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Introduction Programming Language

Simple Programming Language

Features:
Data types: natural numbers and lists. Constructors: cons(...),
a tuple constructor <...>, increment (+1).
No nested functions, no multiple variables in left-hand sides.
The patterns should be matched from top to bottom.
Semantics: call-by-name.

Example (binary logarithm+1):

f(0)=0;
f(x+1)=f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;
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Introduction On Supercompilation

Supercompilation: Introduction

Supercompilation is a program transformation method based on
fold/unfold technique, that was proposed by V. Turchin in the 1970s.

Observes the behaviour of a functional program running on partially
defined input point. Tries to fold its computation tree into a graph which
produces the residual program with better properties.

Two general questions upon the supercompilation:

When it is better to unfold the computation path, and when — to
terminate unfolding?
How it is better to fold the computation tree into a graph?
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Introduction On Supercompilation

Termination of Unfolding Procedure

Definition
A relation R is well binary on the set of sequences S, if every infinite
sequence {Φn} ∈ S contains Φi , Φj such that i < j and (Φi ,Φj ) ∈R.

It is sufficient for R to be well-binary for traces that can be observed in
computation trees.

Examples:

The Turchin relation for call stacks in SCP4 [A. Nemytykh, 2000–2007].

The De-Brujin-index-based relation in HOSC [I. Klyuchnikov, 2010];

Definition

Sequence {Φn} such that ∀i , j(i < j ⇒ (Φi ,Φj ) /∈R) is a bad sequence with
respect to R.

The longer bad sequences are, the slower the program transformation tool
works, and the more finite computation paths are discovered by its work.
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Introduction On Supercompilation

Stack Similarity Relation as a Branch Termination
Condition
A stack configuration is a linear structure. Two stack configurations on a
computation path can be tested for similarity as follows.

Top Context

. . . Context

. . . . . . Context

Top′ Middle Context

Features:

Considers not only configuration data but also the history of the changes
in the data (as in e.g. [Gallagher et al, 1996]).

Helps to generalize w.r.t. global properties of the path.
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Introduction On Supercompilation

Example

Computation Path: Stack Configuration:

(0) f(x+1+1)
(1) f(g(x+1+1))+1
(2) f(h(x+1))+1
(3) f(g(x)+1)+1
(4) f(g(g(x)+1))+1+1
(5) f(h(g(x)))+1+1

f 0(arg1)

arg1 = g1(arg2); f 1(arg1)

arg1 = h2(arg2); f 1(arg1)

f 1(arg1)

arg1 = g4(arg2); f 4(arg1)

arg2 = g5(arg3); arg1 = h5(arg2); f 4(arg1)

The upper indices represent time: all of them correspond to the number of a
configuration in the path in where the function call first appeared in the stack.

The pairs of the similarly colored configurations are in the Turchin relation with the
empty context. The configurations (2) and (5) are not in the Turchin relation (the time
index of the call f is changed).
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Introduction Contributions

Challenges

A formal proof of consistency of the Turchin relation as a
termination criterion for call-by-name computations.

Whether the Turchin relation can be used in composition with the
homeomorphic embedding relation?

What is the worst-case complexity of the Turchin relation?
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Introduction Contributions

Challenges

Theorem (Strengthened Turchin’s Theorem)

Every computation path contains an infinite chain of call stack
configurations w.r.t. the Turchin relation.

For the call-by-value semantics, the formalization of the Turchin
relation pointed to the way to verify cryptographical protocols by
the means of the refined relation due to the strengthened Turchin’s
theorem.

We prove the analogous strengthened version of Turchin’s
theorem for a formalization of the call-by-name semantics.
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Introduction Formalization

A Problem of Formalization

The main interest is not what data can be computed by a given
program but what stack configurations can appear on a computation
path of the given program on a parameterized input point.

The Turchin relation considers every stack as a word and ignores static
data.

The Problem

Given a program, what class of grammars can generate words that
correspond to call stack configurations generated by the program?
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Stack Behaviour: Introduction

Call-by-Value Semantics

In call-by-value semantics, every call stack configuration can be
considered as a linear structure with a finite prefix rewriting.

Program

f(0)=0;
f(x+1)=f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;

Prefix Rewriting Rule

f → Λ
f → gf

g → Λ
g → h

h→ Λ
h→ g

Call stack transformations can be described by prefix rewriting grammars
(prefix grammars), which are equivalent to finite automata.
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Stack Behaviour: Introduction

Call-by-Name Semantics

In call-by-name semantics, every call stack configuration is linear. But
its transformations depend on the passive part of the configuration.

Computation Path: Stack Configuration:

f(g(g(x))+1+1)

f(g(g(g(x))+1+1))+1

f(h(g(g(x))+1))+1

f(g(g(g(x)))+1)+1

f(g(g(g(g(x))+1))+1+1

f(h(g(g(g(x)))))+1+1

f (arg1)

arg1 = g(arg2); f (arg1)

arg1 = h(arg2); f (arg1)

f (arg1)

arg1 = g(arg2); f (arg1)

arg4 = g(arg5); arg3 = g(arg4);

arg2 = g(arg3); arg1 = h(arg2); f (arg1)

The red part of the last call stack is popped from the passive configuration.
Observing only the active stack, we cannot predict how it is changed by an
execution of the program sentence g(x+1) = h(x);
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Stack Behaviour: Introduction

Structure of the Passive Part of Configuration

Given the configuration b(d(x)+1,b(d(x),d(y))+1), we apply
b(x1+1,x2+1) = b(d(b(x1,x2+1)),x2) to it.

The initial configuration has the following structure

s0 : b(z1 + 1,z2 + 1))
z1

uu

z2

**
s01 : d(x) s02 : b(z3,z4)

z3

tt
z4
��

s021 : d(x) s022 : d(y)

The colored call is placed to the current call stack.

Antonina Nepeivoda Turchin’s Relation for CBN Computations VPT 2016 12 / 35



Stack Behaviour: Introduction

Structure of the Passive Part of Configuration

Given the configuration b(d(x)+1,b(d(x),d(y))+1), we apply
b(x1+1,x2+1) = b(d(b(x1,x2+1)),x2) to it.

After the application, the function call tree becomes as follows

s0 : b(z1, z2))

z1

tt
z2

))
s01 : z5 = b(z6, z7 + 1);d(z5)

z6 ��
z7

**

s02 : b(z3, z4)

z3 ��
z4

((
s011 : d(x) s012 : b(z8, z9)

z8 ��
z9

))

s021 : d(x) s022 : d(y)

s0121 : d(x) s0122 : d(y)

The colored calls are placed to the current call stack.
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Stack Behaviour: Introduction

Constructing a Model of the Call Stack Configuration

The function call configuration forms a tree of calls, and the active call
stack is a path in the tree of calls.

Every call in the stack is modelled by the pair <NAME, LABEL>. The set
of all labels S has partial order /. The set of all names is Υ.

Every configuration is represented as a layered word Γ$∆. The structure
of the active stack Γ is linearly ordered w.r.t. labels, and the invisible part
∆ contains data about the passive part of the tree of the function calls.

Definition

For every layered word Γ$∆, where Γ and ∆ are words over Υ× S, we call Γ
the visible layer, and we call ∆ the invisible layer of Γ$∆.
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Stack Behaviour: Introduction

Constructing a Model of the Call Stack Configuration

Example

Given configuration f(g(h(g(g(x))+1))+1+1, the layered word
modelling its call stack can be

〈g, s1〉〈f , s0〉$〈ggh, s2〉

s0 / s1 / s2.

The three calls in the passive part are given the same label s2,
because they must be popped from the passive part only together.
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Stack Behaviour: Introduction

Constructing a Model of the Call Stack Configuration

(Visible) transformations of the active part of the call stack are:

Erasure of the call on the stack top (when the call is computed
and is deleted from the stack).
Pushing a bounded number of calls to the stack (as in the
call-by-value semantics).
Popping a new stack top from the passive part of the configuration.

These transformations change the visible part Γ of the model layered
word Γ$∆. The invisible part ∆ is also changed by combinations of
some basic operators on the invisible layer.
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Basic operators of the passive part of the stack

Basic Layer Operator: Append

Given a fixed label si ,

Appsj [Ψ](Φ) = Φ〈Ψ, sj〉

On tree representations, the appending operator appends some new
letters to an existing child of si .

. . .

��
si : Θi

yy %%
sl : Θl sj : Θj

. . .

��
si : Θi

yy &&
sl : Θl sj : Θj Ψ
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Basic operators of the passive part of the stack

Basic Layer Operator: Append

Program Data Layered Word

f(h(g(x)+1)) 〈h, s0〉〈f , s0〉$〈g, s1〉
↓ ↓

f(g(g(x))+1) 〈f , s0〉$〈g, s1〉〈g, s1〉 =
〈f , s0〉$ Apps1 [g](〈g, s1〉)

Program

f(0)=0;
f(x+1)=
f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;
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Basic operators of the passive part of the stack

Basic Layer Operator: Insert

Given a fixed label si ,

Inssj [Ψ〈sk 〉](Φ) = Φ〈Ψ, sk 〉, where sk is a new label that is a child of si
and the parent of sj .

Differs from Appsj only by introduction of an unused child label sk ,
which marks Ψ.

On tree representations, the insert operator inserts a new node
between the nodes labelled by si and sj .

. . .

��
si : Θi

yy %%
sl : Θl sj : Θj

. . .

��
si : Θi

xx &&
sl : Θl sk : Ψ

��
. . . sj : Θj
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Basic operators of the passive part of the stack

Basic Layer Operator: Insert

Program Data Layered Word

f(f(g(x)+1)) 〈f , s0〉〈f , s0〉$〈g, s1〉
↓ ↓

f(f(g(g(x)+1))+1) 〈f , s0〉$〈g, s1〉〈gf , s2〉 =
〈f , s0〉$ Inss1 [gf 〈s2〉](〈g, s1〉)

Program

f(0)=0;
f(x+1)=
f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;
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Basic operators of the passive part of the stack

Basic Layer Operator: Delete

Given a fixed label si ,

Delsj (Φ) = Φ′, where Φ′ is the subsequence of Φ not containing letters
labelled by sj = child(si) or by descendants of sj .

On tree representations, Delsj deletes the subtree whose uppermost
node is labelled by sj .

. . .

��
si : Θi

yy ''
sl : Θl sj : Θj

��
sj+1 : Θj+1

. . .

��
si : Θi

��
sl : Θl
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Basic operators of the passive part of the stack

Basic Layer Operator: Delete

Program Data Layered Word

b(b(0, d(x)+1),d(x)) 〈b, s0〉〈b, s0〉$〈d , s01〉〈d , s02〉
↓ ↓

b(1,d(x)) 〈b, s0〉$〈d , s02〉 =
〈b, s0〉$ Dels01 (〈d , s01〉〈d , s02〉)

Program

b(0,x2)=1;
b(x1,0)=x1;
b(x1+1,x2+1)=
b(d(b(x1,x2+1)),
x2);

d(0)=0;
d(x+1)=
d(x)+1+1;
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Basic operators of the passive part of the stack

Basic Layer Operator: Copy

Given a fixed label si ,

Copysj (Φ) = ΦΦ′, where Φ′ repeats the subsequence of Φ labelled by
sj = child(si) and its descendants, with the fresh labels.

On tree representations, Copysj makes a copy of the subtree whose
uppermost node is labelled by sj .

. . .

��
si : Θi

yy ''
sl : Θl sj : Θj

��
sj+1 : Θj+1

. . .

��
si : Θi

ww �� ((
sl : Θl sj : Θj

��

sk : Θj

��
sj+1 : Θj+1 sk+1 : Θj+1
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Basic operators of the passive part of the stack

Basic Layer Operator: Copy

Program Data Layered Word

b(x+1,d(y)+1) 〈b, s0〉$〈d , s01〉
↓ ↓

b(d(b(x,d(y)+1)),d(y)) 〈bdb, s0〉$〈d , s01〉〈d , s02〉 =
〈bdb, s0〉$ Copys01 (〈d , s01〉)

Program

b(0,x2)=1;
b(x1,0)=x1;
b(x1+1,x2+1)=
b(d(b(x1,x2+1)),
x2);

d(0)=0;
d(x+1)=
d(x)+1+1;
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Multi-Layer Prefix Grammars

Formal Definition of Multi-Layer Prefix Grammars
A multi-layer prefix grammar — a tuple G = 〈Υ,S,R,Fx , Γ0$∆0〉, where:

Υ is an alphabet of names, S is a set of labels;

Γ0$∆0 is the initial word, Γ0 is linearly ordered w.r.t. labels;

Fx is a finite set of basic-layer-operator form compositions (x runs over
S);

R is a finite set of rewriting rules, which are either:

Simple rules:
Ξ〈a, si〉Θ$Ψ→ ΦΘ$F si (Ψ),

where all the letters of Φ have label si , F si ∈ Fsi .
Pop rules: for Ψ′ — a maximal subsequence of Ψ marked by some
sj = child(si ) ∈ S,

Ξ〈a, si〉Θ$Ψ→ ΨΦΘ$F si (Ψ),

where all the letters of Φ have label si , F si ∈ Fsi .

Alphabetic multi-layer prefix grammars: Ξ = Λ.
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Multi-Layer Prefix Grammars

Languages Generated by Multi-Layer Prefix
Grammars

Multi-layer prefix grammars model call stack configurations⇒ only words on
the visible layer are of interest.

We add an endmark symbol STOP to alphabet Υ. Let the initial word of
multi-layer prefix grammar G contain STOP in the invisible part.

Definition
A language generated by G is the set of all the words A ∈ Υ∗ s.t. A is a plain
word corresponding to the visible layer Γ of some layered word Γ$∆, s.t.:

Γ$∆ is produced by a finite trace of multi-layer prefix grammar G;

∆ does not contain STOP.
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Multi-Layer Prefix Grammars

Languages Generated by Multi-Layer Prefix
Grammars

STOP can be considered as the name of a call which we want to trace.
When STOP disappears from the invisible layer, we fix the stack
configuration where it happened.

Some Facts

Non-alphabetic multi-layer prefix grammars can generate every
recursively enumerable language.
Alphabetic multi-layer grammars can generate every context-free
language and some languages that are not context-free (e. g.,
{a2n |n ∈ N}).
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The Turchin Relation for Multi-Layer Prefix Grammars

Turchin’s Theorem for Multi-Layer Prefix Grammars

Definition
A common context for the two words Γ1$∆1 and Γ2$∆2 in a trace is a
maximal common suffix Θ of Γ1 and Γ2 such that Θ[1] was preceded at
least by a one letter on the whole trace segment starting with Γ1$∆1
and ending with Γ2$∆2.

This means that the common context was not changed!
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The Turchin Relation for Multi-Layer Prefix Grammars

Turchin’s Theorem for Multi-Layer Prefix Grammars

Definition
Let G be a multi-layer prefix grammar. Given two layered words
Ξi = Γi$∆i , Ξj = Γj$∆j in a trace generated by G, we say that the
words form a Turchin pair (denoted as Ξi � Ξj ) if Γi = ΦΘ0,
Γj = Φ′ΨΘ0, Φ is equal to Φ′ as a plain word (up to the layer labels)
and the suffix Θ0 is the common context of Ξi and Ξj .

Theorem (Strengthened Turchin’s Theorem)
Every infinite trace generated by a multi-layer prefix grammar G
contains an infinite subsequence which is linearly ordered w.r.t. the
Turchin relation.

Hence, every computation path modelled as such a trace contains an
infinite chain of call stack configurations w.r.t. the Turchin relation.
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The Turchin Relation for Multi-Layer Prefix Grammars

More Features of the Turchin relation

Application

The Turchin relation can be used in composition with the homeomorphic
embedding relation. The unfolding will remain finite.

Unfolding Time
For the call-by-name semantics, the maximal bad sequence length w.r.t. � is
Ackermanian in the initial program size.

Possibly produces very long and not useful unfolding, which consumes
time and can imply unreadable residual programs;

Long bad sequences are practically rare. Usually — more useful
unfolding.
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The Turchin Relation for Multi-Layer Prefix Grammars

Turchin Relation for Termination: Example
(L. Puel, 1985) The problem with the homeomorphic embedding: definitions as

f(x+1)=f(g(x+1))+1;

Configuration f(g(x1)+1) is
embedded in f(g(g(x1)+1)).
But the call stacks of the con-
figurations correspond to lay-
ered words 〈f , s0〉$〈g, s1〉 and
〈gf , s0〉$〈g, s1〉 and do not satisfy
the Turchin relation. It is satisfied
on the framed configurations.

When generalized, the framed
pair produces more efficient
computation than the red pair.

Computation Tree for f(h(x))

f (h(x))
x=0

vv
x=x1+1

))
f (0)

��

f (g(x1) + 1)

��
0 f (g(g(x1) + 1)) + 1

��
f (h(g(x1))) + 1

x1=0

rr
x1=x2+1��

f (h(0)) + 1

��

f (h(h(x2))) + 1
x2=0

uu x2=x3+1��
f (0) + 1

��

f (h(0)) + 1

��

f (h(g(x3) + 1)) + 1

��
1 f (0) + 1 . . .
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The Turchin Relation for Multi-Layer Prefix Grammars

An Example of Ackermanian Bad Sequence
A(<x1+1,x2>) = a(A(<x1,x2>));
A(<0,x2>) = <x2+1,0>;
a(<x1+1,x2>) = x1;
B(<x1+1,x2>) = c(c(<x1+1,x2>));
b(<x1+1,x2>) = x2;
c(<x1+1,x2>) = <B(b(<x1,x2>))+1, c(c(<x1,x2>))>;
c(<0,x2>) = <B(b(<1,0>))+1, c(c(<0,0>))>;

The input point is A(< N,b(B(< 1,0 >)) >) (where N is an arbitrary fixed
natural number)

The program never stops.

The length of the computation path until a Turchin pair on its call stack

configurations appears is O(2 2...2
}

N
).

The length of the computation path until a pair of homeomorphically
embedded configurations appears is 5 + N.
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The Turchin Relation for Multi-Layer Prefix Grammars

Conclusion

Call stack transformations for call-by-name computations:

have a rather complex structure and can produce rapid growth of
the call stack length between configurations with branching;
still not as powerful as Turing machines (the upper bound of the
bad sequence length w.r.t. the homeomorphic embedding is
Ackermanian, not hyper-Ackermanian).

The Turchin relation:
a natural way to discover loops on computation paths using the
history of the call stack that can be used as a termination criterion
for both call-by-name and call-by-value semantics;
can be used together with the homeomorphic embedding.
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The Turchin Relation for Multi-Layer Prefix Grammars
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Thank You

Thank You
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