry nodes and exit nodes by definition, and we do not want to alter their identity.
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d =⇒

A

vL
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vin

vL
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Dvout
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d

Figure 4: Transforming a boundary node v. The curly arcs belong to the loop under consideration. Arc
labels a,b, . . . represent instructions.
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b
¢
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f

A BL

Bin

Bout

Cin

Cout

CL F

a

b

a

b

e

f

[1(¢d)∗]

[1¢(d¢)∗]

[1d (¢d)∗]

[1(d¢)∗]

e

f

Figure 5: A flowchart with a loop {B,C} (above) and the result of contracting this loop. We assume that
the bounding variable for the loop is X1. Note that nodes BL, CL are not present since contraction of the
loop has removed them.

6 The Growth-Rate Analysis Algorithms

In this section we reach the main theoretical contribution: a polynomial-time decision procedure for
polynomial growth rates. We implement the idea of extending results from well-structured programs to
arbitrary control-flow graphs by exploiting the translation of graphs to regular expressions. First, we
extend the analysis of [6] to LARE (the extension is easy, but for the sake of completeness we give the
algorithm in a self-contained form. This version is based on [4] rather than [6]).

For the rest of this article, let I= {1, . . . ,n} be the set of variable indices.

6.1 Analysis of LARE commands

We define an interpretation of LARE commands over the domain of dependency sets. By applying
this interpretation to a command, we find how the magnitude of the values of each at the end of the
computation depends on the initial values.

6.2 Dependencies and dependency sets

Definition 6.1. The set of dependency types is D= {1,1+,2,3}, with order 1 < 1+ < 2 < 3, and maxi-
mum operator t. We write x' 1 for x ∈ {1,1+}.
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The following verbal descriptions may give intuition to the meaning of dependency types:
1 =identity dependency,
1+ =additive dependency,
2 =multiplicative dependency,
3 =exponential dependency (more precisely, super-polynomial).

Definition 6.2. The set of dependencies is F, which is the union of two sets:

(1) The set of unary dependencies, isomorphic to I×D× I. The notation for an element is i δ−→ j.
(2) The set of binary dependencies, isomorphic to I× I× I× I, notated i

j ⇒
k
` .

Intuitively, binary dependencies represent conjunctions of unary dependencies. The fact that it is
necessary and sufficient to handle conjunctions of pairs of unary dependencies (but not of larger sets) is
a non-trivial property which is key to this algorithm’s correctness.
Definition 6.3. A dependency set is a subset of F, with the proviso that a binary dependency i

j ⇒
k
` may

appear in the set only if it also includes i α−→ k and j
β−→ `, for some α,β ' 1, and i 6= j∨ k 6= `.

The function COMPLETE adds to a dependency set all binary dependencies that can be added accord-
ing to the above rule. That is:

For a dependency set S, we let COMPLETE(S) def
= S∪{ i

j ⇒
k
` | i α−→ k ∈ S ∧ j

β−→ ` ∈ S, α,β ' 1}. We

then define the identity dependency set is Idep
def
= COMPLETE( {i 1−→ i | i ∈ I} ).

6.3 Interpretation of LARE

To give a dependency-set semantics to an LARE program e, which we denote by [[e]]dep, we give a
semantics to every symbol and every operation.

6.3.1 Symbols

The symbols of LARE are atomic instructions, which update the state, and are supposed to be associated
with some dependency sets. In order to justify our claim to a complete solution for the core instruction
set, we give the dependency sets corresponding to these assignment instructions:

[[skip ]]dep = Idep

[[Xr := Xs ]]dep = COMPLETE( {s 1−→ r}∪{i 1−→ i | i 6= r} )

[[Xr := Xs +Xt ]]dep = COMPLETE( {s 1+−→ r, t 1+−→ r}∪{i 1−→ i | i 6= r} ) when s 6= t

[[Xr := Xs +Xs ]]dep = COMPLETE( {s 2−→ r}∪{i 1−→ i | i 6= r})

[[Xr := Xs ∗Xt ]]dep = COMPLETE( {s 2−→ r, t 2−→ r}∪{i 1−→ i | i 6= r} )

The atomic command X := ** (set to unbounded value) is not directly representable. We handle it
as X := HUGE where HUGE is a special variable.

6.3.2 LARE Operators

Alternation is interpreted by set union:

[[E|F ]]dep = [[E]]dep∪ [[F ]]dep
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Concatenation is interpreted as a component-wise product of sets:

[[EF ]]dep = [[E]]dep · [[F ]]dep

where the product of dependencies is given by

Definition 6.4 (dependency composition).

(i α−→ j) · ( j
β−→ k) = i

αtβ−−→ k

(i α−→ j) · ( j
j ⇒

k
k′ ) = ( i

i ⇒
k
k′ ), provided α ' 1

( i
i′ ⇒

j
j ) · ( j α−→ k) = ( i

i′ ⇒
k
k ), provided α ' 1

( i
i′ ⇒

j
j′ ) · (

j
j′ ⇒

k
k′ ) =


i
i′ ⇒

k
k′ , if i 6= i′ or k 6= k′

i 2−→ k, if i = i′ and k = k′

The last sub-case in the definition handles commands whose effect is to double a variable’s value by
making two copies of it and adding them together.

Iteration To define the interpretation of the star operator, we first define LFP(S) to be the least fixpoint
(under set containment) of the function f (X) = Idep∪X ∪ (X ·S) .

Finally, we define the so-called loop correction operator, which represents the implicit dependence
of variables updated in a loop on the loop bound. First, we define it for single dependencies:

(1)

LC`(i
1+−→ i) = {` 2−→ i}

LC`(i
2−→ i) = {` 3−→ i}

LC`(∆) = {} for all other ∆ ∈ F,

and then extend it to sets by LC`(S) = S∪
⋃

D∈S LC`(D) (note that we define it so that LC`(S)⊇ S). Using
these definitions, let F = LFP([[E]]dep), then

[[E∗]]dep = LC`(F) ·F

where ` is the index of the bounding variable for the closest enclosing bracket construct.
In this analysis, the brackets themselves do not imply any computation in the abstract semantics.

Their role is just to determine ` in the above rule for loop correction.

EXAMPLE 6.5. Consider the loop in Figure 3 (left). It can be expressed as an LARE command of the
form [4(¢E)∗], where E represents the loop body. The set of unary dependencies for E is

1 1−→ 1, 1 1+−→ 3, 2 1+−→ 3, 1 1+−→ 2, 2 1+−→ 2, 4 1−→ 4

Binary dependencies include all pairs of the above. Now consider the product [[E]]dep · [[E]]dep; by the

last case in Definition 6.4, it includes 1 2−→ 2. This demonstrates the role of this definition in expressing
the fact that when the loop is iterated, a multiple of the initial value of X1 is accumulated in X2. Now,
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consider the dependency 2 1+−→ 2, which may be interpreted as stating that X2 is an accumulator. Since this
dependency exists in the closure F = LFP([[E]]dep), this will produce an additional dependency when we

apply the LC operator, specifically, it generates 4 2−→ 2. Indeed, X2 accumulates a multiple of X4 (in fact,
X4 ·X1; but we do not record the precise expression). Finally, when computing LC4(F) ·F , we compose

4 2−→ 2 with 2 1+−→ 3 obtaining 4 2−→ 3, which reflects the flow of the product X4 · X1 to X3; similarly, we
obtain 1 2−→ 3.

EXAMPLE 6.6. To illustrate the role of binary dependencies, let us compare the loop just analyzed with

Figure 3 (right). Here, in the loop’s body, the unary dependencies 1 1+−→ 2 and 2 1+−→ 2 exist, but not their
conjunction (because they happen in alternative execution paths), and the result 1 2−→ 2 does not arise.

6.4 Correctness and complexity

Our correctness claims state that the results of this analysis provide, for every variable, either a poly-
nomial upper bound or an exponential lower bound. This assumes the core instruction set; if additional
instructions are added, one of these two soundness claim may be compromised, depending on how
closely the instruction is modeled by dependency sets (note that, interestingly, our result means that the
core instruction set cannot express a computation with super-polynomial-sub-exponential growth rate).

THEOREM 6.7. Let E be a well-formed LARE command, using the core instruction set. If i 3−→ j ∈
[[E]]dep for some i, then the values that X j can take at the end of an execution of E grow, in the worst case,
at least exponentially in terms of the initial variable values. If there is no such dependency, a polynomial
bound on the final value of X j exists.

The proof of this theorem follows by showing that the dependency sets computed by our algorithm
are all sound with respect to two interpretations: a lower-bound interpretation and an upper-bound in-
terpretation. The interpretations are defined in terms of a trace semantics of the program. Due to the
complexity of the proofs, they are deferred to appendices.

As to complexity, we claim that a straight-forward implementation of the algorithm is polynomial-
time in the size of the program. The reason is that the size of a dependency set is polynomially bounded
in the number of variables; most operations on such sets (union, composition) are clearly polynomial-
time, the only non-trivial issue being the fixed-point computation for analyzing E∗. However, this is
polynomial time because the height of the semi-lattice of dependency sets is polynomial.

6.5 Analysis of flowchart programs

The principle of the algorithm is to convert the source program to LARE program and perform the above
analysis on the result. However, doing it in two steps, as just described, is inefficient, because converting
an NFA to a regular expression has exponential cost (in fact, it is known that the size of the regular
expression cannot be polynomially bounded).

To obtain an efficient algorithm we use the principle of function fusion [12], which basically means
to eliminate intermediate structures when composing functions. We fuse together the functions of con-
version from FC to LARE and analysis of the LARE program. The fused algorithm does not generate
an expression, but directly computes its abstract semantics. Hence, it works on a graph with dependency
sets as arc labels, rather than LARE expressions, and applies operations in the dependency-set domain
instead of syntactic operations on expressions.
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The fused algorithm runs in polynomial time. This follows by bounding the costs of the steps—
applications of abstract operators—and the number of such operations that occur (as they dominate the
running time). The complexity of abstract-domain operations is polynomial, see Section 6.4. For the
number of operations, we consider the size of the graph manipulated by the algorithm, which is polyno-
mial in the size of the original flowchart plus the number of additional nodes generated throughout the
algorithm, due to splitting of boundary nodes. Since such splitting only occurs once per boundary node
per loop, we have a polynomial bound in terms of the original graph.

7 Related Work

Growth-rate analysis is clearly related to the large body of work on static program analysis for discov-
ering resource consumption (in particular, running time). But since we focus on decidable cases, based
on weak languages, it is also related to work in Computability and Implicit Computational Complexity.
Thus, there is a lot of work that could be mentioned, and this section will only give a brief overview
and a few representative citations. However, we will dwell a bit longer on recent work that appears
interestingly related.

Meyer and Ritchie [25] introduced the class of loop programs, which only has definite, bounded
loops, so that some upper bound on their complexity can always be computed. Subsequent work [21,
22, 27, 19] attempted to analyze such programs more precisely; most of them proposed syntactic crite-
ria, or analysis algorithms, that are sufficient for ensuring that the program lies in a desired class (say,
polynomial-time programs), but are not both necessary and sufficient: thus, they do not address the
decidability question (the exception is [22] which has a decidability result for a “core” language). As
already mentioned, [6] introduced weak bounded loops (such that can exit early) into the loop language,
plus other simplifications, and obtained decidability of polynomial growth-rate. Regarding the necessity
of these simplifications, [7] showed undecidability for a language that can only do addition and definite
loops (that cannot exit early).

Results that characterize programs in a way sufficient (but not necessary) to have a certain complexity
resonate with the area called Implicit Computational Complexity (ICC), where one designs languages or
program classes for capturing a complexity class; this was the goal in [21]. Later the approach seems to
have focused on functional languages [3, 16, 18] and term rewriting systems [10].

Among related works in static program analysis, mostly pertinent are works directed at obtaining
symbolic, possibly asymptotic, complexity bounds for programs (in a high-level language or an interme-
diate language) under generic cost models (either unit cost or a more flexible, parametrized cost model).
A symbolic bound could be an expression like 2x+ 10, which may be more or less accurate, but to
answer a simple binary question like “is there a polynomial bound” is not considered sufficient in this
area (though one could argue that weeding out the super-polynomial programs should be of interest).
Characteristic to this area is the fact that decidable subproblems have rarely been studied.

Wegbreit [33] presented the first, and very influential, system for automatically analysing a program’s
complexity. His system analyzes first-order LISP programs; broadly speaking, the system transforms the
program into a set of recurrence equations for the complexity which have to be solved. Subsequent
works along similar lines included [23, 30] and more recently [9] for functional programs, [14] for logic
programs, and [1] for JBC.

Other techniques for resource/complexity analysis of realistic programming languages include ab-
stract interpretation (for functional programs: [26]), counter instrumentation [17] and type systems [20,
31].
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For programs where loops are not explicitly bounded, there is an obvious connection of finding
bounds to proving termination. So techniques of termination proofs have migrated into bound computa-
tion. One example is size-change termination [24, 5] used in [34], and another is linear and lexicographic
ranking functions [2]. This latter work, in particular, has inspired our notion of annotated flowcharts, as
described in Section 2. By examining [2] one can see that they implicitly construct the loop tree. How-
ever, once this is done, they can compute a global bound only from loop bounds which are linear in the
program’s input. Thus the method precludes programs where a loop bound is a non-linear function of the
input, possibly computed at a previous (or enclosing) loop. Recently, Brockschmidt et al. [11] presented
an analysis algorithm, called KoAT, that deals with this challenge by alternating bound analysis (based
on ranking functions) and size analysis (basically, analyzing the growth rate of variables); this solution
seems to be very interestingly related to our work. We note the following points:

• KoAT handles unannotated programs in a realistic language, and it searches for ranking functions
as part of the algorithm. It does not abstract programs into a weak programming language. No
decidability result is claimed, nor does this seem to be a goal.
• KoAT produces explicit bounds, taking constants into account, while we only considered the deci-

sion problem of polynomial growth rate, and the goal was to answer it precisely.
• Interestingly, [11] use a “data-flow graph” in their algorithm, while we used such a graph in the

proof (in fact, a similar graph was already used in [19]).

We can make a theoretically-meaningful comparison by focusing on the intersection of the two problems
solved: namely, we can look only at our restricted programming language (which can be easily compiled
into the input language of KoAT). For such programs we recognize all polynomial programs, while KoAT
does not (but it provides explicit bounds when it does). This suggests an idea for further research, namely
to make a closer comparison, and possibly merge the techniques.

8 Conclusion and Open Problems

This works addressed the decidability of a growth-rate property of programs, namely polynomial growth,
in a weak programming language. Extending previous work that addressed compositionally-structured
programs we have presented an analysis that works for flowchart programs with possibly complex
control-flow graphs, provided with hierarchical loop information. We propose this program form as
a way to extend program analysis algorithms from structured programs to less-structured ones. We prove
that the polynomial growth problem is PTIME-decidable for our class of flowchart programs, with a
restricted instruction set.

Unlike typical work in static analysis of programs (going by names such as resource analysis or
cost analysis), our algorithm does not output full expressions for the complexity bounds. In principle,
one could extend our algorithm to produce such bounds, since their calculation is implicit in the proof.
We opted not to do it, since we focus on the problem that we can solve completely. We acknowledge
that if we produce explicit polynomials, they will not be tight in general. It is an interesting problem,
theoretically, to research the problem of computing precise bounds. Another theoretical challenge is to
extend the language, e.g., precisely analyzing a larger set of instructions, or adding recursive procedures.
In practice, one works with full languages and settles for sound-but-incomplete solutions, but we hope
that our line of research can also contribute ideas to the more practical side of program analysis.
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A Formal Semantics of FC and LARE

This appendix gives additional details on the formal semantics of both FC programs and LARE programs.
This is required for justifying the correspondence of the two formalisms (which we just state: we skip the
correctness proof of the conversion algorithm, which is quite trite once the definitions are in place), and
for correctness proof of the growth-rate analysis for LARE (described in the following two appendices).

In both cases we state the semantics in terms of traces, sometimes called transition sequences. Those
for FC are “more concrete” in that they involve the nodes and arcs of the CFG.

A.1 Semantics of FC

Consider an FC program p with variables X1, . . . ,Xn, and control-flow graph Gp = (Locp,Arcp). For
a ∈ Arcp, write a : P→ Q if P is its source location and Q its target.

Definition A.1 (states). The set of states of p is Stp = Locp×Nn, such that s = (P,~x) indicates that the
program is at location P and~x specifies the values of the variables.

Definition A.2 (transitions). A transition is a pair of states, a source state s and a target state s′, related
by an instruction a of p. More precisely: a : P→ Q, s = (P,~x), s′ = (Q,~x′), and the relation of~x′ to~x is
determined by the semantics of Inst(a). When this holds, we write s a−→ s′ . The set of transitions is Tp.

Definition A.3 (transition sequence). A transition sequence (or trace) of p is a finite sequence of consec-
utive state transitions s̃ = s0

a1−→ s1 . . .st−1
at−→ st , where the instruction sequence a1a2 . . .at corresponds to

a CFG path. We refer to the arcs of the path as the arcs of s̃. The set of traces is denoted T +
p .

The definition of a transition sequence does not take the loop bounds into account. Thus it allows for
sequences which do not respect the bounds. To enforce the bounds, we introduce the next definition.

Definition A.4 (properly bounded). For a transition sequence s̃, let L ∈ Lp be the smallest loop that
includes all arcs of s̃ (the smallest enclosing loop). Let L◦ be L minus any nested loop. Then, s̃ is
properly bounded if the following conditions hold:

1. If L is not the root, let `= Bound(L); then the number of occurrences in s̃ of any ¢ arc from L◦ is
at most the value of x` (which does not change throughout s̃).

2. If L is the root, any a ∈ L◦ occurs at most once.
3. Every contiguous subsequence of s̃ is properly bounded.

We say the properly-bounded transition sequence is a run of loop L when L is the smallest enclosing
loop, as in the definition. We say that a transition sequence is complete if it starts with an entry node of
the flowchart and ends with an exit node.

We let T ⊕
p denote the set of properly-bounded transition sequences for p.

A.2 Semantics of LARE

In the semantics of LARE programs, states only describe the values of variables, but not a program
location (we may call them pure states when distinction is important). The set of pure states St is related
to Stp by an obvious abstraction relation. The evolution of such states is described by (pure) transitions:

Definition A.5 (pure transitions). A pure transition is a pair of states, a source state s and a target state
s′, related by an instruction a out of the vocabulary of atomic instructions. We write this as s a−→ s′ . We
presume that a transition correctly reflects the semantics of the atomic instruction.
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Definition A.6 (traces). A trace is a finite sequence of consecutive transitions s0
a0−→ s1 . . .st−1

at−1−−→ st .
The function ERASE(σ) removes the ¢ transitions from the trace σ , which is valid because this instruc-
tion does not change the state. We define ‖σ‖ to be the number of ¢’s in σ . The set of all traces is
denoted by T (the number of variables is tacitly assumed to be fixed). We write s σ; s′ to indicate that
s[0] = s and s[t] = s′.

Concatenation of finite traces λ ,ρ is written as λ #ρ and requires the final state of λ to be the initial
state of ρ . As an exceptional case we denote an empty sequence by ε and define ε #ρ = ρ #ε = ρ for any
ρ .

We define the trace semantics [[E]]ts of an expression E by structural induction. First, recall that each
symbol corresponds to a single instruction. For our core instruction set, semantics should be obvious, so
we skip the details. As for composite programs, we have

[[E|F ]]ts = [[E]]ts∪ [[F ]]ts
[[EF ]]ts = [[E]]ts # [[F ]]ts

where the last operation is, naturally, the component-wise concatenation of E and F :

L #R def
= {λ #ρ | λ ∈ L,ρ ∈ R,and λ #ρ is defined}.

Finally, for the looping constructs, we define [[E∗]]ts to be the reflexive-transitive closure of [[E]]ts
under the concatenation operation #, and

[[ [`E] ]]ts = {ERASE(σ) | σ ∈ [[E]]ts,‖σ‖ ≤ (σ [0])`} .

A.3 Correspondence of the semantics

Let p be a flowchart program. Let T +
p be the set of properly-bounded traces for p. As traces of LARE

do not involve locations, we define the function ADDLOC(S,P,Q) that inserts locations in traces s̃ ∈ S
so that the initial location is P, the final location is Q, and intermediate locations are the anonymous
location •. We also define a converse function ANONLOC(S,P,Q), where S is a set of flowchart traces,
which replaces the program locations in every s̃ ∈ S (except the first location and the last) by •, provided
the trace starts at P and ends at Q (otherwise, it is ignored). Then the correspondence of a LARE E to a
flowchart program p with entry point P and exit Q is expressed by the equation:

ANONLOC(T ⊕
p ,P,Q) = ADDLOC([[E]]ts,P,Q) .

B Preliminaries for the Proofs

This section includes some preliminaries for the correctness proof of the polynomial-bound analysis
(or rather proofs: in the next section, we prove that the analysis provides sound lower bounds on the
worst-case growth, and in the next, that it provides sound upper bounds). Thus we have a sound and
complete decision procedure for the problem of polynomial growth rate. The proofs in this paper are
short presentations, while full details can be found in the technical report [8].

Our analysis of LARE programs (Section 6) involves an operation (loop correction) that refers to
the bounding variable of the enclosing loop. In order to make the analysis fully compositional (which is
easier to reason about), we avoid the need to “peek” at the enclosing context by introducing a dummy
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variable for “iteration count,” denoted by xn+1 (we may call it also “the iteration variable”, note however
that it is just a place-holder, later to be replaced). We thus write IE = {1, . . . ,n+1} for the extended set
of variable indices and extend the notation for dependencies to IE . To the interpretation of all atomic
programs we add n+1 1−→ n+1, and the loop corrector uses xn+1 rather than x` (we thus have LCn+1 and
not LC`). The bracket construct now has a non-trivial interpretation, namely let SUBST(`,n+1,S) be the

result of substituting any dependency n+1 δ−→ j by `
δ−→ j in the dependency set S. Then

[[ [`E] ]]dep = SUBST(`,n+1, [[E]]dep) .

We further add to dependencies a property called color: black is the default color and red is special.

A dependency is given red if and only if it is of the form n+1 δ−→ i with i 6= n+1.
Some useful observations are: (i) In any derivation of dependencies for a LARE program, LCn+1(D)=

/0 whenever D is red. (ii) In any composition D1 ·D2 in a derivation, at most one of D1 and D2 is red.
(iii) The type of a red dependence is always 2 or 3. (iv) A black dependence having n+1 as source index
must be the identity dependence n+1 1−→ n+1.

Conventions and notations For~x = (x1, . . . ,xn), xmin is min{xi}. The relation~xw t means: xmin ≥ t.

C Lower-Bound Soundness

This section proves soundness of the lower-bound aspect of polynomial-bound analysis, leading to the
conclusion that x 3−→ y indicates certain exponential growth. This is the more intuitive interpretation of
our abstract domain: we interpret every dependency that we derive as an indication of something that can
happen. In a sense, the heart of the proof is the proper definition of the concrete meaning of the various
dependency types, i.e., when a dependency type is considered to hold in a certain set of execution traces.
Afterwards, it only rests to verify that they are computed correctly for every type of commands. This is
mostly technical and is not given in this paper in full detail.

We give the definition for unary dependencies (black and red) first and then the binary ones.

Definition C.1 (unary, black dependencies). Let ρ ⊂ T . We say that ρ satisfies the dependency D =

i δ−→ j written ρ |= D, if there are integer constants d, t,b, where d ≥ 0 and t ≥ b ≥ 0, as well as a real
constant c > 0, such that for all~xw t there is a sequence σ = (~x, . . . ,~y) ∈ ρ with ‖σ‖= b satisfying:

(M) ~yw xmin,
(SU1) δ ≥ 1 ⇒ y j ≥ xi,
(SU1+) δ = 1+ ⇒ y j ≥ xi + xmin,
(SU2) δ = 2 ⇒ y j ≥ 2(xi−d),
(SU3) δ = 3 ⇒ y j ≥ 2c(xi−d).

As an exception, dependencies n+1 1−→ n+1 are considered to be satisfied by any (non-empty) ρ .

Note that property (M), which also figures in the following definitions, means that no variable has
been reset to zero, for example. Indeed, handling such extensions requires a more difficult analysis [4].

Red dependencies express a condition similar to that of black dependencies of the same type, but they
express a dependence on the iteration count ‖σ‖ and they should be satisfied by infinite sets of traces
whose iteration counts form an arithmetic sequence.
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Definition C.2 (unary, red dependencies). Let ρ ⊂ T . We say that ρ satisfies the red dependency

D = n+1 δ−→ j written ρ |= D, if there are integer constants d, t,b, p, where p > 0, d ≥ 0, t ≥ b ≥ 0, as
well as a real constant c> 0, such that for all i≥ 0, for all~xw t+ ip, there is a sequence σ =(~x, . . . ,~y)∈ ρ ,
with ‖σ‖= b+ ip, satisfying:

(M) ~yw xmin,
(SU2) δ = 2 ⇒ y j ≥ 2(‖σ‖−d),
(SU3) δ = 3 ⇒ y j ≥ 2c(‖σ‖−d) .

Definition C.3 (binary dependencies). Let ρ ⊂ T . We say that ρ satisfies the dependency D = i
j ⇒

k
`

written ρ |= D, if there are constants t ≥ b ≥ 0 such that for all ~x w t there is σ = (~x, . . . ,~y) ∈ ρ where
‖σ‖= b, satisfying:

(M) ~yw xmin ,
(SB1) yk ≥ xi∧ y` ≥ x j,
(SB2) k = `⇒ yk ≥ xi + x j.

Using these definitions we can state the soundness theorem:

THEOREM C.4 (lower-bound soundness). If D ∈ [[E]]dep then [[E]]ts |= D.

The next subsections justify the soundness for each LARE constructor in turn; this yields Theo-
rem C.4 by simple induction.

C.1 Atomic programs

This is a trivial part. All atomic programs in our core instruction set induce obvious dependencies. Note
that for a multiplication instruction, Xi := X j*Xk, we need a threshold t ≥ 2 to justify the lower bounds
yi ≥ 2x j and yi ≥ 2xk.

C.2 Alternation and Composition

Alternation is interpreted as set union in the concrete semantics, and since the property ρ |= D is exis-
tential, we immediately have

LEMMA C.5. If [[E1]]ts |= D, or [[E2]]ts |= D, then [[E1|E2]]ts |= D.

For composition, we claim:

LEMMA C.6. If [[E1]]ts |= D1 and [[E2]]ts |= D2 then [[E1E2]]ts |= D1 ·D2.

This follows by considering ρ1,ρ2⊂T , such that ρ1 |=D1 and ρ2 |=D2, and proving that (ρ1 #ρ2) |=
D1 ·D2.

The proof is a tedious case analysis, according to the types of D1 and D2, and follows the corre-
sponding case in the definition of the product (Definition 6.4). We will skip it mostly, giving one case for
example, involving binary dependencies: Suppose that D1 =

i
i′ ⇒

j
j′ and D2 =

j
j′ ⇒

k
k , and i 6= i′. Then

D1 ·D2 = i
i′ ⇒

k
k . Let t1,b1 (respectively, t2,b2) be the constants involved in the application of defini-

tion C.3 to these dependencies. Thus there is, for all ~x w t1 a sequence σ1 ∈ ρ1 satisfying requirements
(M) and (SB1), starting with ~x and ending with ~y w xmin. We can restrict attention to ~x w max(t1, t2)
which implies~yw t2. For such~y there will be a σ2 ∈ ρ2, satisfying~zw ymin, plus (M)–(SB2).

Then y j ≥ xi, y j′ ≥ xi′ , zk ≥ y j +y j′ . It follows that zk ≥ xi +xi′ , so the conclusion (ρ1 #ρ2) |= D1 ·D2
holds.
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C.3 Analyzing loops

In this analysis we assume for simplicity (and omitting the justification) that our experssions are rewritten
so that for every starred expression there is just one ¢, in its beginning, thus: (¢E)∗.

Now, recall that [[E∗]]dep = LC`(F) ·F , with F = LFP([[E]]dep). We first note that if for some finite
m, [[E]]ts |= Di for i = 1, . . . ,m, then [[(¢E)∗]]ts |= D1 ·D2 . . . ·Dm. Consequently [[(¢E)∗]]ts |= D for all
D ∈ LFP([[E]]dep). It rests to justify the use of the loop correction operator.

LEMMA C.7. Let F = LFP([[E]]dep), D ∈ F and R ∈ LCn+1(D). Then [[(¢E)∗]]ts |= R.

Proof. Note that if LCn+1(D) = /0, there is nothing to prove. Otherwise, LCn+1(D) = {n+1 λ−→ i} for
some λ ≥ 2. From F = LFP([[E]]dep), it clearly follows that, for some m > 0, D is in ([[E]]dep)

m; hence
([[¢E]]ts)

m |= D. Denote, for brevity, [[¢E]]ts by ρ . Checking the cases in the definition of LC (Page 11)

we see that D must be i δ−→ i with i 6= n+ 1 and δ ∈ {1+,2}. In particular, D is black. Hence, there are
t,b,d such that

For all ~x w t there is a σ = (~x, . . . ,~y) ∈ ρm where ‖σ‖ = b, ~y w xmin and yi ≥ xi + xmin (for
δ = 1+) or yi ≥ 2(xi−d) (for δ = 2).

Note that b > 0, since an empty trace only satisfies dependencies of type 1 (for the same reason, m > 0).
By easy induction we can now derive for any s > 0, and any~x as above, a trace πs ∈ ρms starting at~x

as above, and ending with a state~z satisfying zmin≥ xmin and zi≥ xi+sxmin (for δ = 1+) or zi≥ 2s(xi−d)
(for δ = 2). Moreover, ‖πs‖= sb. Thus,

zi ≥ xi + sxmin ≥ xi +(‖πs‖/b)xmin (for δ = 1+), or

zi ≥ 2s(xi−d)≥ 21/b‖πs‖(xi−d) (for δ = 2) .

Choosing c′ = 1/b we may conclude that if ‖πs‖ is large enough, and xmin > max(d,2b, t), we have

zi ≥ 2 · ‖πs‖ (for δ = 1+), or

zi ≥ 2c′·‖πs‖ (for δ = 2) .

By the definition of the semantics of the iteration construct, πs ∈ [[(¢E)∗]]ts. The sequences πs thus
satisfy the requirements per Definition C.2, with appropriate constants (which are not hard to derive from
the above discussion, in particular we note that the period of the arithmetic sequence is b).

We conclude with the bracket construct. Recall that

[[ [`E] ]]ts = {ERASE(σ) | σ ∈ [[E]]ts, ‖σ‖ ≤ (σ [0])`} .

Clearly, ERASE(σ) has the same initial and final states as σ . Thus a lower bound on the final state of σ

is valid for ERASE(σ). Suppose that [[E]]ts |= D; in most cases this implies [[ [`E] ]]ts |= D trivially, with
the exception being D = n+1 α−→ k, a red dependency. In this case the lower bound involves ‖σ‖, which
ranges over a set B = {b,b+ p,b+ 2p,b+ 3p, . . .}. Choosing the longest among these sequences that
satisfy ‖σ‖ ≤ (σ [0])`, we obtain ‖σ‖ ≥ (σ [0])`− p. Hence, denoting the initial and final states of σ by
~x and~y, respectively, we obtain a result of the form

yi ≥ 2(x`− p−d) (for α = 2), or

yi ≥ 2c(x`−p−d) (for α = 3)

which satisfies (SU2) or (SU3), respectively. We also note that (SU1) will be satisfied once the threshold
t large enough.

We have now proved the soundness of all analysis rules, and Theorem C.4 immediately follows.
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D Upper-Bound Soundness

The upper-bound soundness result will show that the absence of a type-3 dependency for a result variable
implies that it is polynomially bounded in all executions. Thus, here we need an interpretation of the
abstract value (the dependency set) which is universal in terms of applying to all traces, and moreover, it
has to take into account all variables simultaneously. For intuition, consider an assignment Xi := X j+Xk.
To prove that the result is exponential, it suffices to know that one of X j, Xk is exponential. But to prove
that the result is polynomial, we need to know that both of them are.

Multi-polynomials. We introduce the notation ~p for a collection of polynomials p j. The range of
the indices is implicit, and should be assumed by the reader to be {1, . . . ,n} unless the context dictates
otherwise. We may refer to such a collection as a multi-polynomial. Its purpose it to express simultaneous
polynomial bounds on several variables.

We say that variable xi participates in polynomial p(~x) (or that the polynomial depends on xi) if xi

appears in a monomial of p that has a non-zero coefficient. We use the notation p[xk|π(k)] to indicate
that p depends only on variables xk where k satisfies the predicate π . For example, p[xk|k = 1] indicates
a polynomial dependent only on x1.

Multi-polynomials can be composed, written ~p ◦~q, provided that for every xi that participates in ~p,
the polynomial qi is defined.

In the proof we use polynomials of n+ 1 variables, where x1, . . . ,xn represent the initial state of
the computation under consideration while the last variable, xn+1, is used to represent the number of
¢ symbols in a trace. Once polynomial bounds of this form (to be called extended polynomials) are
established for a program E, we obtain bounds for [`E] by substituting the value of the loop control
variable x` for xn+1.

Dependency matrices. Just as we aggregate upper bounds in a multi-polynomial, we have to aggregate
dependencies as well. We use an (n+1)×(n+1) matrix A to denote a collection of unary dependencies,
i.e., Ai j shows the dependence of x j on xi. Thus, A ∈ D0

(n+1)×(n+1), where D0 = {0,1,1+,2,3} is the
set of dependency types together with 0, a bottom element representing no dependence. Our matrices
have to satisfy a certain validity condition in order to make sense as a set of dependencies. We call A
admissible if the following conditions are satisfied:

A(n+1)(n+1) = 1(2)

(∀i, j)Ai j = 1⇒ Ak j = 0 for all k 6= i ,(3)

where the first condition arises from the special role of xn+1, and the second one from the purpose of
a dependency i 1−→ j, which is supposed to mean that x j obtains its value from xi, without any additions
(note the difference of 1 to 1+).

We denote by A≤ B the natural component-wise comparison.
When S and T are sets of matrices, S≤ T means ∀A ∈ S ∃B ∈ T A≤ B.
We introduce a “sum” operation on D0, denoted by +, as follows: 1++1+ = 2; and α +β = α tβ

for all other α,β . We then define matrix product in D0
(n+1)×(n+1) in the usual way, using the operations

· and +.
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The set-of-matrices abstraction. The core idea of this proof is to replace our abstract domain. Instead
of sets of unary and binary dependencies, we generate matrices. The unary dependencies are represented
as entries in the matrix, while binary dependencies correspond to the co-existence of two 1/1+ entries in
the same matrix. However, we do not define a new abstract interpreter, but obtain the matrices from the
sets of dependencies, as follows.

Definition D.1. Let S be a set of dependence facts. Then M̂(S) is the set of all admissible A satisfying

(M1) ∀i, j . Ai j 6= 0⇒ i
Ai j−→ j ∈ S

(M2) ∀i, j,k, l . Aik,A jl ' 1∧ (i 6= j∨ k 6= l) ⇒ i
j ⇒

k
l ∈ S .

Let M(S) be the set of maxima of M̂(S).

The matrix abstraction of the analysis results for E is the set M[[E]]dep (it seems neat to omit the
parentheses in M([[E]]dep) ).

EXAMPLE D.2. Consider an LARE program E representing the command

choose { X2 := X3; X3 := X1+X1} or skip

The dependency set for this command is

1 1−→ 1, 1 2−→ 3, 2 1−→ 2, 3 1−→ 2, 3 1−→ 3, 4 1−→ 4, 1
3 ⇒ 1

2 ,
4
3 ⇒ 4

2 ,

along with all binary dependencies of the form i
j ⇒

i
j (since they all occur in the skip branch). Here are

two elements of M[[E]]dep


1 2 3 4

1 1 0 2 0
2 0 0 0 0
3 0 1 0 0
4 0 0 0 1




1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1


Clearly, the first represents the dependencies arising from choosing the first branch, while the second
represents the second branch. Note that a matrix including both 3 1−→ 2 and 3 1−→ 3 is excluded by the
constraint (M2).

The following lemma (which we cite here without proof) shows that the matrix sets obtained in this
way satisfy some constraints of the kind we would expect a semantic abstraction to fulfill.

LEMMA D.3. The following facts are true for the matrix representation M[[E]]dep.

1. For an atomic program E, M[[E]]dep consists of a single matrix.

2. M[[E1|E2]]dep ≥M[[E1]]dep∪M[[E2]]dep.

3. M[[E1E2]]dep ≥M[[E1]]dep ·M[[E2]]dep.

4. (a) M[[(¢E)∗]]dep ≥ {In+1}.
(b) M[[(¢E)∗]]dep ≥M[[(¢E)∗]]dep ·

(
M[[(¢E)∗]]dep∪{In+1}

)
.

We proceed to give these matrices a meaning in terms of polynomial upper bounds. The crux of
the proof will be to prove that the matrices computed for a program are sound when interpreted in this
fashion. For simplicity, throughout the rest of the section we assume that our analysis concludes that all
variables are polynomially bounded and prove the soundness of that. Thus, we assume that no 3-entries
occur in our matrices.
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Definition D.4 (concretization of dependence vectors). Let v be a vector in {0,1,1+,2}(n+1). We define
a set of functions, Γ(v), to include all polynomials of form(

∑
i : vi'1

aixi

)
+P[xi | vi = 2]

with ai ∈ {0,1}. Note that if v is the zero vector, we get the constant function 0.
Definition D.5 (polynomial upper bounds). Let ρ ⊂ T . We say that ρ admits a polynomial p as an
upper bound on variable j, or that p bounds variable j in ρ , if the following holds:

(4) σ ∈ ρ, ~x σ;~y, xn+1 ≥ ‖σ‖ =⇒ y j ≤ p(~x) .

We also apply this expression to j = n+1 (the dummy variable). Here the requirement is p(~x) = xn+1.
Definition D.6 (description by a matrix). Let ρ ⊂ T and A an admissible matrix. Suppose that there is
an upper bound pA j for variable j in ρ , and pA j ∈ Γ(A• j). We then say that A describes variable j in ρ .

We say that an admissible matrix A describes ρ ⊆ T if ~pA j ∈ Γ(A• j) bounds variable j in ρ for all
j. Concisely, we write: ρ |= A : ~pA or, elliptically, ρ |= A.

We say that a set A of matrices describes ρ if ρ has a cover ρ ⊆
⋃

A∈A ρA such that every matrix A
describes its corresponding subset ρA, i.e., ρA |= A. We concisely write this statement as ρ |= A .

Now we have a concise statement of the main theorem of this section:
THEOREM D.7 (soundness: upper bounds). For any LARE program E, [[E]]ts |=M[[E]]dep.

D.1 The proof

This theorem is proved, again, by structural induction on E. The base cases are the atomic programs, for
which the statement is straight-forward to verify. The case of E1|E2 is also straight-forward, but the case
of E1E2 is slightly harder. The argument for this case should be clear from the statement of the following
two lemmata, whose proofs we omit.
LEMMA D.8. Let A, B be matrices; p a polynomial,~q a multi-polynomial, and assume that:
(1) For a certain j, p ∈ Γ(B• j);
(2) For all i such that xk participates in p, qk is defined and qk ∈ Γ(A•k);
Then p◦~q ∈ Γ((AB)• j).
LEMMA D.9. Let ρ1,ρ2 ⊆T , so that ρ1 |= A :~q and ρ2 |= B : ~p. Then ρ1 #ρ2 |= AB : (~p◦~q).
Finally we come to the hardest part, which is to prove the following

LEMMA D.10. If [[E]]ts |=M[[E]]dep, then [[(¢E)∗]]ts |=M[[(¢E)∗]]dep.

For this proof, we let M =M[[E]]dep∪{In+1}, and M ∗ =M[[E∗]]dep.
As the proof is difficult, we only bring some main ideas. The first is the so-called size-relation graph,

SRG. This is a graph which shows all the dependencies at once: its nodes are {1, . . . ,n+1} and there is
an arc i→ j, labeled δ , if δ is the highest value of entry Ai j in M ∗, and is non-zero.

The SCC decomposition of this graph plays a crucial role. We can show that intra-SCC labels must
be in {1,1+}; intuitively in there had been a 2 there, a variable would have grown exponentially in the
loop. The topological ordering of the components induces a “tiering” of variables so that non-linear
data-flow only goes to higher-numbered SCCs.

The second important idea turns up when we want to compute bounds for variables that belong to
a non-singleton SCC. It turns out to be necessary to compute bounds not only on the values of those
variables but also on the sums of sets of variables. We can illustrate this point using the program
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Figure 6: SRG for the example program. Nodes are labeled x j rather than just j for readability.

loop X5 {

choose

choose { X3 := X1; X4 := X2 } or { X3 := X2; X4 := X1 }

or

X1 := X3 + X4
}

To prove that there is no exponential growth in this loop, it is crucial to use the fact that each of the
first two assignments command makes the sum X3 +X4 equal to X1 +X2. This implies that subsequently
executing the third assignment amounts to setting X1 to X1 +X2; repeatedly doing so yields polynomial
growth. If we only state bounds on each variable separately we cannot complete the proof.

Basically, the sets of interest here are sets of variables that exchange their values, but do not duplicate
them. We introduce another definition:

Definition D.11. Let C be a strongly connected component of the SRG. We define F (C) to be the family
of sets X ⊆C, such that for any matrix A ∈M ∗, and i ∈C,

Ai j > 0 ∧ Aik > 0 ∧ j,k ∈ X ⇒ j = k .

Such a set is called duplication-free.

EXAMPLE D.12. Consider the program shown above and its SRG, shown in Figure 6. Let C be the
strongly connected component consisting of the nodes x1, x3 and x4 . The set {1,3,4}, representing all
three nodes of the component, is not duplication-free. In fact, analysis of the assignment X1 := X3 +X4

yields dependences 3 1+−→ 1 and 3 1−→ 3 (among others) as well as binary dependence 3
3 ⇒ 1

3 . Consequently,
M includes a matrix A with A31 = 1+ and A33 = 1. Hence any set containing both 1 and 3 is not
duplication-free. However, the set {3,4} is, and this is used in proving that there is no exponential
growth.

We now summarize in a nutshell the proof of Lemma D.10. The proof constructs, for every A ∈M ∗,
and every duplication-free set X , a multi-polynomial ~hA,X , and proves that every trace in [[(¢E)∗]]ts is
upper-bounded by one of these multi-polynomials (in the sense of Definition D.5, extended to comprise
bounds on sets of variables). We remark that this provides bounds for individual variables since a single-
ton set is duplication-free. These polynomials are constructed by induction on the topological ordering
of the SCCs, i.e., at every step of this induction we construct the polynomials, simultaneously, for all of
F (C) for a component C. There is no space here to give the construction, not to show its soundness; the
interested reader is referred to our technical report.
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