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Background

Background

m Algorithmic skeletons used as building blocks in parallel
program development.
m Positives.
m Abstract away parallel implementation from developer.

m Challenges.

m Requires intricate analysis of underlying algorithm.

m Multiple skeletons may introduce inefficient intermediate data
structures.

m Potential mismatch in data structures and algorithms used by
the skeletons and the program.

m Most available skeleton libraries are defined over flat data
types (list or arrays).
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Background

Existing Work

m Analytical Approaches.
m Use static program analysis to rewrite recursive functions using
skeletons.
m Positives.
® Minimum restriction on programs and inputs.
m Limitations.
B Use of inefficient intermediate data structures.

m Program Transformation Approaches.
m Systematically transform/derive parallel functions in specific
forms.
m Positives.
m Structured derivation of parallel programs.
m Limitations.

B Restrictions on programs and inputs.
® Manual derivation of operators with desired properties.
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Background

Proposed Transformation Method
Desirable Solution: Automatic + Generic - Intermediate Data.

Original Input 1

Original Input N

% Original Program

Distillation

Original Input 1

Original Input N

H Distilled Program

Encoding Transformation

( Encoded List Encoded Program

)

( Encoded List Parallel Program )
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Background

Functional Language

e = Xx Variable
| cer...en Constructor Application
| e Function Definition

where
fp%...pk, X(IMH)A..X,}I =e
" K K K K
fpr...py X1y XN = €K
| f Function Call
| e e Application
| letxy=e€ ... xy =€y in g let—expression
| Ax.e A-abstraction
pu=x|cpi...pn Pattern
data T a1...ay == c tf...th|...| ck ... tf  Data Type Declaration
Notation:

m Context expression — E|ey, ..., ey]
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Background

Example: Matrix Multiplication

mMul = [[a]] — [[a]] — [[a]]

mMul xss yss

where

mMul [] yss =]

mMul (xs : xss) yss = (map (dotp xs) (transpose yss) ): (mMul xss yss)
dotp xs ys = foldr (+) 0 (zipWith () xs ys)

transpose yss = transpose’ yss []

transpose’ [| yss = yss

transpose’ (xs : xss) yss = transpose’ xss (rotate xs yss)

rotate [| yss = yss

rotate (x : xs) [] = [x] : (rotate xs yss)

rotate (x : xs) (ys: yss) = (ys ++ [x]) : (rotate xs yss)
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Distillation

Distillation

m An unfold/fold-based program transformation method.

m Composes function definitions, reduces the number of
intermediate data structures.

m Can potentially provide superlinear speedups.

deP = x def...de}, Variable Application
| cdel... def Constructor Application
| def Function Definition
where
1 11 1 K K K K
fPL Py Xpsny - - X = def - F ol pyg X(py - XN = def
| Fxi...xn Function Application
where £ pi ... pYy Xy ) - Xy = def .. £ p{ o ppy Xy X = dek
Vnef{l,...,N}- (xn€p = Vke{l,...,K} pk=xk)
| let x = def in de} “ O let—expression
| Ax.de? A-abstraction
pi=Xx|cpi...pn Pattern
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Distillation

Example: Distilled Matrix Multiplication

mMul xss yss
where
mMul xss yss

mMuly [] zss yss
mMuly xss [] yss

mMuly (xs : xss) (zs : zss) yss =

mMub, [] xs yss v
mMulb, (z : zs) xs yss v

mMuls [] yss v
mMulz (x : xs) [] v
mMuls (x : xs) (ys : yss) v

Venkatesh Kannan and G. W. Hamilton

mMuly xss yss yss

(]
[l
let v = Axs.g xs
where
gl =0
g (x:xs) = x
in (mMuly zs xs yss v) : (mMuly xss zss yss)

I

let v/ = Axs.g xs
where
gl =0
g (x:xs) = vxs
in (mMuls xs yss v) : (mMuly zs xs yss V')

=0

0
(x+ (v ys)) + (mMuk xs yss v)
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Encoding Transformation

Why Encode Inputs?

m Objective = ldentify skeletons in distilled program.

m Potential mismatch in the data structures and algorithms used
by the skeletons and the distilled program.

m Encode pattern-matched inputs of each recursive function into
a list.

Steps to Encode:

Declare new data type (Ty) for the encoded input of recursive
function f. Encoded list type is [ T¢].

Define function (encoder) to encode the inputs of f.
Transform function f to operate over the encoded input.
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Encoding Transformation

Declare Encoded Input Data Type ( T)

Recursive Function

fX14..XM X(M+1)...XN
where

fp}...p,lv,X(M_,_l).‘.xN = e

fpfA..p,\’;x(MH)...xN = ek

whereEIke{L...,K}-ek=Ek[fx{‘...x,‘\‘,,x(kM+1)...x,’\‘,]

m Declare new type T¢ with constructors cy, ..., ck.

m For each pattern pf e p,’\‘/, of inputs xy ...xuy
Use create fresh constructor c.

Variables bound by constructor ¢, correspond to variables in
pE ... pk, that occur in

m Eg, if e, contains a recursive call to f
H ¢, otherwise
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Encoding Transformation Ske 1 |dentification

2. Define Encode Function (encoder)

le...XM X(M+1)...XN
where

fp}...p,lv, X(M41)--- XN = €1

fpf...p,\'j,x(MH)...xN = ek

whereEIke{L...,K}-ek=Ek[fx{‘...x,‘\‘,, x(kMH)...x,‘\‘,]

m Define function encoder to pattern-match and consume
inputs x1,...,Xxy asin f.
m For each pattern pf e p,’\‘/, of inputs
Create encoded list element using constructor c.
Variables bound by constructor ¢, correspond to variables in
p ... pk, that occur in Ey or e.
Append encoding of recursive call arguments to this encoded
list element.
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Encoding Transformation

Example: Encoded Data Type and Encode Function

mMuls ] yss v =0
mMulz (x:xs) [] v =0

mMuly | (xixs) (ysiyss) v = (x = (v ys)) + (mMul xs yss v)

data Tomu,; @ 1= G
| o
| s

encodemmul, [] yss = [co)
encodempul, (X @ xs) []
encodempul, (x : xs) (ys: yss) = [cg x ys| ++ (encodempu, Xs yss)

Il
—_
Q
o
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Encoding Transformation

3. Transform Function f

Recursive Function

fX1...XM X(M+1)---XN
where

fp%...p,lwx(MH)...xN = e

fpf...p,’\;x(M+1)...XN = ek

whereake{l,...,K}-ek:Ek[fxlk...x,@x(kMH)...x,@]

m Transform function f to function f’ where
f pY...Pfy X(m+1) - - - Xn is transformed to ' p* x(my1) - .- X
m Pattern p* uses c; to match the first element of encoded list.
f X1... XM X(m41) - - - Xn is transformed to £ x X(pr41) -+ XN

B x is the encoding of pattern-matched inputs xi, ..., xu.
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Encoding Transformation

Example: Encoded Function

mMulz '[] yss v =0

mMuks (x:xs) [] v =0

mMuls (x:xs) (ys:yss) v = (x=(vys))+ (mMuls xsyss v)
mMulj (¢ :X%) v =0

mMulj (e7:%) v =0

mMull | ((cg x ys) : %) v

(x % (v ys)) + (mMuly X v)
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Skeleton Identification

Skeleton ldentification

m Transformed recursive functions are defined over encoded lists.
m Identify map- and reduce-based skeletons defined over list.

m Replace skeleton instance with call to library skeleton.
m Eden — An extension of Haskell for parallel programming.
m Skeletons include parMap, parMapReduce and other

constructs.
m Add skeletons such as parMapReducel for non-empty lists®.

1An encoded list is always non-empty. Proof available in our paper.
Dublin City University, Ireland
VPT 2016 (Slide 15 of 23)
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Skeleton Identification

Example: Matrix Multiplication Defined Using Skeletons

mMuli (cy : X) yss =]
mMuli (¢ : X) yss =]
mMul ((c3 xs zs) 1 X) yss = let v = Axs.g xs
where
gl =0

g (x:xs) = x
in (mMul} (encodempyl, zs) xs yss v) : (mMul] X yss)

mapllf =]
map (x:xs) f = (f x): (map xs f)

mMul{ X yss = parMap f X

where

fa =1

feo =1

f(c3xszs) = letv=DXAxs.g xs
where
gll =0
g (x:xs) = x

in mMul} (encodemmun, zs) xs yss v
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Skeleton Identification

Example: Matrix Multiplication Defined Using Skeletons

mMulj (g : X) v =0
mMulj (c7 : X) v 0
mMul}, ((cs x ys) :X) v = (x* (v ys)) + (mMul} X v)

mapRedr [| g v f =v
mapRedr (x : xs) g v f = g (f x) (mapRedr xs g v f)

mMulj X v = parMapRedrl g f X

where

gXxy =X+y
f ce =0
fer =0

f(cgxys) = x=*(vys)
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Skeleton Identification

Example: Matrix Multiplication Defined Using Skeletons
mMul” xss yss
where
mMul” xss yss

mMul{ (encodemmui, xss yss) yss

mMul{ x yss = |parMap f X
where
f c1 = [l
f 2 = n
f (c3 xs zs) = let v = Axs.g xs
where
gl =0

g (x:ixs) = x
in mMuly (encodempuy, zs) Xs yss v
mMul (cs :X) xs yss v = []
mMul (cs : X) xs yss v = let v/ = Axs.g xs

where
gll =0
g (x:xs) = vxs

in (mMulf (encodemmui, xs yss) v) : (mMuly X xs yss V')

mMulf x v = parMapRedrl g f x

where

gXxy =X+y
fCe, =0
fcr =0

f(cg xys) = x#(vys)

Venkatesh
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Skeleton Identification

Parallel Evaluation of Skeletons

m Skeleton operators need to satisfy certain algebraic properties
(such as associativity, distributivity) for parallel evaluation.

m Distillation can be used to automatically prove such properties
for operators.

m For example, binary operator ®:: T — T — T s associative
if the following evaluates to True.

Vx,y,z- D[[(XC—D (y(—Bz)) ==T ((x(—By) (—Dz)]]

where

D is the distillation transformation
==1 is the equality operator for type T
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Skeleton Identification

Evaluation of Matrix Multiplication Example

Encoded Parallel Program vs. Original Program

128 T T T T T T T T T
64 | TR -t b
8 ’ 100x100 —+——
E 200x200 - -
= 250x250 -
3 1000x100 o
2 100x1000 ——-a——-
wn
1 2 3 4 5 6 7 8 9 10 11 12
Number of Cores
Encoded Parallel Program vs. Distilled Program

8 100x100 ——+——
8 200x200 =
= 250x250
E 1000x100 &

[% 100x1000 ——-#-—-

Number of Cores
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Skeleton Identification

Evaluation of Matrix Multiplication Example

Encoded Parallel Program vs. Hand-Parallel Program

100x100 ——+——
200x200 -~ S
250x250 ----- Heeen

1000x100 a
100x1000 ———=—-

Speedup Factor

Number of Cores
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Conclusion

Summary

A transformation method with following attributes:

m Reduces inefficient intermediate data structures using
distillation.

m Encodes all inputs into a cons-list.

m Facilitates matching with map- and reduce-based skeletons
over list.
m Improvements over existing work.

m No restrictions on programs or inputs.

m Automatic identification of skeleton instances and operators.
m Automatic verification of operator properties.

Parallel programs use fewer intermediate data structures.

m Limitations.
m Potentially unbalanced encoded list in some cases.
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Conclusion

Next Steps

m Efficient parallel execution with good load balancing.
m Potential solution

m Encode inputs into new data structure to reflect recursive
structure of function.

m Transformed program potentially defined using skeletons over
new data type.

m Parallel implementations for polytypic skeletons.
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