
1

Flowchart Programs,
Regular Expressions, and

Decidability of Polynomial Growth-rate

Amir M. Ben-Amram Aviad Pineles
The Academic College of Tel-Aviv Yaffo

2

Flowchart Programs,
Regular Expressions, and

Decidability of Polynomial Growth-rate

Amir M. Ben-Amram Aviad Pineles

A VERIFICATION PROBLEM:
Given a program p, does p run in polynomial time?

This study focuses on decidability
in weak programming languages

The Academic College of Tel-Aviv Yaffo

3

Flowchart Programs,
Regular Expressions, and

Decidability of Polynomial Growth-rate

Amir M. Ben-Amram Aviad Pineles

We extend previous results to a new, stronger language

by means of a program transformation

The Academic College of Tel-Aviv Yaffo

Outline

• A known decidability result
• Flowchart programs
• The transformational technique

4

“Complexity analysis” is an important
program analysis challenge

• Wegbreit 1975: analysing the complexity of LISP
programs.

• Many current (or recent) projects, e.g. COSTA, Safe,
SPEED, AProVE..

• These are real tools, not decidability results
5

REVERSE(L) 
if NULL(L) then {} else
APPEND(REVERSE(CDR(
L)), CONS(CAR(L), {}))

c0 + c1n + c2n2

6

Simple “loop programs” have been
studied wrt decidability

Kasai & Adachi, JCSS 1980

Kristiansen and Niggl, TCS 2004

Niggl & Wunderlich, SICOMP 2006

Jones & Kristiansen, TOCL 2009

Ben-Amram, Jones & Kristiansen, CiE 2008

Ben-Amram, DICE 2010

Focus on identifying a complexity class (polynomial time?)
- “Simple” decision problem
- Influence from the field of ICC (Implicit Comp. Complexity)

7

Simple “loop programs” have been
studied wrt decidability

In these programs loops are explicitly bounded

Asking about time complexity, etc. is equivalent to
asking about the growth rate of variables

Hence “the polynomial growth-rate problem”

do X times { … } not while B do { … }

10

BJK 2008

Polynomial growth rate is decidable for the language:

e Expression ::= X | e + e | e  e

C  Command ::= X := e
| C1 ; C2

| loop X {C}
| choose C1 or C2

Moreover, the analysis algorithm is PTIME

11

e Expression ::= X | e + e | e  e

C  Command ::= X := e
| C1 ; C2

| loop X {C}
| choose C1 or C2

BJK 2008

Decidability comes from restrictions of the language

12

e Expression ::= X | e + e | e  e

C  Command ::= X := e
| C1 ; C2

| loop X {C}
| choose C1 or C2

Restricted arithmetics

BJK 2008

Decidability comes from restrictions of the language

13

e Expression ::= X | e + e | e  e

C  Command ::= X := e
| C1 ; C2

| loop X {C}
| choose C1 or C2

Restricted arithmetics

Explicitly bounded loops:
At most X iterations

BJK 2008

Decidability comes from restrictions of the language

14

e Expression ::= X | e + e | e  e

C  Command ::= X := e
| C1 ; C2

| loop X {C}
| choose C1 or C2

Restricted arithmetics

Explicitly bounded loops:
At most X iterations

Non-deterministic branching

BJK 2008

Decidability comes from restrictions of the language

17

C1 |― X Y
C2 |― Y Z
C1 ; C2 |― X Z

linear

poly.

poly.

Compositionality important: algorithm a bottom-up
computation of “growth-rate assertions”

18

C1 |― X Y
C2 |― Y Z
C1 ; C2 |― X Z

linear

poly.

poly.

Compositionality important: algorithm a bottom-up
computation of “growth-rate assertions”

The crux of the result is deduction rules for loops
- When we know what the loop body does

we can derive the effect of iterating it

Subsequent research explores decidability in
extensions of the language

Even small extensions can make the problem undecidable

19

e Expression ::= X | X+Y | XY

C  Command ::= X := e
| C1 ; C2

| loop X {C}
| if X=Y then C1 else C2

Outline

• A known decidability result
• Flowchart programs
• The transformational technique

20

Flowchart programs motivation

• Practical work often uses “flowchart programs”
– JBC, LLVM, ad-hoc representations

• A challenge to our methods: programs not compositional,
loops not explicitly bounded, and are managed using
operations that we cannot hope to handle

21

22

source
program

Annotated/
abstracted
program

loop analysis

analysis
FRONT END

BACK END

An “abstract and conquer” setting

23

Loop-
Annotated
Flowcharts

source
program

Annotated/
abstracted
program

loop analysis

analysis
FRONT END

BACK END

An “abstract and conquer” setting

Our program model is inspired by the work of
Alias et al. (2010)

25

Our program model is inspired by the work of
Alias et al. (2010)

26

A loop bounded by j

Our program model is inspired by the work of
Alias et al. (2010)

27

An outer loop bounded by i

A loop-annotated flowchart
consists of

29

• A flowchart over our restricted instruction set
• A set of (well-nested) subgraphs called loops.

Every subset has a bound.
The bound controls the number of traversals of
certain cut-arcs

¢
¢

THM. The polynomial growth-rate problem for
annotated flowcharts is decidable (PTIME)

• The technique: a transformation to a structured
language which extends the BJK language
– An automata-theoretic argument shows that

flowcharts are more expressive than original BJK

• Key intuition to solution:
flowchart ~ automaton

loop program ~ regular expression
31

Loop-Annotated Regular Expressions (LARE)
built of instructions, concatenation e1e2,

alternation e1|e2, looping e* and loop annotations

[X1 ([X2 ()*])*]

32

X3 := X2+X3 X2 := X1X1¢ ¢

loop X1 {
loop X2 { X3 := X2+X3 } ;
X2 := X1X1

}

[X1 ([X2 ()*])*]

Loop-Annotated Regular Expressions (LARE)
built of instructions, concatenation e1e2,

alternation e1|e2, looping e* and loop annotations

The analysis of [BJK] is easily adapted to LARE.

We transform flowchart programs to LARE using,
essentially, a textbook algorithm (NFA->regexp)

33

X3 := X2+X3 X2 := X1X1¢ ¢

34

X:=C

X:=A X:=B

X:=C

(X:=A)(X:=B)

X:=D

X:=D

(X:=A)(X:=B)(X:=C)*(X:=D)

An apparent difficulty: complexity.

35

exponential growth

Ehrenfeucht & Zeiger, 1974:
"Some of our colleagues have considered using a regular
expression … that represents a program … the question of how
large or complex one might expect such an expression to be
naturally arose"

polyC1 |― X Y

Our solution: eliminate the explicit
construction of the experssion.

36
C1 ; C2 |― X Z

lin

poly.

C2 |― Y Z

polyC1 |― X Y

Our solution: eliminate the explicit
construction of the experssion

("function fusion")

37
C1 ; C2 |― X Z

lin

poly.

C2 |― Y Z

Conclusion

• Loop-annotated flowcharts allowed us to extend the
techniques of [BJK '08] to a more complex language,
motivated by practice

• The technique may be worth noting
– turn a flowchart program into a structured one for analysis

by the NFA->regexp transform. Then eliminate the regexp

• Open problems regarding the growth-rate problem:
– Extend the instruction set
– Generate tight upper bounds

38 Thank you for your attention

