# Model-based approach to verification of higher-order programs

Igor Walukiewicz Bordeaux University joint work with Sylvain Salvati

### Verification in three steps



**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



### Verification in three steps

**1.** Program 
$$\rightarrow \lambda$$
-term  
P  $\rightarrow M$ 

**2.**Property 
$$\rightarrow$$
 MSOL-formula 'no fail'  $\rightarrow \phi$ 



A general technique for analysis of higher-order programs

Control flow is represented faithfully, but the data part is abstracted

### Verification in three steps

**1.** Program 
$$\rightarrow \lambda$$
-term  
P  $\rightarrow M$ 

**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



### Why higher order?

Programs can manipulate data as well as other programs. Powerful abstraction mechanism. Analysis is challenging and algorithmically difficult.





### First example: factorial

### $Fct(x) \equiv if x = 0 then 1 else Fct(x-1) \cdot x$ .

$$Fct(x) \equiv if x = 0 then 1 else Fct(x-1) \cdot x$$
.



**1**. Program  $\rightarrow \lambda$ -term P  $\rightarrow M$ 

**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



$$Fct(x) \equiv \mathbf{if} \ x = 0 \mathbf{then} \ 1 \mathbf{else} \ Fct(x-1) \cdot x \ .$$

*YFct.*  $\lambda x$ . **if-then-else**(z(x), o, m(Fct(x-1), x))





**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



### *YFct.* $\lambda x$ . **if-then-else**(z(x), o, m(Fct(x-1), x))



**Property:** Every path with a left turn is finite

### Second example: javascript [Grabowski, Hofmann, Li]

The problem: malicious code execution via specially crafted input string

let makecode(x)="<script>\_alert(" + x + ");\_</script>"
in
y=first(untrusted\_stream);
output(makecode(y));

How: input string escapes the alert function

```
makecode("); _form.submit(http://...);")=
    alert(); form.submit(http://...);
```

Protection: always validate input strings to be executed

let makecode(x)="<script>\_alert(" + x + ");\_</script>"
in
y=first(untrusted\_stream);
output(makecode(validate(y)));

### Second example: javascript (cont)

The same but in some more elaborate setting:



### Examples of properties

- reachability fail constant is reachable
- resource usage every open file is eventually closed
- method invocation patterns
   m.init should appear before m.usage
- fairness properties

if access is asked infinitely often then it is granted infinitely often

### Third example: CFA

[Tobia, Tsukada, Kobayashi]

The problem: determine what functions are called at a given location.

## $(\lambda^1 x. x @^2 ()) @^3 (\lambda^4 z. ()).$

What functions can be called at the context 2?

Setting: a small simply typed call-by-value language :

$$\begin{array}{l}t \ (\text{terms}) ::= () \mid x \mid \texttt{fun}^{\ell}(f, x, t) \mid t_1 \ @^{\ell} \ t_2 \mid \texttt{if} * t_1 \ t_2 \\ v \ (\text{value}) ::= () \mid \texttt{fun}^{\ell}(f, x, t) \\ T \ (\text{types}) ::= \texttt{Unit} \mid T_1 \ \rightarrow \ T_2.\end{array}$$

**Objective:** determine if  $\ell_2$  is called at  $\ell_1$ 

$$t \longrightarrow^* E[\operatorname{fun}^{\ell_2}(f, x, t') @^{\ell_1}v]$$

### **CPS translation to call sequence problem**

$$\begin{split} \llbracket () \rrbracket = &\lambda k. \ k \ () \\ \llbracket x \rrbracket = &\lambda k. \ k \ x \\ \llbracket fun^{\ell}(f, x, t) \rrbracket = &\lambda k. \ k \ (fun^{\ell}(f, x, \llbracket t \rrbracket)) \\ \llbracket t_1 @^{\ell} t_2 \rrbracket = &\lambda k. \ \llbracket t_1 \rrbracket \ (\lambda f. \ \llbracket t_2 \rrbracket \ (\lambda^{\ell} z. \ (f \ z) \ k)) \\ \llbracket if * t_1 t_2 \rrbracket = &\lambda k. \ if * (\llbracket t_1 \rrbracket \ k) \ (\llbracket t_2 \rrbracket \ k) \end{split}$$

**CSA problem:** determine if  $\ell_2$  is called just after  $\ell_1$ 

 $t \longrightarrow^* E_1[\operatorname{fun}^{\ell_1}(f_1, x_1, t_1) \ v_1] \to E_2[\operatorname{fun}^{\ell_2}(f_2, x_2, t_2) \ v_2]$ 

Fact: CFA is reduced to CSA.

### Translation to the model-checking problem

**CFA problem:** determine if  $\ell_2$  is called at  $\ell_1$ 

 $t \longrightarrow^* E[\texttt{fun}^{\ell_2}(f, x, t') @^{\ell_1}v]$ 

**CSA problem:** determine if  $\ell_2$  is called just after  $\ell_1$ 

 $t \longrightarrow^* E_1[\operatorname{fun}^{\ell_1}(f_1, x_1, t_1) \ v_1] \to E_2[\operatorname{fun}^{\ell_2}(f_2, x_2, t_2) \ v_2]$ 

**Model-checking problem:** determine if in the evaluation tree of t there is a path where  $\ell_2$  appears just after  $\ell_1$ 

 $\langle \mathtt{fun}^{\ell}(f, x, \lambda k. t) \rangle = \mathtt{fun}(f, x, \lambda k. \ell \langle t \rangle)$ 

#### Translation to the model-checking problem

**CFA problem:** determine if  $\ell_2$  is called at  $\ell_1$ 

 $t \longrightarrow^* E[\operatorname{fun}^{\ell_2}(f, x, t') @^{\ell_1}v]$ 

**CSA problem:** determine if  $\ell_2$  is called just after  $\ell_1$ 

 $t \longrightarrow^* E_1[\operatorname{fun}^{\ell_1}(f_1, x_1, t_1) \ v_1] \to E_2[\operatorname{fun}^{\ell_2}(f_2, x_2, t_2) \ v_2]$ 

**Model-checking problem:** determine if in the evaluation tree of t there is a path where  $\ell_2$  appears just after  $\ell_1$ 

 $\langle \texttt{fun}^\ell(f, x, \lambda k. \ t) \rangle = \texttt{fun}(f, x, \lambda k. \ell \langle t \rangle)$ 

- The analysis is exact (modulo data abstraction)
- It has (unavoidable) big complexity.
- It is selective.
- Any other kind of program analysis can be encoded that way



2.Property → MSOL-formula 'no fail'  $\rightarrow \phi$ 



- We consider programs with: semicolon, let, and evaluation by value.
- We use  $\lambda$  Y-calculus: simply typed  $\lambda$ -calculus with fix point operator as our target language
- To translate programs to  $\lambda$ Y-calculus we can use some sort of CPS translation.

**1**. Program 
$$\rightarrow \lambda$$
-term P  $\rightarrow$  M

(P and M have similar Böhm trees)

**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



Why Böhm trees (evaluation trees) are interesting:

- Giving a denotational semantics for the full language is difficult.
- Standard denotational semantics talks about reachability/safety properties.
- A Böhm tree gives full interpretation of the control-flow, but does not interpret commands operating on data.

**1**. Program  $\rightarrow \lambda$ -term P  $\rightarrow M$ 

**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



Why MSOL:

- Standard logic for tree properties (regular tree properties).
- Can express many interesting properties.
- The MSOL theory of a Böhm tree of a  $\lambda \mbox{Y-term}$  is decidable (Ong's Theorem).

**1.** Program  $\rightarrow \lambda$ -term P  $\rightarrow M$ 

2.Property → MSOL-formula 'no fail'  $\rightarrow \phi$ 



Is this really new?

Why infinite trees are more challenging than finite ones?

### What are trees generated by $\lambda$ Y-terms?



### **Digression: game determinacy**

An infinite game: We are given a set  $Win \subseteq \{0,1\}^{\omega}$ ; In each turn Eve chooses a finite sequence of bits, then Adam chooses one too. After infinitely many turns an infinite word  $w_0w_1w_2...$  is formed. Eve wins if  $w_0w_1w_2... \in Win$ .

**Question:** Is this game determined for every  $Win \subseteq \{0, 1\}^{\omega}$ ?

Eve has a winning strategy when the following is « true »:

$$\exists x_0 \forall x_1 \dots (x_0 x_1 \dots \in Win)$$

Similarly for Adam:

$$\forall x_0 \exists x_1 \dots (x_0 x_1 \dots \notin Win)$$

Determinacy is:

$$\neg \left[ \exists x_0 \forall x_1 \dots (x_0 x_1 \dots \in Win) \right] \equiv \forall x_0 \exists x_1 \dots (x_0 x_1 \dots \notin Win)$$

### **Digression: game determinacy**

An infinite game: We are given a set  $Win \subseteq \{0,1\}^{\omega}$ ; In each turn Eve chooses a finite sequence of bits, then Adam chooses one too. After infinitely many turns an infinite word  $w_0w_1w_2...$  is formed. Eve wins if  $w_0w_1w_2... \in Win$ .

**Question:** Is this game determined for every  $Win \subseteq \{0, 1\}^{\omega}$ ?

**Def:** An *infinite XOR* is a function  $f : \{0,1\}^{\omega} \to \{0,1\}$  such that: if  $w, w' \in \{0,1\}^{\omega}$  differ on only one position then  $f(w) \neq f(w')$ .

**Prop:** Infinite XOR exists.

**Prop:** Let f be an infinite XOR. No player has a winning strategy in the game with  $Win_f = \{w : f(w) = 1\}.$ 

### **Digression: game determinacy**

An infinite game: We are given a set  $Win \subseteq \{0,1\}^{\omega}$ ; In each turn Eve chooses a finite sequence of bits, then Adam chooses one too. After infinitely many turns an infinite word  $w_0w_1w_2...$  is formed. Eve wins if  $w_0w_1w_2... \in Win$ .

**Question:** Is this game determined for every  $Win \subseteq \{0, 1\}^{\omega}$ ?

**Thm** [Martin]: If *Win* is Borel then the game is determined.

Some history:

- 1953 D.Gale & M.Steward  $\Sigma_1^0$  determinacy.
- 1955 M.Wolfe  $\Sigma_2^0$  determinacy.
- 1964 M.Davis  $\Sigma_3^0$  determinacy.
- 1972 J.B.Paris  $\Sigma_4^0$  determinacy.
- 1975 D.A.Martin Borel determinacy

**Rem:** With MSOL we are in  $\Sigma_3^0 \cap \Pi_3^0$ .

### **Parity games**



Eve makes the choice in round nodes, Adam in square nodes.

Parity condition: the biggest rank seen infinitely often is even.

# The set of winning positions for Eve can be expressed with a fix point formula.

Reachability of W:

$$\mu X. \ W \lor \begin{bmatrix} P_{\text{Eve}} \Rightarrow \langle \rangle X \\ P_{\text{Adam}} \Rightarrow []X \end{bmatrix}$$



Safety (avoiding L): 
$$\nu X. \neg L \land \begin{bmatrix} P_{\text{Eve}} \Rightarrow \langle \rangle X \\ P_{\text{Adam}} \Rightarrow []X \end{bmatrix}$$

**Parity:** 
$$\mu X_n . \nu X_{n-1} ... \mu X_1 . \nu X_0.$$

$$\begin{bmatrix}
P_{\text{Eve}} \Rightarrow \bigwedge_{i=0}^n (R_i \Rightarrow \langle \rangle X_i) \\
P_{\text{Adam}} \Rightarrow \bigwedge_{i=0}^n (R_i \Rightarrow []X_i)
\end{bmatrix}$$

**1.** Program  $\rightarrow \lambda$ -term P  $\rightarrow M$ 

**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



Why infinite trees are more challenging than finite ones?

Because MSOL can express parity games, and winning in parity games involves nested least and greatest fixpoints.

**1.** Program  $\rightarrow \lambda$ -term  $P \rightarrow M$ 

2.Property → MSOL-formula 'no fail'  $\rightarrow \phi$ 



### Verification by evaluation:

For a given  $\varphi$  construct an interpretation of  $\lambda$ Y-terms D, and a set  $F \subseteq D$  s.t. for every  $\lambda$ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

- For finite words semigroups (algebraic theory of regular lang.)
- For infinite words → Wilke algebras
- For finite trees → pre-clones, forest algebras
- For infinite trees → [Bojanczyk, Idziaszek], [Blumensath]

## Semantics: GFP-models

**Types:**  $0, \alpha \rightarrow \beta$ 

**Typed tems:**  $c^{\alpha}$ ,  $x^{\alpha}$ ,  $(M^{\alpha \to \beta} N^{\alpha})^{\beta}$ ,  $(\lambda x^{\alpha} . M^{\beta})^{\alpha \to \beta}$ ,  $(Y x^{\alpha} . M^{\alpha})^{\alpha}$ 

Semantics, GFP-model

 $\mathcal{D}^{\mathcal{A}} = \langle \{D_{\alpha}\}_{\alpha \in \mathcal{T}}, \llbracket b \rrbracket, \ldots \rangle \text{ where}$  $D_{\alpha \to \beta} = \operatorname{mon}[D_{\alpha} \mapsto D_{\beta}]$  $\llbracket Y f^{\alpha \to \alpha}, M^{\alpha} \rrbracket_{v} = \mathsf{GFP}(\lambda F.\llbracket M \rrbracket_{v[F/f]})$ 

A model can *recognise* a set of terms: a set  $F \subseteq \mathcal{D}_0$  defines a set of closed terms  $\{M : \llbracket M \rrbracket^{\mathcal{D}} \in F\}.$ 

# What can finite GFP-models recognise?

TAC-automata

Tree automata with trivial acceptance conditions:

$$\mathcal{A} = \langle Q, \Sigma, \{ \delta_b \subseteq Q \times Q_{b \in \Sigma}^{ar(b)} \}_{b \in \Sigma} \rangle$$

every run is accepting.

TAC-automaton  $\equiv \nu$ -formulas  $\equiv$  safety properties

**Prop.** For every TAC-automaton  $\mathcal{A}$ , there is a finite GFP-model recognising  $\{M : eval(M) \in L(\mathcal{A})\}$ .

**Prop.** For every finite GFP model  $\mathcal{D}$  and  $F \subseteq \mathcal{D}_o$ , there is a boolean combination  $\mathcal{B}$  of languages of TAC automata s.t.  $\{M : \llbracket M \rrbracket^{\mathcal{D}} \in F\} = \{M : eval(M) \in \mathcal{B}\}.$ 

**1.** Program  $\rightarrow \lambda$ -term  $P \rightarrow M$ 

**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



### Verification by evaluation:

For a given  $\varphi$  construct an interpretation of  $\lambda$ Y-terms D, and a set  $F \subseteq D$  s.t. for every  $\lambda$ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

Models based on GFP can only handle prefix properties. (by duality the same holds for LFP models)

## Models for MSOL

**Thm** [Slavati, W.] For every MSO property one can construct a finite model recognising the property.

A model can *recognise* a set of terms: a set  $F \subseteq \mathcal{D}_0$  defines a set of closed terms  $\{M : \llbracket M \rrbracket^{\mathcal{D}} \in F\}.$ 

The fix point in the model is interpreted as an alternation of least and greatest fix points.

 $\nu X_2. \ \gamma_2(X_2, \ \mu X_1.\gamma_1(X_1, \ \nu X_0.\gamma_0(X_0)))$ 

**1.** Decidability of the model-checking problem for MSO Given an property  $\varphi$  and term M:

- construct the model  $\mathcal{D}^{\varphi}$ , and
- calculate the semantics of M in  $\mathcal{D}^{\varphi}$ .

2. Two type systems for WMSO properties

Every element of a model can be described by a type S.

### $\Gamma \vdash M \ge S \quad \text{iff} \quad \llbracket M \rrbracket_{\llbracket \Gamma \rrbracket}^{\mathcal{D}} \ge \llbracket S \rrbracket$

 $\Gamma \vdash M \le S \quad \text{iff} \quad \llbracket M \rrbracket_{\llbracket \Gamma \rrbracket}^{\mathcal{D}} \le \llbracket S \rrbracket$ 

 $\frac{\Gamma \vdash M \ge S \quad \Gamma \vdash N \ge T}{\Gamma \vdash MN \ge S(T)} \qquad \qquad \frac{S \subseteq Types^k, \ T \subseteq types^k \quad \Gamma, x \ge S \vdash M \ge T}{\Gamma \vdash \lambda x.M \ge S \to T}$ 

 $\frac{S,T \subseteq Types_A^{2k+1}, \quad \Gamma \vdash (\lambda x.M) \geq S \quad \Gamma \vdash (Yx.M) \geq T}{\Gamma \vdash Yx.M \geq S(T)} Y \text{ odd}$ 





4. Transfer theorem for MSO

**Thm (Transfer)**[Salvati & W.] Fix a signature  $\Sigma$ , set of types  $\mathcal{T}$ , and a set of variables  $\mathcal{X}$  (all finite sets). For every MSOL formula  $\varphi$  there is an MSOL formula  $\widehat{\varphi}$  s.t. for every term M over  $\Sigma$ ,  $\mathcal{T}$ ,  $\mathcal{X}$ :

 $M \vDash \widehat{\varphi}$  iff  $BT(M) \vDash \varphi$ 

## Consequences of the transfer theorem $M \models \widehat{\varphi}$ iff $BT(M) \models \varphi$

The set of SN terms over fixed set of variables is definable in MSOL

For a fixed  $\mathcal{T}$  and  $\mathcal{X}$  there is an MSOL formula defining the set of terms  $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$  having a normal form.

Take  $\varphi$  defining the set of finite trees and consider  $\hat{\varphi}$ .

## Consequences of the transfer theorem $M \models \widehat{\varphi}$ iff $BT(M) \models \varphi$

A « synthesis from modules » framework Given  $\lambda Y$ -terms  $M_1, \ldots, M_k$  and a formula  $\varphi$ . Decide if one can construct from these terms a  $\lambda Y$  term Ksuch that  $eval(K) \vDash \varphi$ .

- We can restrict to solutions K of the form
   (λx<sub>1</sub>...x<sub>k</sub>. N)M<sub>1</sub>,...,M<sub>k</sub>
   for some term N without constants and λ-abstractions.
- Let  $\psi$  be a formula defining terms of this form.
- There is a solution iff the formula  $\psi \wedge \hat{\varphi}$  is satisfiable.

$$M\vDash\widehat{\varphi} \quad \text{ iff } \quad eval(M)\vDash\varphi$$

## Consequences of the transfer theorem $M \models \widehat{\varphi}$ iff $BT(M) \models \varphi$

Higher-order matching with restricted no of variables For a fixed  $\mathcal{X}$ . Given M and K (without fixpoints) decide if there is a substitution  $\sigma$  such that

 $M\sigma =_{\beta} K$ 

Substitution  $\Sigma$  can use only terms from  $Terms(\Sigma, \mathcal{T}, \mathcal{X})$ .

- Let shape(N) be MSOL formula defining the set of terms in  $Terms(\Sigma, \mathcal{T}, \mathcal{X})$  that can be obtained from N by substitutions.
- Let  $\varphi \equiv shape(K)$ .
- There is desired  $\sigma$  iff the formula  $shape(M) \wedge \widehat{\varphi}$  is satisfiable.

If there is a solution then there is a finite one.

**1**. Program  $\rightarrow \lambda$ -term  $P \rightarrow M$ 

**2.**Property  $\rightarrow$  MSOL-formula 'no fail'  $\rightarrow \phi$ 



Extending verification methods, from transition systems to a higher-order program calculus.

**1**. Program 
$$\rightarrow \lambda$$
-term P  $\rightarrow$  M

**2.**Property 
$$\rightarrow$$
 MSOL-formula 'no fail'  $\rightarrow \phi$ 



## Verification by evaluation:

For a given  $\varphi$  construct an interpretation of  $\lambda$ Y-terms D, and a set  $F \subseteq D$  s.t. for every  $\lambda$ Y-term M:

 $BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$ 

**1.** Program  $\rightarrow \lambda$ -term  $P \rightarrow M$ 

2.Property → MSOL-formula 'no fail'  $\rightarrow \phi$ 



### Verification by evaluation

Extending verification methods, from transition systems to a higher-order program calculus.

Extending abstract interpretation to new kinds of models, and higher-order.

Extending typing with new kinds of types, namely behavioural types.

**1.** Program 
$$\rightarrow \lambda$$
-term P  $\rightarrow M$ 

**2.**Property 
$$\rightarrow$$
 MSOL-formula 'no fail'  $\rightarrow \phi$ 



## Verification by evaluation:

For a given  $\varphi$  construct an interpretation of  $\lambda$ Y-terms D, and a set  $F \subseteq D$  s.t. for every  $\lambda$ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

- Type systems
- Program tranformation
- Transfer theorem

- Verification by evaluation
- Abstraction/refinement
- Evaluating programs directly