
Hybrid Information Flow Analysis
for Programs with Arrays

VPT 2016, April 2, 2016 | Gergö Barany gergo.barany@cea.fr

Information �ow analysis 1/2

Information �ow analysis

pieces of data tagged with labels

public/secret
provenance (Internet domain, software component, . . .)

analysis propagates labels to all a�ected data/computations

Flow policies de�ne how information may �ow

Examples:

personal data may not �ow to send(1) syscall

cryptographic keys may not a�ect branch conditions

packet routing may only depend on packet header, not payload

CEA | April 2, 2016 | p. 2

Information �ow analysis 1/2

Information �ow analysis

pieces of data tagged with labels

public/secret
provenance (Internet domain, software component, . . .)

analysis propagates labels to all a�ected data/computations

Flow policies de�ne how information may �ow

Examples:

personal data may not �ow to send(1) syscall

cryptographic keys may not a�ect branch conditions

packet routing may only depend on packet header, not payload

CEA | April 2, 2016 | p. 2

Information �ow analysis 2/2

Information �ow lattice
Labels form �nite lattice 〈S ,t,v,⊥〉

example: S = {L,H} where L (public) @ H (private)

example: software components S = P({C1, . . . ,Cn})

Non-interference property

`secret inputs do not a�ect public outputs'

enforced by our analysis (for user-de�ned labels and policy)

CEA | April 2, 2016 | p. 3

Contributions

Contributions of this work

extended hybrid (static/dynamic) analysis for C to handle
arrays and pointer arithmetic

machine-checked proof of non-interference property for
underlying semantics (Isabelle/HOL)

CEA | April 2, 2016 | p. 4

Hybrid analysis: basics (earlier work)

Dynamic analysis (program transformation): introduce label
variable x for each variable x, assignment to x for assignment to x

Direct information �ow

z = x + y;

→ z = x | y; /* combination operator | (bitwise or) */

Pointer-based �ow

p = z; / assume p 7→ {x, y} */
→ *p_d1 = z; /* maintain invariant p 7→ v ⇔ p_d1 7→ v */

→ x = x | p; /* propagate p to all possible targets */

→ y = y | p;

Possible pointer targets found by static analysis

CEA | April 2, 2016 | p. 5

Hybrid analysis: basics (earlier work)

Dynamic analysis (program transformation): introduce label
variable x for each variable x, assignment to x for assignment to x

Direct information �ow

z = x + y;

→ z = x | y; /* combination operator | (bitwise or) */

Pointer-based �ow

p = z; / assume p 7→ {x, y} */
→ *p_d1 = z; /* maintain invariant p 7→ v ⇔ p_d1 7→ v */

→ x = x | p; /* propagate p to all possible targets */

→ y = y | p;

Possible pointer targets found by static analysis

CEA | April 2, 2016 | p. 5

Hybrid analysis: basics (earlier work)

Dynamic analysis (program transformation): introduce label
variable x for each variable x, assignment to x for assignment to x

Direct information �ow

z = x + y;

→ z = x | y; /* combination operator | (bitwise or) */

Pointer-based �ow

p = z; / assume p 7→ {x, y} */
→ *p_d1 = z; /* maintain invariant p 7→ v ⇔ p_d1 7→ v */

→ x = x | p; /* propagate p to all possible targets */

→ y = y | p;

Possible pointer targets found by static analysis

CEA | April 2, 2016 | p. 5

Information �ow analysis for arrays 1/2

Naïve approach

Array elements independent of each other

arr[1] = x;

→ arr[1] = x;

y = arr[0];

→ y = arr[0];

Problem
Array elements not independent of index

arr[] = { 0, 0, ..., 0 };

arr[secret] = 1;

y = arr[0];

Have y = 1⇔ secret = 0, so 1 bit leaked from secret to y

CEA | April 2, 2016 | p. 6

Information �ow analysis for arrays 1/2

Naïve approach

Array elements independent of each other

arr[1] = x;

→ arr[1] = x;

y = arr[0];

→ y = arr[0];

Problem
Array elements not independent of index

arr[] = { 0, 0, ..., 0 };

arr[secret] = 1;

y = arr[0];

Have y = 1⇔ secret = 0, so 1 bit leaked from secret to y

CEA | April 2, 2016 | p. 6

Information �ow analysis for arrays 2/2

Problem

arr[secret] = 1;

y = arr[0];

Solution
Use extra summary label for arrays

arr[secret] = 1;

→ arr_summary |= secret; /* weak update */

y = arr[0];

→ y = arr_summary; /* �eld-insensitive read */

Summary captures all �ows into the array, increases monotonically

CEA | April 2, 2016 | p. 7

Interaction of arrays and pointers 1/2

Invariants

p 7→n x⇔ pn 7→n x

pointer arithmetic on p is re�ected on p

need both exact and summary pointers

arr •

v

•

w

p

arr_sum arr •

v

•

w

p2

?arr_sumold | z

CEA | April 2, 2016 | p. 8

Interaction of arrays and pointers 1/2

Invariants

p 7→n x⇔ pn 7→n x

pointer arithmetic on p is re�ected on p

need both exact and summary pointers

arr •

v

•

w

p

arr_sum arr •

v

•

w

p2

?arr_sumold | z

p = &arr[2];
→ p2 = &arr[2];

CEA | April 2, 2016 | p. 8

Interaction of arrays and pointers 1/2

Invariants

p 7→n x⇔ pn 7→n x

pointer arithmetic on p is re�ected on p

need both exact and summary pointers

arr •

v

•

w

p q

arr_sum arr •

v

•

w

p2 q2

?arr_sumold | z

p = &arr[2];
p2 = &arr[2];

q = p + 1;

→ q2 = p2 + 1;

CEA | April 2, 2016 | p. 8

Interaction of arrays and pointers 1/2

Invariants

p 7→n x⇔ pn 7→n x

pointer arithmetic on p is re�ected on p

need both exact and summary pointers

arr •

v

z

p q

arr_sum arr •

v

z1

p2 q2

?

arr_sumold | z

p = &arr[2];
p2 = &arr[2];

q = p + 1;

q2 = p2 + 1;

*q = z;

*q2 = z1;

CEA | April 2, 2016 | p. 8

Interaction of arrays and pointers 1/2

Invariants

p 7→n x⇔ pn 7→n x

pointer arithmetic on p is re�ected on p

need both exact and summary pointers

arr •

v

z

p q

arr_sum arr •

v

z1

p2 q2p_sum q_sum

?

arr_sumold | z

p = &arr[2];
p2 = &arr[2];

→ p_sum = &arr_sum;

q = p + 1;

q2 = p2 + 1;

→ q_sum = p_sum;

*q = z;

*q2 = z1;

→ *q_sum |= z;

CEA | April 2, 2016 | p. 8

Interaction of arrays and pointers 2/2

Main new invariant
if p 7→n arr[i], we need:

p_summaryn 7→n arr_summary

pn 7→n arr[i]

Two status pointers per dereference level

for int *b[10]:

int b_status; /* array summary */
int b_status_d0[10]; /* statuses of array elems */
int *b_status_d1_summary[10]; /* pointers to summaries */
int *b_status_d1[10]; /* pointers to exact target statuses */

CEA | April 2, 2016 | p. 9

Soundness

Monitor semantics

extend semantic judgements: E ` prog ,M ⇒ M ′

with label memory: E , SP , pc ` prog ,M, Γ⇒ M ′, Γ′

M(b): value of memory block b, Γ(b): label of b

semantic rules extended to update Γ using alias analysis SP

Soundness proof

showed that our rules for Γ have non-interference property

change b with Γ(b) 6v s ⇒ Γ′(c) 6v s for changed outputs c

full development: 1900 lines of Isabelle/HOL

Future work
show that program transformation correctly computes Γ

CEA | April 2, 2016 | p. 10

Soundness

Monitor semantics

extend semantic judgements: E ` prog ,M ⇒ M ′

with label memory: E , SP , pc ` prog ,M, Γ⇒ M ′, Γ′

M(b): value of memory block b, Γ(b): label of b

semantic rules extended to update Γ using alias analysis SP

Soundness proof

showed that our rules for Γ have non-interference property

change b with Γ(b) 6v s ⇒ Γ′(c) 6v s for changed outputs c

full development: 1900 lines of Isabelle/HOL

Future work
show that program transformation correctly computes Γ

CEA | April 2, 2016 | p. 10

Soundness

Monitor semantics

extend semantic judgements: E ` prog ,M ⇒ M ′

with label memory: E , SP , pc ` prog ,M, Γ⇒ M ′, Γ′

M(b): value of memory block b, Γ(b): label of b

semantic rules extended to update Γ using alias analysis SP

Soundness proof

showed that our rules for Γ have non-interference property

change b with Γ(b) 6v s ⇒ Γ′(c) 6v s for changed outputs c

full development: 1900 lines of Isabelle/HOL

Future work
show that program transformation correctly computes Γ

CEA | April 2, 2016 | p. 10

Implementation 1/2

Prototype implementation in Frama-C

program transformation, annotations to express �ow policy

extern unsigned int /*@ private */ secret;

extern unsigned int /*@ public */ public;

int secret_status = 1, public_status = 0;

int main(void) {

int result;

result = public + secret;

result_status = public_status | secret_status;

/*@ assert security_status(result) == private; */

/*@ assert result_status == 1; */

return result;

}

CEA | April 2, 2016 | p. 11

Implementation 1/2

Prototype implementation in Frama-C

program transformation, annotations to express �ow policy

extern unsigned int /*@ private */ secret;

extern unsigned int /*@ public */ public;

int secret_status = 1, public_status = 0;

int main(void) {

int result;

result = public + secret;

result_status = public_status | secret_status;

/*@ assert security_status(result) == private; */

/*@ assert result_status == 1; */

return result;

}

CEA | April 2, 2016 | p. 11

Implementation 2/2

Status

uses Frama-C's points-to analysis (Value)

arrays, pointers, structures, control �ow, function calls

TODO: semi-structured control �ow (continue, early return)

annotations checked dynamically or statically (Value, WP)

real-world case studies: coming soon

CEA | April 2, 2016 | p. 12

Summary

hybrid information �ow analysis handling pointers, arrays,
pointer arithmetic

monitor semantics proved correct, proof of transformation WIP

prototype implementation in Frama-C

Thank you for your attention!

This work was supported by the French National Research Agency (ANR), project AnaStaSec,

ANR-14-CE28-0014.

CEA | April 2, 2016 | p. 13

Summary

hybrid information �ow analysis handling pointers, arrays,
pointer arithmetic

monitor semantics proved correct, proof of transformation WIP

prototype implementation in Frama-C

Thank you for your attention!

This work was supported by the French National Research Agency (ANR), project AnaStaSec,

ANR-14-CE28-0014.

CEA | April 2, 2016 | p. 13

