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Verification in three steps

A general technique for analysis of higher-order programs

Control flow is represented faithfully, but the data part is abstracted 



1. Program → λ-term
                P → M
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Verification in three steps

Why higher order?

Programs can manipulate data as well as other programs.
Powerful abstraction mechanism.
Analysis is challenging and algorithmically difficult.



First example: factorial
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Evaluation tree
        aka
Böhm tree
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Property: 
Every path with a left turn is finite



Second example: javascript 

The problem: malicious code execution via specially crafted input string

Protection: always validate input strings to be executed

How: input string escapes the alert function

[Grabowski, Hofmann, Li]



Second example: javascript (cont) 

The same but in some more elaborate setting:



x

(s)

( (s)) (s) :: nil

Property: always between 
out, and s there should be 
validate



Examples of properties

•	 reachability 
fail constant is reachable


•	 resource usage 
every open file is eventually closed


•	 method invocation patterns 
m.init should appear before m.usage


•	 fairness properties 
if access is asked infinitely often then it is granted infinitely often




Third example: CFA 

The problem: determine what functions are called at a given location. 

Setting: a small simply typed call-by-value language :

What functions can be called at the context 2?

Objective: determine if      is called at  

[Tobia, Tsukada, Kobayashi]



CPS translation to call sequence problem

CSA problem: determine if      is called just after 

Fact: CFA is reduced to CSA. 



Model-checking problem: determine if in the evaluation tree of t 
there is a path where       appears just after 

CFA problem: determine if      is called at  

Translation to the model-checking problem

CSA problem: determine if      is called just after 



• The analysis is exact (modulo data abstraction)
• It has (unavoidable) big complexity.
• It is selective.
• Any other kind of program analysis can be encoded that way
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• We consider programs with: semicolon, let, and evaluation by value. 

• We use λY-calculus: simply typed λ-calculus with fix point operator 
as our target language

• To translate programs to λY-calculus we can use some sort of CPS translation.



1. Program → λ-term
                P → M
(P and M have similar Böhm trees)

2.Property → MSOL-formula
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Why Böhm trees (evaluation trees) are interesting:

• Giving a denotational semantics for the full language is difficult. 

• Standard denotational semantics talks about reachability/safety properties. 

• A Böhm tree gives full interpretation of the control-flow,  
but does not interpret commands operating on data.
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Why MSOL:
• Standard logic for tree properties (regular tree properties).
• Can express many interesting properties.
• The MSOL theory of a Böhm tree of a λY-term is decidable 

(Ong’s Theorem).



1. Program → λ-term
                P → M

2.Property → MSOL-formula
        ‘no fail’  → φ

3.Verification
     BT(M)⊨φ

Is this really new?

Why infinite trees are more challenging than finite ones?
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What are trees generated by λY-terms?



Digression: game determinacy

Eve has a winning strategy when the following is « true »:

Similarly for Adam:

Determinacy is:



Digression: game determinacy



file://localhost/var/folders/hg/xd7453wx1x96dt0yd6yjtzl00000gp/T/
LaTeXiT-2.6.1/latexit-drag.htmlfile://localhost/var/folders/hg/

xd7453wx1x96dt0yd6yjtzl00000gp/T/LaTeXiT-2.6.1/latexit-drag.html

Digression: game determinacy



Parity games

2 1

0

0 Eve makes the choice in round nodes,
Adam in square nodes.

Parity condition: 
the biggest rank seen infinitely often is even.



The set of winning positions for Eve 
can be expressed with a fix point formula.
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Why infinite trees are more challenging than finite ones?

Because MSOL can express parity games, 
and winning in parity games involves nested least and greatest fixpoints. 
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• For finite words ➟ semigroups (algebraic theory of regular lang.)


• For infinite words ➟ Wilke algebras


• For finite trees ➟ pre-clones, forest algebras


• For infinite trees ➟ [Bojanczyk, Idziaszek], [Blumensath]

Verification by evaluation:



Semantics: GFP-models



What can finite GFP-models recognise?
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Verification by evaluation:

Models based on GFP can only handle prefix properties.
(by duality the same holds for LFP models)



Models for MSOL

The fix point in the model is interpreted as an
alternation of least and greatest fix points. 



Applications of models
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Applications of models



The set of SN terms over fixed set of variables is definable in MSOL

Consequences of the transfer theorem



A « synthesis from modules » framework

Consequences of the transfer theorem



Higher-order matching with restricted no of variables

Consequences of the transfer theorem
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  a higher-order program calculus.
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Verification by evaluation

Extending verification methods, from transition 
systems to a higher-order program calculus.

Extending abstract interpretation to  
new kinds of models, and higher-order.

Extending typing with new kinds of  
types, namely behavioural types.
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Verification by evaluation:

• Type systems
• Program tranformation
• Transfer theorem

• Verification by evaluation
• Abstraction/refinement
• Evaluating programs directly


