
Igor Walukiewicz
Bordeaux University
joint work with Sylvain Salvati

Model-based approach to verification
of higher-order programs

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification in three steps

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification in three steps

A general technique for analysis of higher-order programs

Control flow is represented faithfully, but the data part is abstracted

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification in three steps

Why higher order?

Programs can manipulate data as well as other programs.
Powerful abstraction mechanism.
Analysis is challenging and algorithmically difficult.

First example: factorial

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

x 0

1 ·

x

�

x 1

0

1 ·

x

�

�

x 1

0

1 ·

Evaluation tree
 aka
Böhm tree

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

x 0

1 ·

x

�

x 1

0

1 ·

x

�

�

x 1

0

1 ·

Property:
Every path with a left turn is finite

Second example: javascript

The problem: malicious code execution via specially crafted input string

Protection: always validate input strings to be executed

How: input string escapes the alert function

[Grabowski, Hofmann, Li]

Second example: javascript (cont)

The same but in some more elaborate setting:

x

(s)

((s)) (s) :: nil

Property: always between
out, and s there should be
validate

Examples of properties

•	 reachability
fail constant is reachable

•	 resource usage
every open file is eventually closed

•	 method invocation patterns
m.init should appear before m.usage

•	 fairness properties
if access is asked infinitely often then it is granted infinitely often

Third example: CFA

The problem: determine what functions are called at a given location.

Setting: a small simply typed call-by-value language :

What functions can be called at the context 2?

Objective: determine if is called at

[Tobia, Tsukada, Kobayashi]

CPS translation to call sequence problem

CSA problem: determine if is called just after

Fact: CFA is reduced to CSA.

Model-checking problem: determine if in the evaluation tree of t
there is a path where appears just after

CFA problem: determine if is called at

Translation to the model-checking problem

CSA problem: determine if is called just after

• The analysis is exact (modulo data abstraction)
• It has (unavoidable) big complexity.
• It is selective.
• Any other kind of program analysis can be encoded that way

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

• We consider programs with: semicolon, let, and evaluation by value. 

• We use λY-calculus: simply typed λ-calculus with fix point operator 
as our target language

• To translate programs to λY-calculus we can use some sort of CPS translation.

1. Program → λ-term
 P → M
(P and M have similar Böhm trees)

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Why Böhm trees (evaluation trees) are interesting:

• Giving a denotational semantics for the full language is difficult. 

• Standard denotational semantics talks about reachability/safety properties. 

• A Böhm tree gives full interpretation of the control-flow,  
but does not interpret commands operating on data.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Why MSOL:
• Standard logic for tree properties (regular tree properties).
• Can express many interesting properties.
• The MSOL theory of a Böhm tree of a λY-term is decidable

(Ong’s Theorem).

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Is this really new?

Why infinite trees are more challenging than finite ones?

Finite
graphs

P1
P2
P3

Pushdown
hierarchy

λY-terms

What are trees generated by λY-terms?

Digression: game determinacy

Eve has a winning strategy when the following is « true »:

Similarly for Adam:

Determinacy is:

Digression: game determinacy

file://localhost/var/folders/hg/xd7453wx1x96dt0yd6yjtzl00000gp/T/
LaTeXiT-2.6.1/latexit-drag.htmlfile://localhost/var/folders/hg/

xd7453wx1x96dt0yd6yjtzl00000gp/T/LaTeXiT-2.6.1/latexit-drag.html

Digression: game determinacy

Parity games

2 1

0

0 Eve makes the choice in round nodes,
Adam in square nodes.

Parity condition:
the biggest rank seen infinitely often is even.

The set of winning positions for Eve
can be expressed with a fix point formula.

2 1

0

0

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Why infinite trees are more challenging than finite ones?

Because MSOL can express parity games,
and winning in parity games involves nested least and greatest fixpoints.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

• For finite words ➟ semigroups (algebraic theory of regular lang.)

• For infinite words ➟ Wilke algebras

• For finite trees ➟ pre-clones, forest algebras

• For infinite trees ➟ [Bojanczyk, Idziaszek], [Blumensath]

Verification by evaluation:

Semantics: GFP-models

What can finite GFP-models recognise?

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

Models based on GFP can only handle prefix properties.
(by duality the same holds for LFP models)

Models for MSOL

The fix point in the model is interpreted as an
alternation of least and greatest fix points.

Applications of models

Applications of models

Applications of models

Applications of models

Applications of models

The set of SN terms over fixed set of variables is definable in MSOL

Consequences of the transfer theorem

A « synthesis from modules » framework

Consequences of the transfer theorem

Higher-order matching with restricted no of variables

Consequences of the transfer theorem

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

 Extending verification methods, from transition systems to
 a higher-order program calculus.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation

Extending verification methods, from transition
systems to a higher-order program calculus.

Extending abstract interpretation to
new kinds of models, and higher-order.

Extending typing with new kinds of
types, namely behavioural types.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

• Type systems
• Program tranformation
• Transfer theorem

• Verification by evaluation
• Abstraction/refinement
• Evaluating programs directly

