
Background Distillation Encoding Transformation Skeleton Identification Conclusion

Program Transformation to Identify
List-Based Parallel Skeletons

Venkatesh Kannan and G. W. Hamilton

Dublin City University, Ireland

02 - Apr - 2016

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 1 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Background

Algorithmic skeletons used as building blocks in parallel
program development.

Positives.

Abstract away parallel implementation from developer.

Challenges.

Requires intricate analysis of underlying algorithm.
Multiple skeletons may introduce inefficient intermediate data
structures.
Potential mismatch in data structures and algorithms used by
the skeletons and the program.
Most available skeleton libraries are defined over flat data
types (list or arrays).

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 2 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Existing Work

Analytical Approaches.

Use static program analysis to rewrite recursive functions using
skeletons.
Positives.

Minimum restriction on programs and inputs.

Limitations.

Use of inefficient intermediate data structures.

Program Transformation Approaches.

Systematically transform/derive parallel functions in specific
forms.
Positives.

Structured derivation of parallel programs.

Limitations.

Restrictions on programs and inputs.
Manual derivation of operators with desired properties.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 3 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Proposed Transformation Method
Desirable Solution: Automatic + Generic - Intermediate Data.

�� ��Original Input 1
-...�� ��Original Input N

- Original Program -
�� ��Output

'

&

$

%
?

Distillation

�� ��Original Input 1
-...�� ��Original Input N

- Distilled Program -
�� ��Output

'

&

$

%
?

Encoding Transformation

�� ��Encoded List - Encoded Program -
�� ��Output

'
&

$
%

?

Skeleton Identification

�� ��Encoded List - Parallel Program -
�� ��Output

'
&

$
%

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 4 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Functional Language
e ::“ x Variable

| c e1 . . . eN Constructor Application
| e0 Function Definition

where
f p1

1 . . . p
1
M x1

pM`1q . . . x
1
N “ e1

...
f pK1 . . . pKM xK

pM`1q . . . x
K
N “ eK

| f Function Call
| e0 e1 Application
| let x1 “ e1 . . . xN “ eN in e0 let–expression
| λx .e λ–abstraction

p ::“ x | c p1 . . . pN Pattern

data T α1 . . . αM ::“ c1 t1
1 . . . t

1
N | . . . | cK tK1 . . . tKN Data Type Declaration

Notation:

Context expression – E re1, . . . , eN s

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 5 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Example: Matrix Multiplication

mMul :: rrass Ñ rrass Ñ rrass
mMul xss yss
where
mMul rs yss “ rs

mMul pxs : xssq yss “ pmap pdotp xsq ptranspose yssq q : pmMul xss yssq

dotp xs ys “ foldr p`q 0 pzipWith p˚q xs ysq

transpose yss “ transpose 1 yss rs
transpose 1 rs yss “ yss
transpose 1 pxs : xssq yss “ transpose 1 xss protate xs yssq

rotate rs yss “ yss
rotate px : xsq rs “ rxs : protate xs yssq
rotate px : xsq pys : yssq “ pys `̀ rxsq : protate xs yssq

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 6 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Distillation

An unfold/fold-based program transformation method.

Composes function definitions, reduces the number of
intermediate data structures.

Can potentially provide superlinear speedups.

deρ ::“ x deρ1 . . . de
ρ
N Variable Application

| c deρ1 . . . de
ρ
N Constructor Application

| deρ0 Function Definition
where
f p1

1 . . . p
1
M x1

pM`1q . . . x
1
N “ deρ1 . . . f pK1 . . . pKM xK

pM`1q . . . x
K
N “ deρK

| f x1 . . . xN Function Application

where f p1
1 . . . p

1
M x1

pM`1q . . . x
1
N “ deρ1 . . . f pK1 . . . pKM xK

pM`1q . . . x
K
N “ deρK

@n P t1, . . . ,Nu ¨
`

xn P ρ ñ @k P t1, . . . ,Ku ¨ pkn “ xkn
˘

| let x “ deρ0 in de
ρ Y txu
1 let–expression

| λx .deρ λ–abstraction

p ::“ x | c p1 . . . pN Pattern

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 7 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Example: Distilled Matrix Multiplication
mMul xss yss
where
mMul xss yss “ mMul1 xss yss yss

mMul1 rs zss yss “ rs

mMul1 xss rs yss “ rs

mMul1 pxs : xssq pzs : zssq yss “ let v “ λxs.g xs
where
g rs “ 0
g px : xsq “ x

in pmMul2 zs xs yss vq : pmMul1 xss zss yssq

mMul2 rs xs yss v “ rs

mMul2 pz : zsq xs yss v “ let v 1 “ λxs.g xs
where
g rs “ 0
g px : xsq “ v xs

in pmMul3 xs yss vq : pmMul2 zs xs yss v 1q

mMul3 rs yss v “ 0
mMul3 px : xsq rs v “ 0
mMul3 px : xsq pys : yssq v “ px ` pv ysqq ` pmMul3 xs yss vq

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 8 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Why Encode Inputs?

Objective = Identify skeletons in distilled program.

Potential mismatch in the data structures and algorithms used
by the skeletons and the distilled program.

Encode pattern-matched inputs of each recursive function into
a list.

Steps to Encode:

1 Declare new data type (Tf) for the encoded input of recursive
function f . Encoded list type is rTf s.

2 Define function (encodef) to encode the inputs of f .

3 Transform function f to operate over the encoded input.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 9 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

1. Declare Encoded Input Data Type (Tf)

Recursive Function
f x1 . . . xM xpM`1q . . . xN
where
f p1

1 . . . p
1
M xpM`1q . . . xN “ e1

...
...

f pK1 . . . pKM xpM`1q . . . xN “ eK

where Dk P t1, . . . ,Ku ¨ ek “ Ek

”

f xk1 . . . x
k
M xk

pM`1q . . . x
k
N

ı

Declare new type Tf with constructors c1, . . . , cK .

For each pattern pk1 . . . p
k
M of inputs x1 . . . xM

1 Use create fresh constructor ck .
2 Variables bound by constructor ck correspond to variables in

pk1 . . . p
k
M that occur in

Ek , if ek contains a recursive call to f
ek , otherwise

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 10 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

2. Define Encode Function (encodef)

Recursive Function
f x1 . . . xM xpM`1q . . . xN
where
f p1

1 . . . p
1
M xpM`1q . . . xN “ e1

...
...

f pK1 . . . pKM xpM`1q . . . xN “ eK

where Dk P t1, . . . ,Ku ¨ ek “ Ek

”

f xk1 . . . x
k
M xk

pM`1q . . . x
k
N

ı

Define function encodef to pattern-match and consume
inputs x1, . . . , xM as in f .
For each pattern pk1 . . . p

k
M of inputs

1 Create encoded list element using constructor ck .
2 Variables bound by constructor ck correspond to variables in

pk1 . . . p
k
M that occur in Ek or ek .

3 Append encoding of recursive call arguments to this encoded
list element.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 11 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Example: Encoded Data Type and Encode Function

mMul3 rs yss v “ 0

mMul3 px : xsq rs v “ 0

mMul3 (x:xs) (ys:yss) v “ px ˚ pv ysqq ` pmMul3 xs yss vq

data TmMul3 a ::“ c6

| c7

| c8 a ras

encodemMul3 rs yss “ rc6s

encodemMul3 px : xsq rs “ rc7s

encodemMul3 px : xsq pys : yssq “ rc8 x yss `̀ pencodemMul3 xs yssq

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 12 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

3. Transform Function f

Recursive Function
f x1 . . . xM xpM`1q . . . xN
where
f p1

1 . . . p
1
M xpM`1q . . . xN “ e1

...
...

f pK1 . . . pKM xpM`1q . . . xN “ eK

where Dk P t1, . . . ,Ku ¨ ek “ Ek

”

f xk1 . . . x
k
M xk

pM`1q . . . x
k
N

ı

Transform function f to function f 1 where
1 f pk1 . . . p

k
M xpM`1q . . . xN is transformed to f 1 pk xpM`1q . . . xN

Pattern pk uses ck to match the first element of encoded list.

2 f x1 . . . xM xpM`1q . . . xN is transformed to f 1 x xpM`1q . . . xN
x is the encoding of pattern-matched inputs x1, . . . , xM .

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 13 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Example: Encoded Function

mMul3 rs yss v “ 0

mMul3 px : xsq rs v “ 0

mMul3 px : xsq pys : yssq v “ px ˚ pv ysqq ` pmMul3 xs yss vq

mMul 13 pc6 : xq v “ 0

mMul 13 pc7 : xq v “ 0

mMul 13
`

pc8 x ysq : x
˘

v “ px ˚ pv ysqq ` pmMul 13 x vq

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 14 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Skeleton Identification

Transformed recursive functions are defined over encoded lists.

Identify map- and reduce-based skeletons defined over list.

Replace skeleton instance with call to library skeleton.

Eden – An extension of Haskell for parallel programming.
Skeletons include parMap, parMapReduce and other
constructs.
Add skeletons such as parMapReduce1 for non-empty lists1.

1An encoded list is always non-empty. Proof available in our paper.
Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 15 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Example: Matrix Multiplication Defined Using Skeletons
mMul 11 pc1 : xq yss “ rs

mMul 11 pc2 : xq yss “ rs

mMul1
`

pc3 xs zsq : x
˘

yss “ let v “ λxs.g xs
where
g rs “ 0
g px : xsq “ x

in pmMul 12 pencodemMul2 zsq xs yss vq : pmMul 11 x yssq

map rs f “ rs

map px : xsq f “ pf xq : pmap xs f q

mMul21 x yss “ parMap f x
where
f c1 “ rs

f c2 “ rs

f pc3 xs zsq “ let v “ λxs.g xs
where
g rs “ 0
g px : xsq “ x

in mMul22 pencodemMul2 zsq xs yss v

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 16 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Example: Matrix Multiplication Defined Using Skeletons

mMul 13 pc6 : xq v “ 0
mMul 13 pc7 : xq v “ 0
mMul 13

`

pc8 x ysq : x
˘

v “ px ˚ pv ysqq ` pmMul 13 x vq

mapRedr rs g v f “ v
mapRedr px : xsq g v f “ g pf xq pmapRedr xs g v f q

mMul23 x v “ parMapRedr1 g f x
where
g x y “ x ` y
f c6 “ 0
f c7 “ 0
f pc8 x ysq “ x ˚ pv ysq

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 17 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Example: Matrix Multiplication Defined Using Skeletons
mMul2 xss yss
where
mMul2 xss yss “ mMul21 pencodemMul1 xss yssq yss

mMul21 x yss “ parMap f x

where
f c1 “ rs

f c2 “ rs

f pc3 xs zsq “ let v “ λxs.g xs
where
g rs “ 0
g px : xsq “ x

in mMul22 pencodemMul2 zsq xs yss v

mMul22 pc4 : xq xs yss v “ rs

mMul22 pc5 : xq xs yss v “ let v 1 “ λxs.g xs
where
g rs “ 0
g px : xsq “ v xs

in pmMul23 pencodemMul3 xs yssq vq : pmMul22 x xs yss v 1q

mMul23 x v “ parMapRedr1 g f x

where
g x y “ x ` y
f c6 “ 0
f c7 “ 0
f pc8 x ysq “ x ˚ pv ysq

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 18 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Parallel Evaluation of Skeletons

Skeleton operators need to satisfy certain algebraic properties
(such as associativity, distributivity) for parallel evaluation.

Distillation can be used to automatically prove such properties
for operators.

For example, binary operator ‘ :: T Ñ T Ñ T is associative
if the following evaluates to True.

@x , y , z ¨DJ
`

x ‘ py ‘ zq
˘

““T

`

px ‘ yq ‘ z
˘

K
where
D is the distillation transformation
““T is the equality operator for type T

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 19 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Evaluation of Matrix Multiplication Example

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 20 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Evaluation of Matrix Multiplication Example

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 21 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Summary

A transformation method with following attributes:

Reduces inefficient intermediate data structures using
distillation.

Encodes all inputs into a cons-list.

Facilitates matching with map- and reduce-based skeletons
over list.

Improvements over existing work.

No restrictions on programs or inputs.
Automatic identification of skeleton instances and operators.
Automatic verification of operator properties.
Parallel programs use fewer intermediate data structures.

Limitations.

Potentially unbalanced encoded list in some cases.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 22 of 23)

Background Distillation Encoding Transformation Skeleton Identification Conclusion

Next Steps

Efficient parallel execution with good load balancing.

Potential solution

Encode inputs into new data structure to reflect recursive
structure of function.
Transformed program potentially defined using skeletons over
new data type.
Parallel implementations for polytypic skeletons.

Venkatesh Kannan and G. W. Hamilton Dublin City University, Ireland

Program Transformation To Identify List-Based Parallel Skeletons VPT 2016 (Slide 23 of 23)

	Background
	Distillation
	Encoding Transformation
	Skeleton Identification
	Conclusion

