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Outline

• A known decidability result
• Flowchart programs
• The transformational technique
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“Complexity analysis” is an important 
program analysis challenge

• Wegbreit 1975: analysing the complexity of LISP 
programs.

• Many current (or recent) projects, e.g. COSTA, Safe, 
SPEED, AProVE..

• These are real tools, not decidability results
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REVERSE(L) 
if NULL(L) then {} else 
APPEND(REVERSE(CDR(
L)), CONS(CAR(L), {}))

c0 + c1n + c2n2
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Simple “loop programs” have been  
studied wrt decidability

Kasai & Adachi,  JCSS 1980

Kristiansen and Niggl,  TCS 2004

Niggl & Wunderlich, SICOMP 2006

Jones & Kristiansen, TOCL 2009

Ben-Amram, Jones & Kristiansen,  CiE 2008

Ben-Amram,  DICE 2010

Focus on identifying a complexity class (polynomial time?)
- “Simple” decision problem
- Influence from the field of ICC (Implicit Comp. Complexity)
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Simple “loop programs” have been  
studied wrt decidability

In these programs loops are explicitly bounded

Asking about time complexity, etc. is equivalent to
asking about the growth rate of variables

Hence “the polynomial growth-rate problem”

do X times { … } not    while B do { … }
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BJK 2008

Polynomial growth rate is decidable for the language:

e Expression ::= X | e + e | e  e 

C  Command ::= X := e 
|  C1 ; C2

| loop X {C} 
| choose C1 or C2

Moreover, the analysis algorithm is PTIME



11

e Expression ::= X | e + e | e  e 

C  Command ::= X := e 
|  C1 ; C2

| loop X {C} 
| choose C1 or C2

BJK 2008

Decidability comes from restrictions of the language
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e Expression ::= X | e + e | e  e 

C  Command ::= X := e 
|  C1 ; C2

| loop X {C} 
| choose C1 or C2

Restricted arithmetics

Explicitly bounded loops:
At most X iterations

BJK 2008

Decidability comes from restrictions of the language
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e Expression ::= X | e + e | e  e 

C  Command ::= X := e 
|  C1 ; C2

| loop X {C} 
| choose C1 or C2

Restricted arithmetics

Explicitly bounded loops:
At most X iterations

Non-deterministic branching

BJK 2008

Decidability comes from restrictions of the language
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C1 |― X Y
C2 |― Y Z
C1 ; C2  |―  X Z

linear

poly.

poly.

Compositionality important:  algorithm a bottom-up
computation of “growth-rate assertions”
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C1 |― X Y
C2 |― Y Z
C1 ; C2  |―  X Z

linear

poly.

poly.

Compositionality important:  algorithm a bottom-up
computation of “growth-rate assertions”

The crux of the result is deduction rules for loops
- When we know what the loop body does

we can derive the effect of iterating it



Subsequent research explores decidability in 
extensions of the language

Even small extensions can make the problem undecidable
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e Expression ::= X | X+Y | XY

C  Command ::= X := e  
|  C1 ; C2

| loop X {C} 
| if X=Y then C1 else C2



Outline

• A known decidability result
• Flowchart programs
• The transformational technique
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Flowchart programs motivation

• Practical work often uses “flowchart programs” 
– JBC, LLVM, ad-hoc representations

• A challenge to our methods: programs not compositional,
loops not explicitly bounded, and are managed using 
operations that we cannot hope to handle

21
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source
program

Annotated/
abstracted
program

loop analysis

analysis
FRONT END

BACK END

An “abstract and conquer” setting
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Loop-
Annotated 
Flowcharts

source
program

Annotated/
abstracted
program

loop analysis

analysis
FRONT END

BACK END

An “abstract and conquer” setting



Our program model is inspired by the work of 
Alias et al. (2010)
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Our program model is inspired by the work of 
Alias et al. (2010)

26

A loop bounded by j



Our program model is inspired by the work of 
Alias et al. (2010)
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An outer loop bounded by i



A loop-annotated flowchart 
consists of

29

• A flowchart over our restricted instruction set
• A set of (well-nested) subgraphs called loops.  

Every subset has a bound.
The bound controls the number of traversals of 
certain cut-arcs

¢
¢



THM.  The polynomial growth-rate problem for  
annotated flowcharts is decidable (PTIME)

• The technique: a transformation to a structured 
language which extends the BJK language
– An automata-theoretic argument shows that 

flowcharts are more expressive than original BJK

• Key intuition to solution:
flowchart  ~  automaton

loop program  ~  regular expression
31



Loop-Annotated Regular Expressions (LARE)
built of instructions,  concatenation e1e2, 

alternation e1|e2,  looping e* and loop annotations

[X1 (  [X2 (                        )*] )*]
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X3 := X2+X3 X2 := X1X1¢ ¢

loop X1 {
loop X2 { X3 := X2+X3 } ;
X2 := X1X1

}



[X1 (  [X2 (                        )*] )*]

Loop-Annotated Regular Expressions (LARE)
built of instructions,  concatenation e1e2, 

alternation e1|e2,  looping e* and loop annotations 

The analysis of [BJK] is easily adapted to LARE.

We transform flowchart programs to LARE using, 
essentially, a textbook algorithm (NFA->regexp) 
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X3 := X2+X3 X2 := X1X1¢ ¢
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X:=C

X:=A X:=B

X:=C

(X:=A)(X:=B)

X:=D

X:=D

(X:=A)(X:=B)(X:=C)*(X:=D)



An apparent difficulty: complexity.
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exponential growth

Ehrenfeucht & Zeiger, 1974:
"Some of our colleagues have considered using a regular 
expression … that represents a program … the question of how 
large or complex one might expect such an expression to be 
naturally arose"



polyC1 |― X Y

Our solution: eliminate the explicit 
construction of the experssion.
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C1 ; C2  |―  X Z

lin

poly.

C2 |― Y Z



polyC1 |― X Y

Our solution: eliminate the explicit 
construction of the experssion

("function fusion")
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C1 ; C2  |―  X Z

lin

poly.

C2 |― Y Z



Conclusion

• Loop-annotated flowcharts allowed us to extend the 
techniques of [BJK '08] to a more complex language, 
motivated by practice

• The technique may be worth noting
– turn a flowchart program into a structured one for analysis 

by the NFA->regexp transform. Then eliminate the regexp

• Open problems regarding the growth-rate problem:
– Extend the instruction set
– Generate tight upper bounds

38 Thank you for your attention


