Flowchart Programs, Regular Expressions, and Decidability of Polynomial Growth-rate

Amir M. Ben-Amram Aviad Pineles

The Academic College of Tel-Aviv Yaffo

Flowchart Programs, Regular Expressions, and Decidability of Polynomial Growth-rate

A VERIFICATION PROBLEM: Given a program **p**, does **p** run in polynomial time?

> This study focuses on decidability in weak programming languages

Amir M. Ben-Amram Aviad Pineles

The Academic College of Tel-Aviv Yaffo

Flowchart Programs, Regular Expressions, and Decidability of Polynomial Growth-rate

We extend previous results to a new, stronger language by means of a program transformation

Amir M. Ben-Amram Aviad Pineles

The Academic College of Tel-Aviv Yaffo

Outline

- A known decidability result
- Flowchart programs
- The transformational technique

"Complexity analysis" is an important program analysis challenge

Wegbreit 1975: analysing the complexity of LISP programs.

- Many current (or recent) projects, e.g. COSTA, Safe, SPEED, AProVE..
- These are real tools, not decidability results

Simple "loop programs" have been studied wrt decidability

Kasai & Adachi, JCSS 1980

Kristiansen and Niggl, TCS 2004

Niggl & Wunderlich, SICOMP 2006

Jones & Kristiansen, TOCL 2009

Ben-Amram, Jones & Kristiansen, CiE 2008

Ben-Amram, DICE 2010

Focus on identifying a complexity class (polynomial time?)

- "Simple" decision problem
- Influence from the field of ICC (Implicit Comp. Complexity)

Simple "loop programs" have been studied wrt decidability

In these programs loops are explicitly bounded

do X times { ... } not while B do { ... }

Asking about time complexity, etc. is equivalent to asking about the growth rate of variables

Hence "the polynomial growth-rate problem"

Polynomial growth rate is decidable for the language:

 $e \in \text{Expression} ::= X | e + e | e * e$ $C \in \text{Command} ::= X := e$ $| C_1; C_2$ $| \text{loop } X \{C\}$ $| \text{choose } C_1 \text{ or } C_2$

Moreover, the analysis algorithm is PTIME

Decidability comes from restrictions of the language

```
e \in \text{Expression} ::= X | e + e | e * e
C \in \text{Command} ::= X := e
| C_1; C_2
| \text{loop } X \{C\}
| \text{choose } C_1 \text{ or } C_2
```

Decidability comes from restrictions of the language

$$e \in Expression ::= X \quad e + e \mid e * e$$

$$Restricted arithmetics$$

$$C \in Command ::= X := e$$

$$| C_1; C_2$$

$$| loop X \{C\}$$

$$| choose C_1 or C_2$$

Decidability comes from restrictions of the language

Decidability comes from restrictions of the language

Non-deterministic branching

Compositionality important: algorithm a bottom-up computation of "growth-rate assertions"

$$C1 \mid -X \xrightarrow{\text{linear}} Y$$

$$C2 \mid -Y \xrightarrow{\text{poly.}} Z$$

$$C1 ; C2 \mid -X \xrightarrow{\text{poly.}} Z$$

Compositionality important: algorithm a bottom-up computation of "growth-rate assertions"

$$C1 \mid -X \xrightarrow{\text{linear}} Y$$

$$C2 \mid -Y \xrightarrow{\text{poly.}} Z$$

$$C1 ; C2 \mid -X \xrightarrow{\text{poly.}} Z$$

The crux of the result is deduction rules for loops

- When we know what the loop body does we can derive the effect of iterating it

Subsequent research explores decidability in extensions of the language

Even small extensions can make the problem undecidable

Outline

- A known decidability result
- Flowchart programs
- The transformational technique

Flowchart programs motivation

- Practical work often uses "flowchart programs"
 - JBC, LLVM, ad-hoc representations

 A challenge to our methods: programs not compositional, loops not explicitly bounded, and are managed using operations that we cannot hope to handle 21

An "abstract and conquer" setting Annotated/ source abstracted loop analysis program program **FRONT END** analysis **BACK END** 22

An "abstract and conquer" setting Annotated/ source abstracted loop analysis program program **FRONT END** analysis Loop-**BACK END** Annotated **Flowcharts** 23

Our program model is inspired by the work of Alias et al. (2010)

```
assume (n>=0);
i = n;
j = n;
while (i > 0) {
    if (j>0) {
        j = j-1;
    } else {
        j = n;
        i = i-1;
    }
}
```


Our program model is inspired by the work of Alias et al. (2010)

```
assume (n>=0);
i = n;
j = n;
while (i > 0) {
    if (j>0) {
        j = j-1;
    } else {
        j = n;
        i = i-1;
    }
}
```


Our program model is inspired by the work of Alias et al. (2010)

```
assume (n>=0);
i = n;
j = n;
while (i > 0) {
    if (j>0) {
        j = j-1;
    } else {
        j = n;
        i = i-1;
    }
}
```


An outer loop bounded by i

A loop-annotated flowchart consists of

- A flowchart over our restricted instruction set
- A set of (well-nested) subgraphs called loops.
 Every subset has a bound.
- The bound controls the number of traversals of certain cut-arcs

THM. The polynomial growth-rate problem for annotated flowcharts is decidable (PTIME)

- The technique: a transformation to a structured language which extends the BJK language
 - An automata-theoretic argument shows that flowcharts are more expressive than original BJK

- Key intuition to solution:
 - flowchart ~ automaton loop program ~ regular expression

Loop-Annotated Regular Expressions (LARE) built of instructions, concatenation e_1e_2 , alternation $e_1|e_2$, looping e^* and loop annotations

Loop-Annotated Regular Expressions (LARE) built of instructions, concatenation e_1e_2 , alternation $e_1|e_2$, looping e^* and loop annotations

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_2 & x_3 & x_2 & x_3 & x_1 & x_2 & x_1 & x_$$

The analysis of [BJK] is easily adapted to LARE.

We transform flowchart programs to LARE using, essentially, a textbook algorithm (NFA->regexp)

An apparent difficulty: complexity.

Ehrenfeucht & Zeiger, 1974:

"Some of our colleagues have considered using a regular expression ... that represents a program ... the question of how large or complex one might expect such an expression to be naturally arose" Our solution: eliminate the explicit construction of the experssion.

Our solution: eliminate the explicit construction of the experssion

("function fusion")

 $C1; C2 \mid -X \xrightarrow{\text{poly.}} Z$

 $C2 \mid - Y \xrightarrow{\text{poly}} Z$

 $C1 \mid -X \xrightarrow{\lim} Y$

Conclusion

- Loop-annotated flowcharts allowed us to extend the techniques of [BJK '08] to a more complex language, motivated by practice
- The technique may be worth noting
 - turn a flowchart program into a structured one for analysis by the NFA->regexp transform. Then eliminate the regexp
- Open problems regarding the growth-rate problem:
 - Extend the instruction set
 - Generate tight upper bounds

Thank you for your attention