Model-based approach to verification
of higher-order programs

lgor Walukiewicz
Bordeaux University
joint work with Sylvain Salvati

Verification In three steps

1. Program = A-term
P—=M

2.Property — MSOL-formula
'no failll = @

3.\/eriﬂcation
BT(M)=p

Verification In three steps

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P— M no faill = BT (Mg

A general technique for analysis of higher-order programs

Control flow Is represented faithfully, but the data part is abstracted

Verification In three steps

1. Program — Aterm
P—=M

2.Property — MSOL-formula
'no falll = @

Why higher order?

3.\/eriﬂcation
BT(M)=p

Programs can manipulate data as well as other programs.
Powerful abstraction mechanism.

Analysis Is challenging and algorithmically difficult.

il Program — A-term 2.Property — MSOL-formula 3. Verification
= 17 'no falll = @ BT (M)=w

First example: factorial

Fct(z) = if r=0then 1 else Fct(z —1) - x .

Fct(x) = if x =0then 1 else Fct(x —1) - x .

if
7
/N /N

RN Evaluation tree
7 1 aka
Bohm tree

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P M TR BT (M=

Fct(x) = if x=0then 1 else Fct(zx —1)-x .

Y Fect. \x. if-then-else(z(x),0, m(Fct(x — 1), x))

z/(l)\m
| N
C aZj/léf\

1. Program = A-term
ey 17

2.Property — MSOL-formula 3. Verification
'no faill' = BT (Mg

Y Fct. \x. if-then-else(z(x),0, m(Fct(x — 1), x))

if
:/1\'
VAN /\f
77 0 x i
:/1\.
= e ooy path with a lef s i
=7 0 if ver atn WItn a 1ett turn Is TINIte
- /{\ y P
o |
G2 0
%

Second example: javascript
[Grabowski, Hofmann, Li]

The problem: malicious code execution via specially crafted input string

let makecode(x)="<script>_alert(” + x+ 7);.</script>”

in

y=first (untrusted_stream) X
output (makecode(y));

How: input string escapes the alert function

makecode(”); .form. submit (http : //...);)=
alert (); form.submit(http://...);

Protection: always validate input strings to be executed

let makecode(x)="<script>_alert(” 4+ x + 7);.</script>"

1

y=first (untrusted_stream);
output (makecode(validate(y)));

Second example: javascript (cont)

The same but in some more elaborate setting:

let makecode(x)=.. in
letrec f(x,s)=
let y=first(s) in
output (makecode (x
f (conc(y,x),next(

f(””,untrusted _stream);

let makecode(x)=.. in
letrec f(x,s)=
let y=first(s) in
output (makecode (
f(conc(y,x),next

X));
(s));

f(””,untrusted_stream);

X mkcd out :
‘ ‘ | Property: always between
e mked - out, and s there should be
// \\ ‘ validate
stlss . nil conc

Examples of properties

reachabllity
fall constant is reachable

resource usage
every open file is eventually closed

method invocation patterns
m.init should appear before m.usage

falrness properties
If access Is asked infinitely often then it is granted infinitely often

Third example: CFA
| lobia, I'sukada, Kobayashi]
The problem: determine what functions are called at a given location.

(Alz. z@%())@3(*2.0)

What functions can be called at the context 27

Setting: a small simply typed call-by-value language :

t (terms) ==) | z | fun®(f,z,t) | t; Q% ¢ty | if* ¢ to
v (value) ::= () | fun®(f,z,1t)
T (types) :=Unit | T} — Ts.

Obijective: determine if £2 is called at ¢4

t —* E[fun®(f,z,t')@" v

CPS translation to call sequence problem

[O] =Ak. & ()
[z] =Xk. k =

[fun’(f,z, t)] =Xk. k (fun’(f, =z, [t]))

[t1@%t] =)k. [t1] (A f. [t2] (V2. (f 2) k)) f,z fresh

CSA problem: determine if 5 is called just afteré;

t —™ Eq [:Eu.nel (f1,z1,t1) ‘v1] o Eg[fun£2(f2,:c2,t2) ’U2]

Fact: CFA is reduced to CSA.

Translation to the model-checking problem

CFA problem: determine if £2 is called at¥¢:

t —* E[fun®(f, z,t)@"]

CSA problem: determine if¢s is called just after .

t —~ El[funel (f1,z1,t1) 'v1] o Ez[fune2(f2,.’l:2,t2) ’Uz]

Model-checking problem: determine if in the evaluation tree of 1
there is a path where £2 appears just afterf1

(fun®(f, z, \k. t)) = fun(f, z, A\k.£(t))

Translation to the model-checking problem

CFA problem: determine if €2 is called at/1

t —* E[fun®(f,z,t')@%v]

CSA problem: determine if¢; is called just after g,

t —" El[:fune1 (f1,21,%1) ‘v1] o E2[fu.n£2(f2,.’1:2,t2) ’v2]

Model-checking problem: determine if in the evaluation tree of t
there is a path where €2 appears just afterf1

(fun®(f,z, Mk. t)) = fun(f, z, A\k.£(t))

'he analysis Is exact (modulo data abstraction)
t has (unavoidable) big complexity.

[BlNc cctive,
Any other kind of program analysis can be encoded that way

1. Program — A-term 2.Property — MSOL-formula 3. Verification

P—M no faill = @ BT (M=

* We consider programs with: semicolon, let, and evaluation by value.

* We use AY-calculus: simply typed A-calculus with fix point operator
as our target language

* To translate programs to AY-calculus we can use some sort of CPS translation.

1. Program = A-term
P—=M

(P and M have similar Bohm trees)

/\

" Why Bohm trees (evaluation trees) are interesting:

2.Property — MSOL-formula 3. Verification
'no falll = @ BT(M)=p

Gliving a denotational semantics for the full language is difficult.
Standard denotational semantics talks about reachabllity/safety properties.

A Bohm tree gives full interpretation of the control-flow,
but does not interpret commands operating on data.

1. Program = A-term
P—=M

2.Property — MSOL-formula
'no falll =

/\

3.\/eriﬂcation

BT (M)=w

Why MSOL:
Standard logic for tree properties (regular tree properties).

Can express many interesting properties.

The MSOL theory of a Bbhm tree of a AY-term is decidable

(Ong's Theorem).

1. Program = A-term
P—=M

2.Property — MSOL-formula
'no falll =

3.\/eriﬂcation

BT (M)=w

s this really new?

Why infinite trees are more challenging than finite ones?

/

What are trees generated by AY-terms?

AY-terms

Pushdown
hierarchy

P3
P2

P

Digression: game determinacy

An infinite game: We are given a set Win C {0, 1};
In each turn Eve chooses a finite sequence of bits, then Adam chooses one too.
After infinitely many turns an infinite word wowiws ... is formed.
Eve wins if wowiwsy --- € Win.

Question: Is this game determined for every Win C {0,1}¥7

Eve has a winning strategy when the following Is « true »:

drgVry.... (xoxy--- € Win)

Similarly for Adam:
VZIZ()HCI}l R (51305131 Rt &/ Wzn)

Determinacy Is:

B [HxOV:Ul ... (xoxy - E Wzn)] = Vxodry... (zox1--- & Win)

Digression: game determinacy

An infinite game: We are given a set Win C {0, 1};
In each turn Eve chooses a finite sequence of bits, then Adam chooses one too.
After infinitely many turns an infinite word wowiws ... is formed.
Eve wins if wowiwsy --- € Win.

Question: Is this game determined for every Win C {0,1}¥7

Def: An infinite XOR is a function f : {0,1}* — {0, 1} such that:
if w,w’ € {0,1}* differ on only one position then f(w) # f(w').

Prop: Infinite XOR exists.

Prop: Let f be an infinite XOR.
No player has a winning strategy in the game with

Winy ={w: f(w) =1}.

Digression: game determinacy

An infinite game: We are given a set Win C {0, 1};

In each turn Eve chooses a finite sequence of bits, then Adam chooses one too.
After infinitely many turns an infinite word wowiws ... is formed.

Eve wins if wowiwsy --- € Win.

Question: Is this game determined for every Win C {0,1}¥7

Thm [Martin]: If Win is Borel then the game is determined.

Some history:
e 1953 D.Gale & M.Steward X{ determinacy.
e 1955 M.Wolfe XY determinacy.
e 1964 M.Davis X9 determinacy.
e 1972 J.B.Paris X} determinacy.

e 1975 D.A .Martin Borel determinacy

Rem: With MSOL we are in X3 N II3.

Parity games

\ /°)

2 1 0 Fve makes the choice in round nodes,
/ B Adam In square nodes.

Parity condition:
the biggest rank seen infinrtely often Is even.

The set of winning positions for Eve
can be expressed with a fix point formula.

Reachability of W: uX. WV {

Safety (avoiding L): Ao =l

Parity:

Ut SR b i (VG P

PEve = <>X
PAdam —> HX

PEve — > <>X
PAdam = HX

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P—oM no fail' = ¢ BT (M)=

T .

Why infinite trees are more challenging than finite ones?

Because MSOL can express parity games,
and winning In parity games involves nested least and greatest fixpoints.

1. Program = A-term
P—M

2.Property — MSOL-formula
'no falll =

3 . Verification
BT(M)=p

Verification by evaluation:

For a given ¢ construct an interpretation of AY-terms D, and

a set F' C D s.t. for every \Y-term M:

For finite words = semigroups (algebraic theory of regular lang.)

BT(M)E ¢ iff [M]” eF

For infinite words = Wilke algebras

For finite trees = pre-clones, forest algebras

For infinite trees = [Bojanczyk, Idziaszek], [Blumensath]

M

Semantics: GFP-models

Types: 0, a —
Typed tems: c*, z¢, (M*?PNY)P (Ax* MP)*7P (V> M)

Semantics, GFP-model

DA = <{Da}a€7'a [[b]]v . > where
Da_>5 — mon[Da —> D@]

Y77 M%), = GFPOAF.[M]) 5)

A model can recognise a set of terms:
a set F' C Dy defines a set of closed terms {M : [M]" € F}.

What can finite GFP-models recognise!?

TAC-automata
Tree automata with trivial acceptance conditions:

A=(Q,%,{0, CQx Qe

every run 1s accepting.
TAC-automaton = wv-formulas = safety properties

Prop. For every TAC-automaton A,
there is a finite GFP-model recognising {M : eval(M) € L(A)}.

Prop. For every finite GFP model D and F' C D,,
there is a boolean combination B of languages of TAC automata s.t.
(M : [M]" € F} = {M : eval(M) € B}.

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P—- M no fail' = ¢ BT (M)E=®

M

For a given ¢ construct an interpretation of AY-terms D, and
a set F' C D s.t. for every \Y-term M:

Verification by evaluation:
BT(M)E ¢ iff [M]” eF

Models based on GFP can only handle prefix properties.
(by duality the same holds for LFP models)

Models for MSOL

Thm |Slavati, W.]

For every MSO property one can construct
a finite model recognising the property.

A model can recognise a set of terms:
a set F' C Dy defines a set of closed terms {M : [M]" € F}.

The fix point in the model Is Interpreted as an
alternation of least and greatest fix points.

/X 70X, TR OO

Applications of models

1. Decidability of the model-checking problem for MSO
Given an property ¢ and term M:

e construct the model D?¥, and

e calculate the semantics of M in D¥.

Applications of models

2. Two type systems for WMSO properties

Every element of a model can be described by a type S.

T-M>8 iff [M]gy > [S]

T-M<S if [M]y <I[S]

sV sse =N > T SQTypesk,Tgtypesk NS S
ISR S () B S DNy =

SNlelilpes i, B Qo M) =S D (i
I'FYz.M > S(T)

Y odd

AD

dlications of moc

3. Program transformation

(s, @ AR (lean))) ke

ac(Y F'(bc)

o

)
C Y F(bc)

els

Applications of models

3. Program transformation

(Az. a x (YF(bx)))c

a® = « when « is atomic
(a—=B)* = a®*—=[a] > B° ?”F(bc))
c Y F(bc)
ai?Y}{c)
[)\aia.M, ’U: :)\xo‘.)\y[o‘]. case y[o‘]{d 2 [M, U[d/ma“}desa i) Yng%)
[MN,v] =[M,v][N,v] [N]" i

a,v] =AMy Ay
case ygo]{dl — case yg)]{dg _y gPlada delxz}dQGSO}dleso

{Yv(oz—>oz)—>oz]\47 ’U} :Y(a°—>a°)—>a‘ ()\Zlia. . [M, U] ZEa. [[YM]]U) :

Applications of models

4. Transfer theorem for MSO

Thm (Transfer)|Salvati & W.]

Fix a signature >, set of types 7, and a set of variables X
(all finite sets).

For every MSOL formula ¢ there is an MSOL formula ¢ s.t.
for every term M over X, T, X:

MEG if BT(M)E

Conseqguences of the transfer theorem
ME® if BT(M)Egp

The set of SN terms over fixed set of variables is definable in MSOL

For a fixed 7 and X there is an MSOL formula defining
the set of terms M € Terms(3,7T,X) having a normal form.

Take ¢ defining the set of finite trees and consider (.

Conseqguences of the transfer theorem
MEG if BTM)Egp

A « synthesis from modules » framework
Given \Y-terms M, ..., M; and a formula .

Decide if one can construct from these terms a \Y term K
such that eval(K) F ¢.

e We can restrict to solutions K of the form
()\$1 « oo Lk N)Ml,...,Mk
for some term NN without constants and M-abstractions.

e Let ¢ be a formula defining terms of this form.

e There is a solution iff the formula @ A { is satisfiable.

MEQp iff eval(M) F ¢

Conseqguences of the transfer theorem
MEG if BT(M)Eg

Higher-order matching with restricted no of variables
For a fixed X'. Given M and K (without fixpoints)
decide if there is a substitution o such that

MO'I@K

Substitution ¥ can use only terms from Terms(3,7,X).

o Let shape(N) be MSOL formula defining the set of terms in Terms(3, 7T, X))
that can be obtained from N by substitutions.

o Let ¢ = shape(K).
e There is desired o iff the formula shape(M) A { is satisfiable.

If there is a solution then there is a finite one.

A\

1. Program = A-term

P—=M

2.Property — MSOL-formula
'no falll =

3.\/eriﬂcation
BT(M)=p

Extending verification methods, from transition systems to
a higher-order program calculus.

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P—- M no fail' = ¢ BT (M)E=®

(1 e as . h
Verification by evaluation:

For a given ¢ construct an interpretation of AY-terms D, and
a set ' C D s.t. for every AY-term M:

BT(M)E ¢ iff [M]” eF

1. Program = A-term
P—M

2.Property — MSOL-formula
'no falll =

3 . Verification
BT(M)=p

[Verification by evaluation

—

Extending verification met
systems to a higher-order

nods, from transrtion
brogram calculus.

Extending abstract interpretation to
new kinds of models, and higher-order.

A\

.

Extending typing with new kinds of
types, namely behavioural types.

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P—- M no fail' = ¢ BT (M)E=®

(1 e as . h
Verification by evaluation:

For a given ¢ construct an interpretation of AY-terms D, and
a set ' C D s.t. for every AY-term M:

BT(M)E ¢ iff [M]” eF

B meErsy/stems * Verification by evaluation
Program tranformation Abstraction/refinement
Bl RSl theorem * Evaluating programs directly

