
Dániel Horpácsi, Judit Kőszegi, Simon Thompson

„Could we design a refactoring formalism in
which any definition is inherently correct?”

Executable

Verifiable

Applicable

Intuitive

Representation-independent

Refactoring language: design goals

• Mostly declarative

• Partly Erlang-specific

• Concrete term rewriting with simple strategies

Formalism: high-level DSL

• Static analysis

• Transformation

• Pretty-printing

Interpreted in the existing refactoring framework

Execution

 Correctness of the refactoring definition: for any program, the
refactoring transformation results in a semantically equivalent program

 Correctness of a refactoring application: the original and the resulting
program are semantically equivalent

 Consequently, the refactoring correctness is relative to
 The language semantics

 The language metatheory

 (The existing framework is not subject to this verification)

Verification

Refactoring

Prime

Local Extensive

Scheme
instance

Composite

The smaller the better

 Local

 a single conditional rewrite rule

 Extensive

 combination of rules

 Composite

 combination of refactorings

Types of refactoring definitions

A local example

[X*Y || X <- Numbers1,

Y <- Numbers2,

X > Y]

List = [{X, Y} || X <- Numbers1, Y <- Numbers2, X>Y],

Fun = fun({X, Y}) -> X*Y end,

lists:map(Fun, List)

REFACTORING listcomp2map()

[Head || GeneratorsFilters..]

List = [{ Vars.. } || GeneratorsFilters..],

Fun = fun ({ Vars.. }) -> Head end,

lists:map(Fun, List)

WHEN

Vars.. = intersect(bound_vars(GeneratorsFilters..), vars(Head)))

AND fresh(List)

AND fresh(Fun)

Correctness of refactoring

Equivalence of program patterns

Validity in reachability logic

Proving correctness

 Operational semantics (+metatheory) defined in reachability logic

 Special sort: configuration

 Special predicate: basic pattern

 Pairs of pure patterns

 Equivalence property expressed in reachability logic

 Pairs of pure patterns with configuration pairs

 Symbolic circular coinduction to derive formula validity

 Sound but not complete

 Tactic and implementation for automatic proofs

Proving equivalence

REFACTORING rename_function(NewName)

ON function_definition(THIS)

Name(Args..) -> Body..

NewName(Args..) -> Body..

WHEN NOT function_exists(module(THIS), NewName, length(Args..))

THEN ON function_calls(THIS)

Name(Args..)

NewName(Args..)

THEN ON ...

THEN ON ...

An extensive example

 Guarantee consistent changes

 Hide the complexity of extensive refactorings

 Simplify definition and verification by splitting into two parts

 Contract on the parameters ensures correctness

Schemes

Scheme

Skeleton

Parameters
w.r.t. contract

Rewrite rules

Skeleton Applying the signature rewrite (name + args) on the function
definition and every function reference (calls, directives, etc.)

Parameter A „function head” rewrite rule specifying how the signature is
changed

Contract Formal and generality requirements on the arguments

Function signature refactoring

FUNCTION SIGNATURE REFACTORING rename_function(NewName)

Name(Args..)

NewName(Args..)

Examples

FUNCTION SIGNATURE REFACTORING tuple_function_arguments()

Name(Args..)

Name({Args..})

Skeleton Applying any of the „definition” rules on the selected data
source and applying any of the „reference” rules on each
element of the dataflow path

Parameters At least one „definition” transformation rule and at least one
„reference” trasformation rule

Contract Each pair of „definition” and „reference” rules are consistent

Forward dataflow refactoring

FORWARD DATAFLOW REFACTORING fun2value()

DEFINITION

fun() -> E end

---------------- WHEN pure(E)

E

REFERENCE F

F()

F

Example

X = 123,

some_code(),

Y = X + 1,

X - 5

X = fun() -> 123 end,

some_code(),

Y = X() + 1,

X() - 5

Pre-proved
skeleton

Valid
rewrite

rules
Refactoring

Correctness of scheme instances

Simple, executable formalism for defining refactorings

Local, extensive and composite definitions

High-level refactoring schemes for extensive transformations

A method for turning any refactoring definition into a formally verifiable logic formula

Towards trustworthy refactoring

