Program Transformation to Identify
List-Based Parallel Skeletons

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

02- Apr-2016

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons VPT 2016 (Slide 1 of 23)

Background

Background

m Algorithmic skeletons used as building blocks in parallel
program development.
m Positives.
m Abstract away parallel implementation from developer.

m Challenges.

m Requires intricate analysis of underlying algorithm.

m Multiple skeletons may introduce inefficient intermediate data
structures.

m Potential mismatch in data structures and algorithms used by
the skeletons and the program.

m Most available skeleton libraries are defined over flat data
types (list or arrays).

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons VPT 2016 (Slide 2 of 23)

Background

Existing Work

m Analytical Approaches.
m Use static program analysis to rewrite recursive functions using
skeletons.
m Positives.
® Minimum restriction on programs and inputs.
m Limitations.
B Use of inefficient intermediate data structures.

m Program Transformation Approaches.
m Systematically transform/derive parallel functions in specific
forms.
m Positives.
m Structured derivation of parallel programs.
m Limitations.

B Restrictions on programs and inputs.
® Manual derivation of operators with desired properties.

Dublin City University, Ireland

Venkatesh Kannan G. W. Hamilton
VPT 2016 (Slide 3 of 23)

Program Transformation To ldentify Li: ased Parallel Skeletons

Background

Proposed Transformation Method
Desirable Solution: Automatic + Generic - Intermediate Data.

Original Input 1

Original Input N

% Original Program

Distillation

Original Input 1

Original Input N

H Distilled Program

Encoding Transformation

(Encoded List Encoded Program

)

(Encoded List Parallel Program)

Venkatesh K G. W. Hamiltol ublin City University, Ireland

Skeleton Identification

Program Transformation To ldentify List-Based Parallel Skeletons VPT (Slide 4 of 23)

Background

Functional Language

e = Xx Variable
| cer...en Constructor Application
| e Function Definition

where
fp%...pk, X(IMH)A..X,}I =e
" K K K K
fpr...py X1y XN = €K
| f Function Call
| e e Application
| letxy=e€ ... xy =€y in g let—expression
| Ax.e A-abstraction
pu=x|cpi...pn Pattern
data T a1...ay == c tf...th|...| ck ... tf Data Type Declaration
Notation:

m Context expression — E|ey, ..., ey]

Venkatesh Kan A ty University, Ireland

Pro n Transformation To Identify List-Based Parallel Skeletons

Background

Example: Matrix Multiplication

mMul = [[a]] — [[a]] — [[a]]

mMul xss yss

where

mMul [] yss =]

mMul (xs : xss) yss = (map (dotp xs) (transpose yss)): (mMul xss yss)
dotp xs ys = foldr (+) 0 (zipWith () xs ys)

transpose yss = transpose’ yss []

transpose’ [| yss = yss

transpose’ (xs : xss) yss = transpose’ xss (rotate xs yss)

rotate [| yss = yss

rotate (x : xs) [] = [x] : (rotate xs yss)

rotate (x : xs) (ys: yss) = (ys ++ [x]) : (rotate xs yss)

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify Li ased Parallel Skeletons 6 (Slide 6 of 23)

Distillation

Distillation

m An unfold/fold-based program transformation method.

m Composes function definitions, reduces the number of
intermediate data structures.

m Can potentially provide superlinear speedups.

deP = x def...de}, Variable Application
| cdel... def Constructor Application
| def Function Definition
where
1 11 1 K K K K
fPL Py Xpsny - - X = def - F ol pyg X(py - XN = def
| Fxi...xn Function Application
where £ pi ... pYy Xy) - Xy = def .. £ p{ o ppy Xy X = dek
Vnef{l,...,N}- (xn€p = Vke{l,...,K} pk=xk)
| let x = def in de} “ O let—expression
| Ax.de? A-abstraction
pi=Xx|cpi...pn Pattern

Venkatesh Kannan G. W. Hamilton Dublin City University, Ireland

Program Transformation To ldentify Li: ased Parallel Skeletons VPT 2016 (Slide 7 of 23)

Distillation

Example: Distilled Matrix Multiplication

mMul xss yss
where
mMul xss yss

mMuly [] zss yss
mMuly xss [] yss

mMuly (xs : xss) (zs : zss) yss =

mMub, [] xs yss v
mMulb, (z : zs) xs yss v

mMuls [] yss v
mMulz (x : xs) [] v
mMuls (x : xs) (ys : yss) v

Venkatesh Kannan and G. W. Hamilton

mMuly xss yss yss

(]
[l
let v = Axs.g xs
where
gl =0
g (x:xs) = x
in (mMuly zs xs yss v) : (mMuly xss zss yss)

I

let v/ = Axs.g xs
where
gl =0
g (x:xs) = vxs
in (mMuls xs yss v) : (mMuly zs xs yss V')

=0

0
(x+ (v ys)) + (mMuk xs yss v)

Dublin City University, Ireland

Program Transformation To ldentify Li:

ased Parallel Skeletons 6 (Slide 8 of 23)

Encoding Transformation

Why Encode Inputs?

m Objective = ldentify skeletons in distilled program.

m Potential mismatch in the data structures and algorithms used
by the skeletons and the distilled program.

m Encode pattern-matched inputs of each recursive function into
a list.

Steps to Encode:

Declare new data type (Ty) for the encoded input of recursive
function f. Encoded list type is [T¢].

Define function (encoder) to encode the inputs of f.
Transform function f to operate over the encoded input.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

VPT 2016 (Slide 9 of 23)

Program Transformation To ldentify List-Based Parallel Skeletons

Encoding Transformation

Declare Encoded Input Data Type (T)

Recursive Function

fX14..XM X(M+1)...XN
where

fp}...p,lv,X(M_,_l).‘.xN = e

fpfA..p,\’;x(MH)...xN = ek

whereEIke{L...,K}-ek=Ek[fx{‘...x,‘\‘,,x(kM+1)...x,’\‘,]

m Declare new type T¢ with constructors cy, ..., ck.

m For each pattern pf e p,’\‘/, of inputs xy ...xuy
Use create fresh constructor c.

Variables bound by constructor ¢, correspond to variables in
pE ... pk, that occur in

m Eg, if e, contains a recursive call to f
H ¢, otherwise

Venkatesh Kannan and G. W. Hamilton

Program Transformation To ldentify

Dublin Cit;

University, Ireland
VPT 2016 (Slide 10 of 23)

t-Based Parallel Skeletons

Encoding Transformation Ske 1 |dentification

2. Define Encode Function (encoder)

le...XM X(M+1)...XN
where

fp}...p,lv, X(M41)--- XN = €1

fpf...p,\'j,x(MH)...xN = ek

whereEIke{L...,K}-ek=Ek[fx{‘...x,‘\‘,, x(kMH)...x,‘\‘,]

m Define function encoder to pattern-match and consume
inputs x1,...,Xxy asin f.
m For each pattern pf e p,’\‘/, of inputs
Create encoded list element using constructor c.
Variables bound by constructor ¢, correspond to variables in
p ... pk, that occur in Ey or e.
Append encoding of recursive call arguments to this encoded
list element.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

VPT 2016 (Slide 11 of 23)

Program Transformation To Identify List-Based Parallel Skeletons

Encoding Transformation

Example: Encoded Data Type and Encode Function

mMuls] yss v =0
mMulz (x:xs) [] v =0

mMuly | (xixs) (ysiyss) v = (x = (v ys)) + (mMul xs yss v)

data Tomu,; @ 1= G
| o
| s

encodemmul, [] yss = [co)
encodempul, (X @ xs) []
encodempul, (x : xs) (ys: yss) = [cg x ys| ++ (encodempu, Xs yss)

Il
—_
Q
o

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons VPT (Slide 12 of 23)

Encoding Transformation

3. Transform Function f

Recursive Function

fX1...XM X(M+1)---XN
where

fp%...p,lwx(MH)...xN = e

fpf...p,’\;x(M+1)...XN = ek

whereake{l,...,K}-ek:Ek[fxlk...x,@x(kMH)...x,@]

m Transform function f to function f’ where
f pY...Pfy X(m+1) - - - Xn is transformed to ' p* x(my1) - .- X
m Pattern p* uses c; to match the first element of encoded list.
f X1... XM X(m41) - - - Xn is transformed to £ x X(pr41) -+ XN

B x is the encoding of pattern-matched inputs xi, ..., xu.

Venkatesh Kannan G. W. Hamilton

Dublin City University, Ireland
VPT 2016 (Slide 13 of 23)

Encoding Transformation

Example: Encoded Function

mMulz '[] yss v =0

mMuks (x:xs) [] v =0

mMuls (x:xs) (ys:yss) v = (x=(vys))+ (mMuls xsyss v)
mMulj (¢ :X%) v =0

mMulj (e7:%) v =0

mMull | ((cg x ys) : %) v

(x % (v ys)) + (mMuly X v)

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify Li ased Parallel Skeletons VP 6 (Slide 14 of 23)

Skeleton Identification

Skeleton ldentification

m Transformed recursive functions are defined over encoded lists.
m Identify map- and reduce-based skeletons defined over list.

m Replace skeleton instance with call to library skeleton.
m Eden — An extension of Haskell for parallel programming.
m Skeletons include parMap, parMapReduce and other

constructs.
m Add skeletons such as parMapReducel for non-empty lists®.

1An encoded list is always non-empty. Proof available in our paper.
Dublin City University, Ireland
VPT 2016 (Slide 15 of 23)

Venkatesh Kannan and G. W. Hamilt

Program Transformation To ldentify Based Parallel Skeletons

Skeleton Identification

Example: Matrix Multiplication Defined Using Skeletons

mMuli (cy : X) yss =]
mMuli (¢ : X) yss =]
mMul ((c3 xs zs) 1 X) yss = let v = Axs.g xs
where
gl =0

g (x:xs) = x
in (mMul} (encodempyl, zs) xs yss v) : (mMul] X yss)

mapllf =]
map (x:xs) f = (f x): (map xs f)

mMul{ X yss = parMap f X

where

fa =1

feo =1

f(c3xszs) = letv=DXAxs.g xs
where
gll =0
g (x:xs) = x

in mMul} (encodemmun, zs) xs yss v

Venkatesh Kannan and G. W. Hamilton University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons 6 (Slide 16 of 23)

Skeleton Identification

Example: Matrix Multiplication Defined Using Skeletons

mMulj (g : X) v =0
mMulj (c7 : X) v 0
mMul}, ((cs x ys) :X) v = (x* (v ys)) + (mMul} X v)

mapRedr [| g v f =v
mapRedr (x : xs) g v f = g (f x) (mapRedr xs g v f)

mMulj X v = parMapRedrl g f X

where

gXxy =X+y
f ce =0
fer =0

f(cgxys) = x=*(vys)

Venkatesh Kannan and G. W. Ham ty University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons 6 (Slide 17 of 23)

Skeleton Identification

Example: Matrix Multiplication Defined Using Skeletons
mMul” xss yss
where
mMul” xss yss

mMul{ (encodemmui, xss yss) yss

mMul{ x yss = |parMap f X
where
f c1 = [l
f 2 = n
f (c3 xs zs) = let v = Axs.g xs
where
gl =0

g (x:ixs) = x
in mMuly (encodempuy, zs) Xs yss v
mMul (cs :X) xs yss v = []
mMul (cs : X) xs yss v = let v/ = Axs.g xs

where
gll =0
g (x:xs) = vxs

in (mMulf (encodemmui, xs yss) v) : (mMuly X xs yss V')

mMulf x v = parMapRedrl g f x

where

gXxy =X+y
fCe, =0
fcr =0

f(cg xys) = x#(vys)

Venkatesh

Program Transformation To Identify List-Based Parallel Skeletons 6 (Slide 18 of 23)

Skeleton Identification

Parallel Evaluation of Skeletons

m Skeleton operators need to satisfy certain algebraic properties
(such as associativity, distributivity) for parallel evaluation.

m Distillation can be used to automatically prove such properties
for operators.

m For example, binary operator ®:: T — T — T s associative
if the following evaluates to True.

Vx,y,z- D[[(XC—D (y(—Bz)) ==T ((x(—By) (—Dz)]]

where

D is the distillation transformation
==1 is the equality operator for type T

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons VPT 2016 (Slide 19 of 23)

Skeleton Identification

Evaluation of Matrix Multiplication Example

Encoded Parallel Program vs. Original Program

128 T T T T T T T T T
64 | TR -t b
8 ’ 100x100 —+——
E 200x200 - -
= 250x250 -
3 1000x100 o
2 100x1000 ——-a——-
wn
1 2 3 4 5 6 7 8 9 10 11 12
Number of Cores
Encoded Parallel Program vs. Distilled Program

8 100x100 ——+——
8 200x200 =
= 250x250
E 1000x100 &

[% 100x1000 ——-#-—-

Number of Cores

Venkatesh Kannan and G. W. Hamilto blin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons VPT 2016 (Slide 20 of 23)

Skeleton Identification

Evaluation of Matrix Multiplication Example

Encoded Parallel Program vs. Hand-Parallel Program

100x100 ——+——
200x200 -~ S
250x250 ----- Heeen

1000x100 a
100x1000 ———=—-

Speedup Factor

Number of Cores

Venkatesh K and G. W. Hamilto ublin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons VPT (Slide 21 of 23)

Conclusion

Summary

A transformation method with following attributes:

m Reduces inefficient intermediate data structures using
distillation.

m Encodes all inputs into a cons-list.

m Facilitates matching with map- and reduce-based skeletons
over list.
m Improvements over existing work.

m No restrictions on programs or inputs.

m Automatic identification of skeleton instances and operators.
m Automatic verification of operator properties.

Parallel programs use fewer intermediate data structures.

m Limitations.
m Potentially unbalanced encoded list in some cases.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons VPT 2016 (S

Conclusion

Next Steps

m Efficient parallel execution with good load balancing.
m Potential solution

m Encode inputs into new data structure to reflect recursive
structure of function.

m Transformed program potentially defined using skeletons over
new data type.

m Parallel implementations for polytypic skeletons.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To ldentify List-Based Parallel Skeletons

	Background
	Distillation
	Encoding Transformation
	Skeleton Identification
	Conclusion

