Program Transformation to Identify List-Based Parallel Skeletons

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

02 - Apr - 2016

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

Background

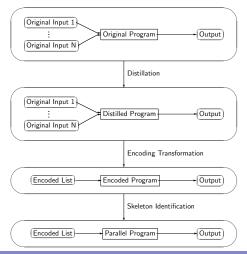
- Algorithmic skeletons used as building blocks in parallel program development.
- Positives.
 - Abstract away parallel implementation from developer.
- Challenges.
 - Requires intricate analysis of underlying algorithm.
 - Multiple skeletons may introduce inefficient intermediate data structures
 - Potential mismatch in data structures and algorithms used by the skeletons and the program.
 - Most available skeleton libraries are defined over flat data types (list or arrays).

Existing Work

- Analytical Approaches.
 - Use static program analysis to rewrite recursive functions using skeletons.
 - Positives.
 - Minimum restriction on programs and inputs.
 - Limitations.
 - Use of inefficient intermediate data structures.
- Program Transformation Approaches.
 - Systematically transform/derive parallel functions in specific forms.
 - Positives.
 - Structured derivation of parallel programs.
 - Limitations.
 - Restrictions on programs and inputs.
 - Manual derivation of operators with desired properties.

Proposed Transformation Method

Desirable Solution: Automatic + Generic - Intermediate Data.



Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons

VPT 2016 (Slide 4 of 23)

Functional Language

Variable e ::= xс е₁...е_N е₀ Constructor Application Function Definition where $f p_1^1 \dots p_M^1 x_{(M+1)}^1 \dots x_N^1 = e_1$ $f p_1^K \dots p_M^K x_{(M+1)}^K \dots x_N^K = e_K$ Function Call Application $e_0 e_1$ | let $x_1 = e_1 \dots x_N = e_N$ in e_0 let-expression λ -abstraction λx.e $p ::= x \mid c p_1 \dots p_N$ Pattern data $T \alpha_1 \ldots \alpha_M ::= c_1 t_1^1 \ldots t_N^1 |\ldots| c_K t_1^K \ldots t_N^K$ Data Type Declaration Notation:

• Context expression –
$$E[e_1, \ldots, e_N]$$

Example: Matrix Multiplication

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

Distillation

- An unfold/fold-based program transformation method.
- Composes function definitions, reduces the number of intermediate data structures.
- Can potentially provide superlinear speedups.

Venkatesh Kannan and G. W. Hamilton

Program Transformation To Identify List-Based Parallel Skeletons

VPT 2016 (Slide 7 of 23)

Example: Distilled Matrix Multiplication

```
mMul xss yss
where
mMul xss yss
                            = mMul<sub>1</sub> xss yss yss
mMul<sub>1</sub> [] zss yss
                          = []
mMul_1 xss [] yss = []
mMul_1 (xs : xss) (zs : zss) yss = let v = \lambda xs.g xs
                                           where
                                           g = 0
                                           g(x:xs) = x
                                in (mMul_2 zs xs yss v) : (mMul_1 xss zss yss)
mMul_2 \prod xs vss v
                  = []
mMul_2(z:zs) xs yss v = let v' = \lambda xs.g xs
                                            where
                                            g = 0
                                            g(x:xs) = v xs
                                in (mMul_3 xs yss v) : (mMul_2 zs xs yss v')
mMul<sub>3</sub> [] yss v
                             = 0
                   = 0
mMul_3 (x : xs) \prod v
mMul_3 (x:xs) (ys:yss) v = (x + (v ys)) + (mMul_3 xs yss v)
```

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland VPT 2016 (Slide 8 of 23)

Why Encode Inputs?

- Objective = Identify skeletons in distilled program.
- Potential mismatch in the data structures and algorithms used by the skeletons and the distilled program.
- Encode pattern-matched inputs of each recursive function into a list.

Steps to Encode:

- **1** Declare new data type (T_f) for the encoded input of recursive function f. Encoded list type is $[T_f]$.
- **2** Define function $(encode_f)$ to encode the inputs of f.
- **3** Transform function f to operate over the encoded input.

1. Declare Encoded Input Data Type (T_f)

Recursive Function

 $\begin{array}{l} f \ x_1 \dots x_M \ x_{(M+1)} \dots x_N \\ \text{where} \\ f \ p_1^1 \dots p_M^1 \ x_{(M+1)} \dots x_N &= e_1 \\ \vdots \\ f \ p_1^K \dots p_M^K \ x_{(M+1)} \dots x_N &= e_K \\ \text{where} \ \exists k \in \{1, \dots, K\} \cdot e_k = E_k \left[f \ x_1^k \dots x_M^k \ x_{(M+1)}^k \dots x_N^k \right] \end{array}$

- Declare new type T_f with constructors c_1, \ldots, c_K .
- For each pattern $p_1^k \dots p_M^k$ of inputs $x_1 \dots x_M$
 - **1** Use create fresh constructor c_k .
 - 2 Variables bound by constructor c_k correspond to variables in
 - $p_1^k \dots p_M^k$ that occur in
 - E_k , if e_k contains a recursive call to f
 - \bullet e_k , otherwise

Venkatesh Kannan and G. W. Hamilton

2. Define Encode Function (*encode_f*)

Recursive Function

$$\begin{array}{ll} f \ x_1 \ldots x_M \ x_{(M+1)} \ldots x_N \\ \text{where} \\ f \ p_1^1 \ldots p_M^1 \ x_{(M+1)} \ldots x_N &= e_1 \\ \vdots & & \vdots \\ f \ p_1^K \ldots p_M^K \ x_{(M+1)} \ldots x_N &= e_K \\ \text{where} \ \exists k \in \{1, \ldots, K\} \cdot e_k = E_k \left[f \ x_1^k \ldots x_M^k \ x_{(M+1)}^k \ldots x_N^k \right] \end{array}$$

- Define function encode_f to pattern-match and consume inputs x₁,..., x_M as in f.
- For each pattern $p_1^k \dots p_M^k$ of inputs
 - **1** Create encoded list element using constructor c_k .
 - 2 Variables bound by constructor c_k correspond to variables in $p_1^k \dots p_M^k$ that occur in E_k or e_k .
 - 3 Append encoding of recursive call arguments to this encoded list element.

Venkatesh Kannan and G. W. Hamilton

Example: Encoded Data Type and Encode Function

data
$$T_{mMul_3} a ::= c_6$$

| c_7
| $c_8 a [a]$

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland VPT 2016 (Slide 12 of 23)

3. Transform Function f

Recursive Function

Transform function f to function f' where
f p₁^k...p_M^k x_(M+1)...x_N is transformed to f' p^k x_(M+1)...x_N
Pattern p^k uses c_k to match the first element of encoded list.
f x₁...x_M x_(M+1)...x_N is transformed to f' x x_(M+1)...x_N
x is the encoding of pattern-matched inputs x₁,..., x_M.

Venkatesh Kannan and G. W. Hamilton

Example: Encoded Function

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons

VPT 2016 (Slide 14 of 23)

Skeleton Identification

- Transformed recursive functions are defined over encoded lists.
- Identify map- and reduce-based skeletons defined over list.
- Replace skeleton instance with call to library skeleton.
 - Eden An extension of Haskell for parallel programming.
 - Skeletons include *parMap*, *parMapReduce* and other constructs.
 - Add skeletons such as *parMapReduce1* for non-empty lists¹.

¹An encoded list is always non-empty. Proof available in our paper.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 15 of 23)

Example: Matrix Multiplication Defined Using Skeletons

 $\begin{array}{rcl} mMul_1' & (c_1: \overline{x}) \; yss & = & [] \\ mMul_1' & (c_2: \overline{x}) \; yss & = & [] \\ mMul_1 & ((c_3 \; xs \; zs): \overline{x}) \; yss & = \; \mathbf{let} \; v = \lambda xs.g \; xs \\ & & \mathbf{where} \\ & g \; [] & = \; 0 \\ & g \; (x: xs) \; = \; x \\ & & \mathbf{in} \; (mMul_2' \; cencode_mMul_2 \; zs) \; xs \; yss \; v): (mMul_1' \; \overline{x} \; yss) \end{array}$

map [] f = []map (x : xs) f = (f x) : (map xs f)

$$mMul_1'' \ \overline{x} \ yss = parMap \ f \ \overline{x}$$

where

$$f \ c_1 = []$$

$$f \ c_2 = []$$

$$f \ (c_3 \ xs \ zs) = let \ v = \lambda xs.g \ xs$$

where

$$g \ [] = 0$$

$$g \ (x : xs) = x$$

in
$$mMul_2'' \ (encode_mMul_2 \ zs) \ xs \ yss \ vs$$

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons

VPT 2016 (Slide 16 of 23)

Example: Matrix Multiplication Defined Using Skeletons

mapRedr [] g v f = vmapRedr (x : xs) g v f = g (f x) (mapRedr xs g v f)

$$\begin{split} mMul_3'' \ \overline{x} \ v \ = \ parMapRedr1 \ g \ f \ \overline{x} \\ & \text{where} \\ g \ x \ y \ = \ x + y \\ f \ c_6 \ = \ 0 \\ f \ c_7 \ = \ 0 \\ f \ (c_8 \ x \ ys) \ = \ x * (v \ ys) \end{split}$$

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons

VPT 2016 (Slide 17 of 23)

Example: Matrix Multiplication Defined Using Skeletons

mMul" xss vss where $mMul'' xss yss = mMul''_1 (encode_{mMul} xss yss) yss$ $mMul_1'' \overline{x} yss = parMap f \overline{x}$ where $f c_1 = []$ $f c_2 = \prod$ $f(c_3 xs zs) =$ **let** $v = \lambda xs.g xs$ where gП = 0 g(x:xs) = xin mMul₂" (encode_{mMul₂} zs) xs yss v $mMul_2''$ ($c_4:\overline{x}$) xs yss v = [] $mMul_2''$ ($c_5: \overline{x}$) xs yss v =**let** $v' = \lambda xs.g$ xs where gП = 0 g(x:xs) = v xsin $(mMul_3'' (encode_{mMul_2} xs yss) v) : (mMul_3'' \overline{x} xs yss v')$ $mMul_3'' \overline{x} v = parMapRedr1 g f \overline{x}$ where g x y = x + y $f c_6 = 0$ $f c_7 = 0$ $f(c_8 \times ys) = x * (v ys)$

Venkatesh Kannan and G. W. Hamilton

Program Transformation To Identify List-Based Parallel Skeletons

Dublin City University, Ireland

VPT 2016 (Slide 18 of 23)

Parallel Evaluation of Skeletons

- Skeleton operators need to satisfy certain algebraic properties (such as associativity, distributivity) for parallel evaluation.
- Distillation can be used to automatically prove such properties for operators.
- For example, binary operator $\oplus :: T \to T \to T$ is associative if the following evaluates to *True*.

$$\forall x, y, z \cdot \mathcal{D}\llbracket (x \oplus (y \oplus z)) ==_T ((x \oplus y) \oplus z) \rrbracket$$

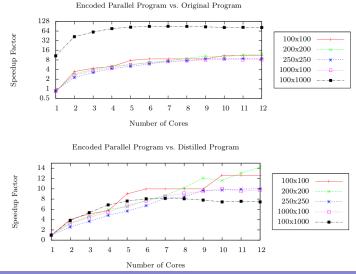
where

 $\ensuremath{\mathcal{D}}$ is the distillation transformation

 $==_{T}$ is the equality operator for type T

Venkatesh Kannan and G. W. Hamilton

Evaluation of Matrix Multiplication Example



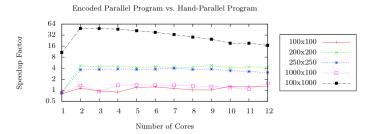
Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons

VPT 2016 (Slide 20 of 23)

Evaluation of Matrix Multiplication Example



Venkatesh Kannan and G. W. Hamilton

Program Transformation To Identify List-Based Parallel Skeletons

VPT 2016 (Slide 21 of 23)

Summary

A transformation method with following attributes:

- Reduces inefficient intermediate data structures using distillation.
- Encodes all inputs into a *cons*-list.
- Facilitates matching with *map* and *reduce*-based skeletons over list.
- Improvements over existing work.
 - No restrictions on programs or inputs.
 - Automatic identification of skeleton instances and operators.
 - Automatic verification of operator properties.
 - Parallel programs use fewer intermediate data structures.
- Limitations.
 - Potentially unbalanced encoded list in some cases.

Next Steps

- Efficient parallel execution with good load balancing.
- Potential solution
 - Encode inputs into new data structure to reflect recursive structure of function.
 - Transformed program potentially defined using skeletons over new data type.
 - Parallel implementations for polytypic skeletons.