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We present a method for verifying the correctness of an imperative program with respect to a spec-
ification defined in terms of a set of possibly recursive Horn clauses. Given a program prog, we
consider a partial correctness specification of the form {ϕ} prog {ψ}, where the assertions ϕ and ψ

are predicates defined by a set Spec of Horn clauses. The verification method consists in: (i) encoding
the function computed by the program prog (according to the semantics of the imperative language)
as a set OpSem of clauses, and then (ii) constructing a set PC of Horn clauses and a predicate p
such that if p is false in the least model of PC, that is, M(PC) 6|= p, then {ϕ} prog {ψ} is valid.
We also present an extension of the verification method for showing total correctness of programs.
Then we present a general proof technique based on unfold/fold transformations of Horn clauses, for
checking whether or not M(PC) |= p holds. We also outline a strategy for guiding the application of
the unfold/fold transformation rules and performing correctness proofs in an automatic way. Finally,
we show some experimental results based on a preliminary implementation of our method.

Keywords: Program verification, Horn clauses, Partial and total correctness specifications, Constraint
Logic Programming, Program transformation.

1 Introduction

The main objective of program verification is to prove in a systematic, computer-aided way that programs
are correct or, in other words, that programs meet their specifications. In this paper we deal with the
problem of automatically proving the correctness of sequential, imperative programs.

One of the most established methodologies for specifying and proving program correctness is based
on the Floyd-Hoare axiomatic approach (see [16] and also [4] for a recent presentation dealing with both
sequential and concurrent programs). By following this approach, one can express partial and total cor-
rectness properties. A partial correctness specification of a program prog is a Hoare triple {ϕ} prog {ψ},
where the precondition ϕ and the postcondition ψ are assertions in first order logic, meaning that if the
input values of prog satisfy ϕ and program execution terminates, then the output values satisfy ψ . A
total correctness specification is a partial correctness specification whose program prog terminates for all
input values satisfying ϕ .

It is well-known that the problem of verifying whether or not a (partial or total) correctness specifica-
tion holds is undecidable for Turing complete programming languages. In particular, the undecidability
of partial correctness is due to the fact that in order to prove the validity of a triple {ϕ} prog {ψ} using
Hoare logic, (i) we have to look for suitable auxiliary assertions, the so-called invariants, in an infinite
space of formulas, and (ii) we have to establish logical validity of assertions, which is an undecidable
problem.
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Thus, the best way we can address the problem of automating program verification is to design
incomplete methods that work well in many practical cases. Some of these methods are based on abstract
interpretation [6], whereby the search for invariants is restricted to a finitely generated set of formulas
where validity is decidable. The most popular invariant generation techniques for programs manipulating
integer variables restrict the search to the set of linear arithmetic constraints [7].

In recent years, several techniques for verifying programs that manipulate integers by generating
linear arithmetic assertions, have been proposed (see, for instance, [1, 5, 8, 18, 15, 27, 28, 32]). Some
of them use a representation of the program logic using Horn clauses and linear arithmetic constraints.
This representation enables the use of very effective reasoning tools, such as constraint solvers [10] and
Constraint Logic Programming (CLP) systems [17]. However, a strong limitation of these techniques is
that they cannot be used to prove partial correctness of programs whenever either the preconditions or
the postconditions are not linear arithmetic constraints.

One approach that has been followed to overcome the linearity limitation is to devise methods for
generating polynomial invariants and proving specifications with polynomial arithmetic constraints (see,
for instance [30, 31]). This approach also requires the development of solvers for polynomial constraints,
which is a very complex task on its own, as the satisfiability of these constraints on the integers is
undecidable for polynomials of degree greater than 1 [24].

In this paper we propose an approach to proving specifications of the form {ϕ} prog {ψ} where the
assertions ϕ and ψ are predicates defined by a set Spec of Horn clauses with linear arithmetic constraints,
that is, by a CLP program. Thus, Spec can specify any computable function. Then, we translate the
problem of proving the validity of {ϕ} prog {ψ} into the problem of answering suitable queries to a
CLP program, and in order to answer those queries, we apply some transformation strategies making use
of the well-known unfold/fold rules for CLP programs [12]. Clearly, by the incompleteness limitations
mentioned above, we do not have, in general, any guarantee of success for our transformation strategies.

The main contributions of this paper are the following.
(1) We consider partial correctness specifications of the form {ϕ} prog {ψ}, where ϕ and ψ are pred-
icates defined by a CLP program, and prog is a program written in a C-like imperative language. We
show how to construct a CLP program PC and a query p, starting from the assertions ϕ and ψ and
the definition of the operational semantics of the imperative language, such that, if M(PC) 6|= p, then
{ϕ} prog {ψ} is valid. We also present a similar construction of a CLP program when we are given a
total correctness specification.
(2) We define a proof technique that can be applied to prove that M(PC) 6|= p, hence proving the partial
correctness of prog with respect to ϕ and ψ . Our proof technique is based on suitable transformations of
the CLP program PC. In particular, our technique makes use of the unfold/fold rules to derive a linear
recursive definition of p, and then applies the specialization strategies presented in [8], which work on
linear recursive CLP programs.
(3) We have implemented our proof technique on the VeriMAP transformation-based verifier [9] and
we show that the verifier proves partial correctness of some programs whose specifications are given in
terms of predicates defined by a CLP program, but not expressible by linear arithmetic constraints only.

2 Transformation of Constraint Logic Programs

In this section we recall the basic notions of Constraint Logic Programming and program transformation
that will be used in this paper.

A CLP program is a finite set of clauses of the form A← c,G, where A is an atom, c is a constraint
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(that is, a possibly empty conjunction of linear equalities and inequalities over the integers), and G is a
goal (that is, a possibly empty conjunction of atoms). A clause of the form A← c is called a constrained
fact. The semantics of constraints is defined by the usual interpretation based on linear integer arithmetic.
The semantics of a CLP program P is defined as its least model, denoted M(P). For other notions of CLP
with which the reader might not be familiar, we refer to [17].

Given a first order formula ϕ , we denote by ∃(ϕ) its existential closure and by ∀(ϕ) its universal
closure.

Our verification method is based on an encoding of the verification problem by using CLP programs,
and on the application of transformation rules that preserve the least model of CLP programs [12]. In par-
ticular, we apply the following transformation rules, collectively called unfold/fold rules: (i) definition,
(ii) unfolding, (iii) clause removal, and (iv) folding.

Let P be a CLP program and Defs be a set of definition clauses, that is, clauses of the form
p(X)← c,G such that p has a single occurrence in P∪Defs.
Definition Rule. By this rule we introduce a new definition clause of the form newp(X)← c,G, where
newp is a new predicate symbol, X is a tuple of variables occurring in (c,G), c is a constraint, and G is a
non-empty conjunction of atoms.
Unfolding Rule. Given a clause C of the form H← c,L,A,R, where H and A are atoms, c is a constraint,
and L and R are (possibly empty) conjunctions of atoms, let us consider the set {Ki← ci,Bi | i= 1, . . . ,m}
made out of the (renamed apart) clauses of P such that, for i= 1, . . . ,m, A is unifiable with Ki via the
most general unifier ϑi and (c,ci)ϑi is satisfiable. By unfolding C w.r.t. A using P, we derive the set
{(H← c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.
Folding Rule. Given a clause E of the form: H← e,L,Q,R and a clause D in Defs of the form K← d,D
such that: (i) for some substitution ϑ , Q = Dϑ , and (ii) ∀(e→d ϑ) holds, then by folding E using D we
derive H← e,L,Kϑ ,R.
Removal of Useless Clauses. The set of useless predicates in a given program Q is the largest set U
of predicates occurring in Q such that p is in U iff every clause with head predicate p is of the form
p(X)← c,G1,q(Y ),G2, for some q in U . A clause in a program Q is useless if the predicate of its head
is useless in Q.

The transformation rules are applied according to the Transform strategy outlined in Figure 1 below.
The Transform strategy is executed in a fully automatic way if we first provide a procedure for the

UNFOLDING steps and a procedure for the DEFINITION & FOLDING steps. Both the termination of the
Transform strategy and its output program depend on these two procedures. There is a vast literature
on the problems of: (i) controlling the unfolding steps, and (ii) determining the new predicates to be
introduced for performing the subsequent folding steps (see, for instance, [11, 14, 21, 26]). In Section 5
we will return to this point and we will consider suitable UNFOLDING and DEFINITION & FOLDING

procedures that will be used in this paper.
By an instance of the Transform strategy we mean the Transform strategy that uses some fixed UN-

FOLDING and DEFINITION & FOLDING procedures. The correctness of the strategy is independent of the
specific UNFOLDING and DEFINITION & FOLDING procedures, and directly follows from the fact that
the application of the transformation rules complies with suitable conditions that guarantee the preserva-
tion of the least model [12].

Theorem 1 (Correctness of the Transform strategy) Suppose that an instance of the Transform strat-
egy terminates for a given input program P and input clause p(X)←B belonging to P. Let TransfP be the
program that is the output of the strategy. Then, for all ground terms t, p(t)∈M(P) iff p(t)∈M(TransfP).
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Input: (i) Program P, and (ii) clause C in P of the form: p(X) ← B, where p does not occur in
(P−{C})∪{B}.
Output: Program TransfP such that, for all ground terms t, p(t)∈M(P) iff p(t)∈M(TransfP).

INITIALIZATION:
TransfP := /0; InDefs := {p(X)← B}; Defs := InDefs;

while in InDefs there is a clause C do
UNFOLDING: Apply the unfolding rule at least once, thereby deriving from C a set U(C)
of clauses;

DEFINITION & FOLDING: Introduce a (possibly empty) set NewDefs of new predicate
definitions and add them to Defs and to InDefs;
Fold the clauses in U(C) that are different from constrained facts by using the clauses in
Defs, thereby deriving a set F(C) of clauses;

InDefs := InDefs−{C}; TransfP := TransfP∪F(C);
end-while;

REMOVAL OF USELESS CLAUSES:
Remove from TransfP all clauses whose head predicate is useless.

Figure 1: The Transform strategy.

3 Translating Imperative Programs and Specifications into CLP

We consider a C-like imperative programming language with integer variables, assignments (=), condi-
tionals (if else), while loops (while), and jumps (goto). A program is a sequence of labeled com-
mands, and in each program there is a unique halt command that, when executed, causes program
termination.

The semantics of our language is defined by a transition relation, denoted =⇒, between configu-
rations. Each configuration is a pair 〈〈` : c,δ 〉〉 of a labeled command ` : c and an environment δ . An
environment δ is a function that maps every integer variable identifier x to its value v in the integers Z.
The definition of the relation =⇒ is similar to the ‘small step’ operational semantics given in [29], and
is omitted. Given a program prog we denote by `0 :c0 its first labeled command.

We assume that all program executions are deterministic in the sense that, for every environment δ0,
there exists a unique, maximal (possibly infinite) sequence of configurations, called computation se-
quence, of the form: 〈〈`0 : c0, δ0〉〉 =⇒ 〈〈`1 :c1, δ1〉〉 =⇒ ··· . We assume that every finite computation
sequence ends in the configuration 〈〈`h :halt, δh〉〉, for some environment δh. We say that a program
prog terminates for δ0 iff the computation sequence starting from the configuration 〈〈`0 : c0, δ0〉〉 is a
finite sequence.

3.1 Specifying Program Correctness
We address the problem of verifying the partial or the total correctness of an imperative program prog
with respect to a precondition ϕ and a postcondition ψ [16]. A partial correctness specification is a triple
{ϕ} prog{ψ} (often called a Hoare triple), and a total correctness specification is a triple [ϕ] prog [ψ]
(see, for instance, [29] for this notation). On partial and total correctness specifications we make the
assumptions listed in the following definition.
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Definition 1 (Functional Horn Specification) A partial correctness triple {ϕ} prog {ψ}, or a total cor-
rectness triple [ϕ] prog [ψ], is said to be a functional Horn specification if the following assumptions
hold.
(1) The predicates occurring in the formulas ϕ and ψ are defined by a CLP program Spec;
(2) ϕ is a formula of the form z1 = p1 ∧ . . .∧ zs = ps ∧ pre(p1, . . . , ps), where z1, . . . ,zs are the variables

occurring in prog, the symbols p1, . . . , ps are variables (distinct from the zi’s), called parameters,
and pre(p1, . . . , ps) is a predicate defined by Spec (informally, the predicate pre determines the initial
values of the zi’s);

(3) ψ is a formula of the form f (p1, . . . , ps,zk), where zk is a variable in {z1, . . . ,zs}, and f is a predicate
defined by Spec (informally, zk is the variable whose final value is the result of the computation
of prog);

(4) f is a functional relation which is total on the predicate pre, in the sense that the following two
satisfiability relations hold:
(4.1) M(Spec) |= ∀p1, . . . , ps,y1,y2. f (p1, . . . , ps,y1)∧ f (p1, . . . , ps,y2)→ y1=y2 (functionality)
(4.2) M(Spec) |= ∀p1, . . . , ps. pre(p1, . . . , ps)→∃y. f (p1, . . . , ps,y) (totality on pre)

Note that Condition (4) is not restrictive, as every program, being deterministic, computes a functional
relation, that is, a function from the inputs of the program to the output of the program. Note also that
our definition of a functional Horn specification can easily be extended to the case of postconditions of
the more general form: f (p1, . . . , ps,y1, . . . ,yq) with {y1, . . . ,yq} ⊆ {z1, . . . ,zs}.

Now let us introduce the notions of partial and total correctness. These notions are instances of the
standard ones.

We say that a functional Horn specification {ϕ} prog {ψ} satisfying Conditions (1–4) of Definition 1
is valid, or prog is partially correct with respect to ϕ and ψ , iff for all environments δ0,
if M(Spec)|= pre(δ0(z1), . . . ,δ0(zs)) holds (in words, δ0 satisfies pre) and 〈〈`0 :c0,δ0〉〉=⇒∗ 〈〈`h :halt,δh〉〉
(in words, prog terminates for δ0) holds, then M(Spec) |= f (δ0(z1), . . . ,δ0(zs),δh(zk)) holds.

We say that a functional Horn specification [ϕ] prog [ψ] is valid, or prog is totally correct with
respect to ϕ and ψ , iff for all environments δ0,
if M(Spec) |= pre(δ0(z1), . . . ,δ0(zs)) holds, then both 〈〈`0 :c0, δ0〉〉 =⇒∗ 〈〈`h :halt, δh〉〉 and M(Spec) |=
f (δ0(z1), . . . ,δ0(zs),δh(zk)) hold.

The relation computed by prog according to the operational semantics of our imperative language, is
denoted by the predicate rprog defined by a CLP program OpSem as follows (as usual, we use upper-case
letters to denote variables of CLP programs):

R. rprog(P1, . . . ,Ps,Zk)← initConf (Cf0,P1, . . . ,Ps), reach(Cf0,Cfh), finalConf (Cfh,Zk)

where:
(1) initConf (Cf0,P1, . . . ,Ps) represents the initial configuration Cf0, where the variables z1, . . . ,zs are

bound to the values P1, . . . ,Ps, respectively, and P1, . . . ,Ps satisfy the property pre(P1, . . . ,Ps);
(2) reach(Cf0,Cfh) represents the transitive closure =⇒∗ of the transition relation =⇒, which in turn is

represented by a predicate tr(C1,C2) that encodes the operational semantics of our imperative lan-
guage, that is, the interpreter of the language in which prog is written, by relating an old configura-
tion C1 to a new configuration C2;

(3) finalConf (Cfh,Zk) represents a final configuration Cfh, where the variable zk is bound to the value Zk.

(Obviously, also the clauses defining the predicates pre(P1, . . . ,Ps) and tr(C1,C2) are included in OpSem.)
The clauses defining the predicate tr(C1,C2) for our imperative language can be found in [8]. As an
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example, here we now show only the clause for tr in the case of an assignment command with label ` of
the form ` : x = a, where a is a side effect free expression:
tr(cf(cmd(L,asgn(X,expr(A))),E), cf(cmd(L1,C),E1)) :-

eval(A,E,V), update(E,X,V,E1), nextlab(L,L1), at(L1,C).

The term cf(LC,E) encodes the configuration consisting of a labeled command LC and an environ-
ment E. The term cmd(L,C) encodes the command C with label L. The term asgn(X,expr(A)) encodes
the assignment of the value of the expression A to the variable X. The predicate eval(A,E,V) computes
the value V of the expression A in the environment E. The predicate update(E,X,V,E1) updates the envi-
ronment E by binding the variable X to the value V, thereby deriving a new environment E1. The predicate
nextlab(L,L1) states that L1 is the label of the command that immediately follows the command with
label L in prog. The predicate at(L,C) states that C is the command with label L.

Due to the fact that, by definition, the execution of the program prog is deterministic, the predicate
rprog defined by OpSem is a functional relation (which is not necessarily a total relation on pre).

Moreover, a program prog, with variables z1, . . . ,zs, terminates for an environment δ0 such that:
(i) δ0(z1)= p1, . . . , δ0(zs)= ps, and (ii) δ0 satisfies pre, iff rprog(p1, . . . , ps,y) holds for some integer y.

Thus, we have the following lemma.
Lemma 1 (i) The predicate rprog defined by OpSem is a functional relation, that is, the following holds :

M(OpSem) |= ∀p1, . . . , ps,y1,y2. rprog(p1, . . . , ps,y1)∧ rprog(p1, . . . , ps,y2)→ y1=y2.
(ii) Moreover, a program prog terminates for any environment δ0 such that δ0(z1)= p1, . . . ,δ0(zs)= ps,
if and only if the following holds :

M(OpSem) |= pre(p1, . . . , ps)→∃y. rprog(p1, . . . , ps,y).

Example 1 (Fibonacci Numbers) Let us consider the following program fibonacci which assigns to the
variable u the n-th Fibonacci number, for any n≥ 0, having initialized u to 1 and v to 0.

0: while (n>0) { t=u; u=u+v; v=t; n=n-1 } f ibonacci
h: halt

The partial correctness of fibonacci is specified by the following Hoare triple:
{n=N, N>=0, u=1, v=0, t=0} fibonacci {fib(N,u)} (‡)

where N is a parameter and the predicate fib is defined by the following set Specf ibonacci of clauses:

S1. fib(0,1). Specf ibonacci
S2. fib(1,1).

S3. fib(N3,F3) :- N1>=0, N2=N1+1, N3=N2+1, F3=F1+F2, fib(N1,F1), fib(N2,F2).

For reasons of conciseness, in the above specification (‡) we have slightly deviated from Definition 1, and
in the precondition and postcondition we did not introduce the parameters which have constant values.
In particular, instead of writing ‘u=U, U=1’ and considering U as one of the arguments of fib, we have
simply written ‘u=1’. Analogously, for the variables v and t.

The relation r_fibonacci computed by the program fibonacci according to the operational seman-
tics, is defined by the following set OpSemfibonacci of clauses:

OpSemf ibonacci

R1. r_fibonacci(N,U) :- initConf(Cf0,N), reach(Cf0,Cfh), finalConf(Cfh,U).

R2. initConf(cf(LC,E),N) :- N>=0, U=1, V=0, T=0, firstComm(LC), env((n,N),E),

env((u,U),E), env((v,V),E), env((t,T),E).

R3. finalConf(cf(LC,E),U) :- haltComm(LC), env((u,U),E).
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where:
(i) reach(Cf1,Cf2) holds iff the configuration Cf2 is reachable from the configuration Cf1 by a com-

putation sequence of program fibonacci,
(ii) firstComm(LC) holds iff LC is the labeled command with label 0 of the program fibonacci,
(iii) haltComm(LC) holds iff LC is the labeled command h:halt, and
(iv) env((x,X),E) holds iff in the environment E the variable x is bound to the value X.

3.2 Proving Partial Correctness via CLP
In this section we show how the problem of proving the validity of a functional Horn specification
{ϕ} prog {ψ} of partial correctness, as defined in Section 3.1 (see in particular Definition 1), can be
encoded by using CLP programs. Thus, we assume that we are given a CLP program Spec and the
functional relation f defined by Spec.

For reasons of simplicity, we also assume that no predicate depends on f in Spec, that is, Spec can
be partitioned into two sets of clauses, F and Aux, where F is the set of clauses with head predicate f
and f does not occur in Aux.

We have the following two theorems whose proofs are given in the Appendix.

Theorem 2 (Partial Correctness) Let Fpc be the set of clauses derived from F as follows :
for each clause C∈F of the form f (X1, . . . ,Xs,Y )← B,
(1) the formula Q : Y 6=Z ∧ f (X1, . . . ,Xs,Z) ∧ B , where Z is a new variable, is derived from C,
(2) every occurrence of f in Q is replaced by rprog, hence deriving a formula E of the form :

Y 6=Z ∧ rprog(X1, . . . ,Xs,Z) ∧ B′, and
(3) the following two clauses are derived from E :

p1← Y >Z, rprog(X1, . . . ,Xs,Z), B′

p2← Y <Z, rprog(X1, . . . ,Xs,Z), B′

where p1 and p2 are two new predicate symbols.
Suppose that, for all clauses D in Fpc, M(OpSem∪Aux∪{D}) 6|= p, where p is the head of D. Then
{ϕ} prog {ψ} is valid.

3.3 Proving Total Correctness via CLP
Also the problem of proving the validity of a functional Horn specification [ϕ] prog[ψ] of total correct-
ness, as defined in Section 3.1, can be encoded by using CLP programs. For this task we consider the
class of the stratified CLP programs which is an extension of the class of CLP programs introduced in
Section 2. In this extended class we allow negative literals to occur in the body of a clause. For a stratified
program P, we denote by M(P) its unique perfect model [3].

Theorem 3 (Total Correctness) Let Ftc be the set of clauses derived from F as follows:
for each clause C∈F of the form f (X1, . . . ,Xs,Y )← B,
(1) the formula N : ¬f (X1, . . . ,Xs,Y )∧B is derived from C,
(2) every occurrence of f in N is replaced by rprog, hence deriving a formula G of the form :
¬rprog(X1, . . . ,Xs,Y )∧B′

(3) the following clause is derived from G :
p←¬rprog(X1, . . . ,Xs,Z), B′

where p is a new predicate.
Suppose that, for all clauses D in Ftc, M(OpSem∪Aux∪{D}) 6|= p, where p is the head of D. Then
[ϕ] prog [ψ] is valid.
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4 Proving Partial Correctness by Transforming CLP Programs

In this section we outline a method for performing correctness proofs based on the transformation rules
and the Transform strategy presented in Section 2. For reasons of simplicity, we only deal with the
problem of proving partial correctness, which by using Theorem 2 can be encoded in CLP without using
negation. We leave it for future study the extension of our method to the problem of proving total
correctness.

Suppose that, as required by Theorem 2, we want to prove that M(OpSem∪Aux∪{D}) 6|= p. Our
method consists in applying various instances of the Transform strategy starting from the program
OpSem∪Aux∪{D} with the objective of deriving a new program T such that either (i) in T predicate p
is defined by the empty set of clauses, or (ii) in T there is a fact p←.

In case (i) we have that M(T ) 6|= p and hence, by Theorem 1, M(OpSem∪Aux∪{D}) 6|= p. In case
(ii) we have that M(T ) |= p and hence, by Theorem 1, M(OpSem∪Aux∪{D}) |= p. Clearly, due to the
undecidability of partial correctness, our method is incomplete, and we might derive a program T where
neither case (i) nor case (ii) holds.

In the rest of this section we illustrate our method of proving partial correctness of programs on
the particular example presented in Section 1 where we have considered a program for computing the
Fibonacci numbers. In the next section we will indicate how to automatize our proof method in the
general case.

In the Fibonacci example the set of clauses F is the whole Specf ibonacci and Aux is the empty set. By
following Points (1), (2), and (3) of Theorem 2, from the set Specfibonacci of clauses (see Example 1) we
generate the following six clauses:

D1. p1 :- F>1, r_fibonacci(0,F).

D2. p2 :- F<1, r_fibonacci(0,F).

D3. p3 :- F>1, r_fibonacci(1,F).

D4. p4 :- F<1, r_fibonacci(1,F).

D5. p5 :- N1>=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r_fibonacci(N1,F1), r_fibonacci(N2,F2), r_fibonacci(N3,F3).

D6. p6 :- N1>=0, N2=N1+1, N3=N2+1, F3<F1+F2,

r_fibonacci(N1,F1), r_fibonacci(N2,F2), r_fibonacci(N3,F3).

In order to prove the partial correctness of program fibonacci it is enough to show that M(OpSemfibonacci∪
{DN}) 6|= pN, for N= 1, . . . ,6. The proofs for N=1, . . . ,4 are very simple, as the queries p1, . . . ,p4 finitely
fail after a few resolution steps. Below we will present the proofs for N=5. The proof for N=6 is similar
to that for N=5 and we will omit it.

A preliminary step of our proof method consists in specializing the clauses for the predicate
r_fibonacci to the specific definitions of: (i) initConf, (ii) finalConf, and (iii) the predicates on
which reach depends. These definitions express, respectively, (i) the precondition of the program fi-
bonacci (that is, n=N, N>=0, u=1, v=0, t=0), (ii) the final configuration computed by fibonacci, and
(iii) the states reached by the computation of fibonacci. The specialization of r_fibonacci is per-
formed by applying the Transform strategy with OpSemfibonacci as its input program and clause R1 (see
Example 1) as its input clause. For UNFOLDING and DEFINITION & FOLDING we use the procedures
presented in [8]. This specialization step produces the following three clauses:

E1. r_fibonacci(N,F) :- N>=0, U=1, V=0, T=0, r(N,U,V,T, N1,F,V1,T1).

E2. r(N,U,V,T, N,U,V,T) :- N=<0.
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E3. r(N,U,V,T, N2,U2,V2,T2) :- N>=1, N1=N-1, U1=U+V, V1=U, T1=U,

r(N1,U1,V1,T1, N2,U2,V2,T2).

where r is a new predicate symbol introduced by the Transform strategy. Since the effect of specialization
is to compile away all references to both the commands of program fibonacci and the interpreter of the
language (that is, the predicate tr), sometimes this first application of the Transform strategy is referred
to as the Removal of the Interpreter [27]. Note that in the clauses E1, E2, and E3, the predicate r

corresponds to the while loop of program fibonacci. The first four arguments of r are the initial values
of the variables n, u, v, t, and the last four arguments are the final values of those variables.

By Theorem 1, M(OpSemfibonacci ∪ {D5}) 6|= p5 if and only if M({E1,E2,E3,D5}) 6|= p5. Now
we prove that M({E1,E2,E3,D5}) 6|= p5 by applying again the Transform strategy with input program
{E1,E2,E3,D5} and input clause D5.

Initially InDefs consists of clause D5 only. The Transform strategy performs two iterations of its
while loop.

First Iteration.
UNFOLDING. We begin by unfolding clause D5 with respect to the three r_fibonacci atoms in its body,
and we get the clause:

1. p5 :- N1>=0, U=1, V=0, T=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r(N1,U,V,T, Na,F1,Va,Ta), r(N2,U,V,T, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).

DEFINITION & FOLDING. Then we introduce a new predicate gen defined by the following clause which
is a generalization of clause 1 (below we will discuss on the introduction of this definition clause and the
generalization we have performed):

2. gen(N1,U,V,T) :- N1>=0, U>=1, V>=0, T>=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r(N1,U,V,T, Na,F1,Va,Ta), r(N2,U,V,T, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).

Clause 2 is added to InDefs. Next we fold clause 1 by using clause 2 and we get:

1.f p5 :- N1>=0, U>=1, V=0, T=0, gen(N1,U,V,T).

Clause D5 is removed from the set InDefs. After this removal InDefs consists of clause 2 only.

Second Iteration.
UNFOLDING. We unfold clause 2 which defines the newly introduced predicate gen, with respect to the
leftmost r atom in its body, and we get:

3. gen(N1,U,V,T) :- N1=0, U>=1, V>=0, T>=0, F3>U+F2,

r(1,U,V,T, Nb,F2,Vb,Tb), r(2,U,V,T, Nc,F3,Vc,Tc).

4. gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, F3>F1+F2,

N=N1-1, N2=N1+1, N3=N1+2, U1=U+V,

r(N,U1,U,U, Na,F1,Va,Ta), r(N2,U,V,T, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).

After unfolding a few times clause 3, we get a clause with an unsatisfiable body, and thus we delete
clause 3. Then, we unfold clause 4 with respect to the second r atom of its body and we get:

5. gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, F3>F1+F2, U1=U+V, N3=N1+2, N=N1-1,

r(N,U1,U,U, Na,F1,Va,Ta), r(N1,U1,U,U, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).

Next we unfold clause 5 with respect to the third r atom of its body and we get:
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6. gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, F3>F1+F2, N=N1-1, N2=N1+1, U1=U+V,

r(N,U1,U,U, Na,F1,Va,Ta), r(N1,U1,U,U, Nb,F2,Vb,Tb),

r(N2,U1,U,U, Nc,F3,Vc,Tc).

DEFINITION & FOLDING. No new predicate has to be introduced for folding clause 6. Indeed, clause 6
can be folded using clause 2 (note that this folding is allowed because the constraint of the body of
clause 2 is implied by the constraint in the body of clause 6, modulo a suitable variable renaming). By
this folding step, we get:

6.f gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, N=N1-1, U1=U+V, gen(N,U1,U,U).

Then clause 2 is removed from the set InDefs, and since no new predicate has been introduced, we have
that the set InDefs of clauses becomes empty. Thus the Transform strategy exits its while loop. The
program TransfP derived so far consists of the two clauses 1.f and 6.f.

REMOVAL OF USELESS CLAUSES. No constrained fact belongs to TransfP. Hence, all predicates in
TransfP are useless and all clauses in TransfP are removed.

The Transform strategy terminates with the empty output program, that is, TransfP = /0. Thus,
M(TransfP) 6|= p5 and, by Theorem 1, M({E1,E2,E3,D5}) 6|= p5.

As mentioned above, we can also prove M({E1,E2,E3,DN}) 6|= pN for N= 1,2,3,4,6. Thus, by Theo-
rem 2, the partial correctness specification {n= N, N>= 0, u= 1, v= 0, t= 0} fibonacci {fib(N,u)}
is valid.

5 Automating the Correctness Proofs

The proof of partial correctness of the Fibonacci program presented in the previous section has been
constructed in a semi-automatic way. Indeed, although the sequence of UNFOLDING and DEFINI-
TION & FOLDING transformations is constructed according to the Transform strategy, the various steps
within each UNFOLDING and DEFINITION & FOLDING transformation have been performed by hand
without following a specific algorithm.

In this section we propose a technique for constructing partial correctness proofs of programs in a
fully automatic way. In particular, we provide procedures for performing the UNFOLDING and DEFINI-
TION & FOLDING transformations during the various applications of the Transform strategy.

We will illustrate our automatic proof technique by using again the Fibonacci example. As we will
see, the correctness proof constructed by our fully automatic technique is different from the correctness
proof constructed by semi-automatic technique. In particular, the automatic proof technique generates
many more new predicate definitions than the semi-automatic one, where the ingenious introduction of
predicate gen has been made.

Suppose that, in order to prove a specification {ϕ} prog{ψ}, we use Theorem 2 and, in particular,
we want to show that:

M(OpSem∪Aux∪{D}) 6|= p

where D is a clause which defines the predicate p, of the form:

D. p← Y >Z, rprog(X1, . . . ,Xs,Z), B′

(or a similar clause with Y >Z replaced by Y <Z). Our proof technique is made out of the following
three transformation steps: (A) Removal of the Interpreter, (B) Linearization, and (C) Iterated Special-
ization, each of which is an instance of the Transform strategy with different UNFOLDING and DEFINI-
TION & FOLDING procedures.



E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti 11

5.1 Removal of the Interpreter
This step is a variant of the Removal of the Interpreter strategy presented in [8].

In this step a specialized definition for rprog is derived by transforming the CLP program OpSem into
a new CLP program OpSemRI where there will be no occurrences of the predicates initConf, finalConf,
reach, and tr.

The derivation of the specialized definition for rprog is performed by applying the Transform strategy
starting from clause R of program OpSem. The UNFOLDING and DEFINITION & FOLDING procedures
used in Transform are those defined in [8].

For instance, in the Fibonacci program, the inputs of the Transform strategy are OpSemfibonacci and
clause R1 of Example 1. The output is the set {E1,E2,E3} of clauses shown in Section 4.

5.2 Linearization

The body of clause D may have several atoms. For instance, in our Fibonacci example the body of
clause D5 defining predicate p5 contains three atoms with predicate r_fibonacci. In order to prove
that p5 does not hold, it may be useful to exploit the interactions among these three atoms, instead of
dealing with them individually in separate proofs. More in general, in order to exploit the interactions
among the various atoms occurring in the body of clause D, we apply a transformation step, called lin-
earization, which consists in transforming OpSemRI∪Aux∪{D} into a set OpSemLN of linear recursive
clauses, that is, clauses whose body contains, besides the constraints, at most one atom, which corre-
sponds to a conjunction of (one or more) atoms defined in OpSemRI∪Aux∪{D}.

From a syntactic point of view, the Linearization transformation is also needed to prepare for the last
step of our proof technique that consists in applying the Iterated Specialization strategy proposed in [8]
(see Section 5.3). Indeed, this strategy requires as input a linear recursive CLP program, that is, a set of
linear recursive clauses.

The Linearization strategy is a particular instance of the Transform strategy where: (i) the inputs are
program OpSemRI ∪Aux∪{D} and clause D itself, and (ii) the procedures UNFOLDING and DEFINI-
TION & FOLDING are defined as follows.

UNFOLDING: From clause C derive a set U(C) of clauses by unfolding C with respect to every atom in
its body;

DEFINITION & FOLDING:
F(C) :=U(C);
for every clause E in F(C) of the form H← c, p1(t1), . . . , pk(tk), where t1, . . . , tk are tuples of terms,
do if a clause of the form newp(X1, . . . ,Xk)← p1(X1), . . . , pk(Xk) does not belong to Defs

then add newp(X1, . . . ,Xk)← p1(X1), . . . , pk(Xk) to Defs and to InDefs;
F(C) := (F(C)−{E})∪{H← c, newp(t1, . . . , tk)}

od

By Linearization we indicate the Transform strategy using the two procedures UNFOLDING and DEFI-
NITION & FOLDING we have defined above. It is easy to see that if Aux is a linear recursive program,
then only a finite number of new predicates can be generated by the Linearization strategy, and hence the
following theorem holds.

Theorem 4 (Termination of the Linearization Strategy) Suppose that Aux is a set of linear recursive
clauses. Then the Linearization strategy terminates for the input program OpSemRI∪Aux∪{D}, and the
output OpSemLN is a linear recursive program.
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In the Fibonacci example, by applying the Linearization strategy to the program made out of clauses
{E1,E2,E3,D5} and clause D5 we get the following linear recursive program:

p5 :- A=B+2, C=B+1, D=1, E=0, F=0, G=1, H=0, I=0, J=1, K=0, L=0, B>=0, M>N+N1,

lin1(B,G,H,I,P,N1,Q,R,C,D,E,F,S,N,T,U,A,J,K,L,V,M,W,X).

lin1(A,B,C,D,A,B,C,D,E,F,G,H,E,F,G,H,I,J,K,L,M,N,N1,P) :- I=Q+1, K=R-J, A=<0,

E=<0, Q>=0, lin2(Q,R,J,J,M,N,N1,P).

lin1(A,B,C,D,A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,M,N,N1,P) :- Q=E-1, R=F+G, M=<0,

A=<0, E>=1, lin2(Q,R,F,F,I,J,K,L).

lin1(A,B,C,D,A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T) :- M=U+1, N1=V-N, W=E-1,

X=F+G, A=<0, E>=1, U>=0, lin3(W,X,F,F,I,J,K,L,U,V,N,N,Q,R,S,T).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,I,J,K,L,M,N,N1,P,M,N,N1,P) :- Q=A-1, R=B+C, M=<0,

I=<0, A>=1, lin2(Q,R,B,B,E,F,G,H).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,I,J,K,L,M,N,N1,P,Q,R,S,T) :- M=U+1, N1=V-N, W=A-1,

X=B+C, I=<0, A>=1, U>=0, lin3(W,X,B,B,E,F,G,H,U,V,N,N,Q,R,S,T).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T,Q,R,S,T) :- U=I-1, V=J+K, W=A-1,

X=B+C, Q=<0, A>=1, I>=1, lin3(W,X,B,B,E,F,G,H,U,V,J,J,M,N,N1,P).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T,U,V,W,X) :- Q=Y+1, S=Z-R, A1=I-1,

B1=J+K, C1=A-1, D1=B+C, A>=1, I>=1, Y>=0,

lin1(C1,D1,B,B,E,F,G,H,A1,B1,J,J,M,N,N1,P,Y,Z,R,R,U,V,W,X).

lin1(A,B,C,D,A,B,C,D,E,F,G,H,E,F,G,H,I,J,K,L,I,J,K,L) :- I=<0, A=<0, E=<0.

lin2(A,B,C,D,A,B,C,D) :- A=<0.

lin2(A,B,C,D,E,F,G,H) :- A=I+1, C=J-B, I>=0, lin2(I,J,B,B,E,F,G,H).

lin3(A,B,C,D,A,B,C,D,E,F,G,H,E,F,G,H) :- E=<0, A=<0.

lin3(A,B,C,D,A,B,C,D,E,F,G,H,I,J,K,L) :- E=M+1, G=N-F, A=<0, M>=0,

lin2(M,N,F,F,I,J,K,L).

lin3(A,B,C,D,E,F,G,H,I,J,K,L,I,J,K,L) :- M=A-1, N=B+C, I=<0, A>=1,

lin2(M,N,B,B,E,F,G,H).

lin3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P) :- I=Q+1, K=R-J, S=A-1, T=B+C, A>=1,

Q>=0, lin3(S,T,B,B,E,F,G,H,Q,R,J,J,M,N,N1,P).

where the predicates lin1, lin2, and lin3 are introduced during the Linearization strategy by the
following definitions.
lin1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T,U,V,W,X) :- r(A,B,C,D,E,F,G,H),

r(I,J,K,L,M,N,N1,P), r(Q,R,S,T,U,V,W,X).

lin2(A,B,C,D,E,F,G,H) :- r(A,B,C,D,E,F,G,H).

lin3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P) :- r(A,B,C,D,E,F,G,H), r(I,J,K,L,M,N,N1,P).

5.3 Iterated Specialization

In this third step, called the Iterated Specialization strategy, we perform a sequence of specialization
steps that take advantage of the constraints occurring in the program OpSemLN derived at the end of the
Linearization step. (Note that so far, that is, during the Removal of Interpreter and the Linearization
steps, the constraints did not play any significant role.)

Each specialization step of the sequence of specializations of the Iterated Specialization strategy
produces a new CLP program with a specialized definition of the predicate p. Let OpSemIS be the last
program of the sequence constructed so far. Two cases of particular interest may occur for OpSemIS:
either (i) the set of clauses defining p contains the fact p←, or (ii) the set of clauses defining p is empty.
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In case (i), M(OpSemIS) |= p and hence, by Theorem 1, M(OpSem∪ Aux∪ {D}) |= p. In case (ii),
M(OpSemIS) 6|= p and hence, by Theorem 1, M(OpSem∪Aux∪{D}) 6|= p.

In the case where neither (i) nor (ii) holds, that is, in OpSemIS the predicate p is defined by a non-
empty set of clauses not containing the fact p←, we cannot establish by a syntactic check whether or
not M(OpSemIS) |= p holds. Then, similarly to what has been proposed in [8], we proceed by iterating
the specialization process, that is, we extend the sequence of programs constructed so far, by deriving
one more program with a more specialized definition of p, in the hope that in this new program either
case (i) or case (ii) holds. Obviously, due to undecidability limitations, it may be the case that, no matter
how much we extend the sequence of programs generated by specialization, we never get a derived
CLP program where either case (i) or case (ii) holds. However, as we have shown in [8], the Iterated
Specialization strategy works well in many practical cases.

In our Fibonacci example, we apply the Iterated Specialization strategy, which at the end of the
while loop derives the following CLP program (in this case the Iterated Specialization consists of one
specialization step only):

p5 :- A=B+2, C=B+1, D=1, E=0, F=0, G=1, H=0, I=0, J=1, K=0, L=0, B>=0, M>N+Z,

new1(B,G,H,I,P,Z,Q,R,C,D,E,F,S,N,T,U,A,J,K,L,V,M,W,X).

new1(A,B,C,C,D,E,F,G,H,B,C,C,I,J,K,L,M,B,C,C,N,Z,P,Q) :- A=M-2, H=M-1, Z>E+J,

B>=1, M>=2, M=R+1, S=B+C, T=H-1, U=B+C, V=A-1, W=B+C, A>=1, H>=1, R>=0,

new1(V,W,B,B,D,E,F,G,T,U,B,B,I,J,K,L,R,S,B,B,N,Z,P,Q).

Since in the above program there is no constrained fact, all predicates are useless and they are removed
by the final REMOVAL OF USELESS CLAUSES step. Hence Iterated Specialization terminates deriving
the empty program. Thus, we have proved that M(OpSemfibonacci∪{D5}) 6|= p5. Similarly, as mentioned
above, we can prove M(OpSemfibonacci∪{DN}) 6|= pN for N= 1,2,3,4,6, and hence the specification (‡)
of Example 1 in Section 3.1 is a valid.

We conclude this section by comparing the following two definitions: (i) the definition of the predi-
cate new1 introduced in an automatic way by the Iterated Specialization strategy in the above correctness
proof:

new1(A,B1,C1,C2,D,E,F,G,H,B2,C3,C4,I,J,K,L,M,B3,C5,C6,N,P,Q,R) :- A>=0, H=A+1,

M=H+1, P>E+J, B1>=1, B1=B2, B2=B3, C1>=0, C1=C2, C2=C3, C3=C4, C4=C5, C5=C6,

lin1(A,B1,C1,C2,D,E,F,G,H,B2,C3,C4,I,J,K,L,M,B3,C5,C6,N,P,Q,R).

and (ii) the definition of the predicate gen introduced in our semi-automatic proof presented in Section 4.
These definitions of new1 and gen both allow the correctness proof to go through, but they have a signif-
icant difference in that the number of arguments of new1 is much larger than the number of arguments
of gen. This difference is due to the fact that, when applying the Linearization strategy, the automatic
procedure for DEFINITION & FOLDING collects all the variables occurring in the various calls to the
predicate r and keeps them distinct with the goal of performing the subsequent folding steps.

5.4 Experimental Results

We have implemented our verification method in the VeriMAP transformation-based software model
checker [9]. The verifier consists of a module, based on the C Intermediate Language (CIL) [25], that
translates a partial correctness specification into a set of CLP clauses, and a module for CLP program
transformation that performs the three applications of the Transform strategy, according to the method
presented in Sections 5.1, 5.2, and 5.3, respectively.



14

We have performed an experimental evaluation of our method on a set of programs taken from the
literature. Table 1 summarize the results of our experiments that have been performed on an Intel Core
i5-2467M 1.60GHz processor with 4GB of memory under GNU/Linux OS.

Program Specified Function
Proof Time

RI LN IS Total

fibonacci

fib(0,1).

fib(1,1).

fib(N3,F3) :- N1>=0, N2=N1+1, N3=N2+1, F3=F1+F2,

fib(N1,F1), fib(N2,F2).

50 40 340 430

remainder
of integer
division

rem(X,Y,X) :- X<Y.

rem(X,Y,0) :- X=Y.

rem(X,Y,Z) :- X>Y, X1=X-Y, rem(X1,Y,Z).

20 10 20 50

greatest
common
divisor

gcd(X,Y,Z) :- X<Y, Y1=Y-X, gcd(X,Y1,Z).

gcd(X,Y,X) :- X=Y.

gcd(X,Y,Z) :- X>Y, X1=X-Y, gcd(X1,Y,Z).

30 20 80 130

McCarthy’s
91 function

mc91(X,Z) :- X =< 100, Z=91.

mc91(X,Z) :- X>=101, Z=X-10.
40 – 40 80

McCarthy’s
91 function

mc91r(X,Z) :- X>=101, Z=X-10.

mc91r(X,Z) :- X =< 100, X1=X+11, mc91r(X1,K), mc91r(K,Z).
40 40 142611 142691

integer
division

idiv(M,K,0) :- M+1=<K.

idiv(M,K,Q1) :- M>=K, M1=M-K, Q1=Q+1, idiv(M1,K,Q).
30 10 120 160

even-odd
multiplication

mult(J,0,0).

mult(J,N1,Y1) :- N1=N+1, Y1=Y+J, N>0, mult(J,N,Y).
50 60 880 990

Table 1: Experimental results. The columns named RI, LN, IS, and Total show the times in milliseconds
taken for the Removal of the Interpreter, the Linearization, the Iterated Specialization, and the total
proof time (that is, RI +LN + IS), respectively. ‘–’ means that the Linearization step for the program
McCarthy’s 91 function was not needed.

6 Conclusions

We have presented a method for proving partial correctness specifications of programs, given as Hoare
triples of the form: {ϕ} prog {ψ}, where the assertions ϕ and ψ are predicates defined by a set of pos-
sibly recursive Constraint Logic Programming (CLP) clauses. Our method is based on a transformation
strategy that uses unfold/fold rules, can be automated, and allows us to derive, starting from the given
correctness problem, a set of linear recursive CLP clauses. Then, this derived set of linear recursive
clauses can be processed by verifiers based on solvers for linear arithmetic constraints.

By using a preliminary implementation on our VeriMAP verification system [9], we have shown
that our method works well on some verification problems. Although the verification problems we have
considered refer to quite simple specifications, to the best of our knowledge they cannot be solved by
state-of-the-art verifiers based on solvers for linear arithmetic (such as, among others, [1, 5, 8, 18, 15,
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27, 28, 32]), as the postconditions are recursively defined predicates, and not linear constraints. We also
believe that the fibonacci example cannot be proved either by using techniques based on polynomial
invariants [30, 31] as the postconditions, being exponential, cannot be expressed as integer polynomials.

It should be mentioned that an alternative to fully automatic verification techniques is the use of
tools that construct correctness proofs based on assertions provided at various program points (see, for
instance, Dafny [20] and Why3 [13]). However, these tools leave to the user the task of introducing
suitable invariant assertions, which very often are hard to find and require ingenuity.

Our paper is a contribution to the field of program verification based on the transformation approach.
This approach has recently gained some popularity and several papers have been published (see, for in-
stance, [2, 8, 14, 19, 22, 23, 27]). In particular, we have demonstrated the power of CLP program trans-
formations as a means for: (i) translating correctness specifications into CLP programs, (ii) reducing the
difficulty of the verification problems from non-linear recursive CLP programs to linear recursive CLP
programs, and finally, (iii) solving the verification problem starting from linear recursive CLP programs.

As future work, we think of refining the transformation strategies we have proposed in this paper.
In particular, more work can be done for enhancing the automation of the Linearization strategy (see
Section 5) as the structure of the CLP program resulting from this transformation affects the rest of the
verification process. Moreover, the results presented for total correctness in Section 3.3 show the need
for a transformation strategy that deals with CLP programs with negative literals. Having that strategy
at our disposal, we can then extend our method to perform in an automatic way also total correctness
proofs.
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Appendix

Proof of Theorem 2 (Partial Correctness).
Let domr(X1, . . . ,Xs) be a predicate that represents the domain of the functional relation rprog. We assume
that domr(X1, . . . ,Xs) is defined by a set Dom of clauses, using predicate symbols not in OpSem∪Spec,
such that

M(OpSem∪Dom) |= ∀X1, . . . ,Xs.((∃Y.rprog(X1, . . . ,Xs,Y )↔ domr(X1, . . . ,Xs)) (1)
Let us denote by Spec] the set of clauses obtained from Spec by replacing every clause f (X1, . . . ,Xs,Y )←B
by the clause f (X1, . . . ,Xs,Y )← domr(X1, . . . ,Xs),B. Then, for all integers p1, . . . , ps,y,

M(Spec]∪Dom) |= f (p1, . . . , ps,y) implies M(Spec) |= f (p1, . . . , ps,y) (2)
Moreover, let us denote by Spec′ the set of clauses obtained from Spec] by replacing all occurrences of
f by rprog. We show that M(OpSem∪Aux∪Dom) |= Spec′.
Let S be any clause in Spec′. If S belongs to Aux, then M(OpSem∪Aux) |= S. Otherwise, S is of the form
rprog(X1, . . . ,Xs,Y )← domr(X1, . . . ,Xs),B′ and, by construction, in Fpc there are two clauses

D1: p1← Y >Z,rprog(X1, . . . ,Xs,Z),B′, and
D2: p2← Y <Z,rprog(X1, . . . ,Xs,Z),B′

such that M(OpSem∪Aux∪{D1}) 6|= p1 and M(OpSem∪Aux∪{D2}) 6|= p2. Then,
M(OpSem∪Aux) |= ¬∃(Y 6= Z∧ rprog(X1, . . . ,Xs,Z)∧B′)

Since by (1) M(OpSem∪Dom) |= rprog(X1, . . . ,Xs,Z)→ domr(P1, . . . ,Ps), we also have that
M(OpSem∪Aux∪Dom) |= ¬∃(Y 6= Z∧domr(X1, . . . ,Xs)∧ rprog(X1, . . . ,Xs,Z)∧B′)

From the functionality of rprog it follows that
M(OpSem∪Aux∪Dom) |=

¬rprog(X1, . . . ,Xs,Y )↔ (¬∃Z.rprog(X1, . . . ,Xs,Y )∨ (rprog(X1, . . . ,Xs,Z)∧Y 6=Z))

and hence, by using (1),
M(OpSem∪Aux∪Dom) |= ¬∃(domr(X1, . . . ,Xs)∧¬rprog(X1, . . . ,Xs,Y )∧B′)

Thus, we have that
M(OpSem∪Aux∪Dom) |= ∀(domr(X1, . . . ,Xs)∧B′→ rprog(X1, . . . ,Xs,Y ))

that is, clause S is true in M(OpSem∪Aux∪Dom).
Thus, we proved that M(OpSem∪Aux∪Dom) |= Spec′.

We can also conclude that M(OpSem∪Aux∪Dom) is a model of Spec′∪Dom, and since by definition
M(Spec′∪Dom) is the least model of Spec′∪Dom, we have that

M(Spec′∪Dom)⊆M(OpSem∪Aux∪Dom) (3)
Next we show that, for all integers p1, . . . , ps,y,

M(Spec]∪Dom) |= f (p1, . . . , ps,y) iff M(OpSem) |= rprog(p1, . . . , ps,y) (4)
Only If Part of (4). Suppose that M(Spec]∪Dom) |= f (p1, . . . , ps,y). Then, by construction,

M(Spec′∪Dom) |= rprog(p1, . . . , ps,y)

and hence, by (3),
M(OpSem∪Aux∪Dom) |= rprog(p1, . . . , ps,y)

Since rprog does not depend on predicates in Aux∪Dom,
M(OpSem) |= rprog(p1, . . . , ps,y)

If Part of (4). Suppose that M(OpSem) |= rprog(p1, . . . , ps,y).
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Then, by definition of rprog,

M(Dom) |= domr(p1, . . . , ps) (5)
and

M(Spec) |= pre(p1, . . . , ps) (6)

Thus, by (6) and Condition 4.2 of Definition 1, there exists z such that

M(Spec) |= f (p1, . . . , ps,z) (7)

By (5) and (7),

M(Spec]∪Dom) |= f (p1, . . . , ps,z) (8)

By the Only If Part of (4),

M(OpSem) |= rprog(p1, . . . , ps,z)

and by the functionality of rprog, z = y. Hence, by (8),

M(Spec]∪Dom) |= f (p1, . . . , ps,y)
Thus, we proved (4).

Now let us prove partial correctness.
Let ϕ be z1 = p1 ∧ . . .∧ zs = ps ∧ pre(p1, . . . , ps). If M(Spec) |= pre(p1, . . . , ps) and prog terminates,
that is, M(Dom) |= domr(p1, . . . , ps), then for some integer y, M(OpSem) |= rprog(p1, . . . , ps,y). Thus,
by (4), M(Spec] ∪Dom) |= f (p1, . . . , ps,y) and hence, by (2), M(Spec) |= f (p1, . . . , ps,y). Suppose
that the postcondition ψ is f (p1, . . . , ps,zk). Then, by Condition 4.1 of Definition 1, y = zk. Thus,
{ϕ} prog {ψ}. �

Proof of Theorem 3 (Total Correctness).
Let us denote by Spec′ the set of clauses obtained from Spec by replacing all occurrences of f by rprog.
Then, for all integers p1, . . . , ps,y,

M(Spec) |= f (p1, . . . , ps,y) iff M(Spec′) |= rprog(p1, . . . , ps,y) (9)

The hypothesis that, for all clauses D in Ftc, M(OpSem∪Aux∪{D}) 6|= p, where p is the head predicate
of D, implies that every clause of Spec′ is true in M(OpSem∪Aux), that is, M(OpSem∪Aux) is a model
of Spec′. Since, M(Spec′) is the least model of Spec′, we have that

M(Spec′)⊆M(OpSem∪Aux) (10)

Now we prove that, for all integers p1, . . . , ps,y,
M(Spec) |= f (p1, . . . , ps,y) iff M(OpSem) |= rprog(p1, . . . , ps,y) (11)

Only If Part of (11). Suppose that M(Spec) |= f (p1, . . . , ps,y). Then, by (9),
M(Spec′) |= rprog(p1, . . . , ps,y)

and hence, by (10),
M(OpSem∪Aux) |= rprog(p1, . . . , ps,y)

Since rprog does not depend on predicates in Aux,
M(OpSem) |= rprog(p1, . . . , ps,y)

If Part of (11). Suppose that

M(OpSem) |= rprog(p1, . . . , ps,y)

Then, by definition of rprog,

M(Spec) |= pre(p1, . . . , ps)
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Thus, by Condition 4.2 of Definition 1, there exists z such that M(Spec) |= f (p1, . . . , ps,z). By the Only
If Part of (11), M(OpSem) |= rprog(p1, . . . , ps,z) and by the functionality of rprog (see Lemma 1 (i)), we
have that z = y. Hence,

M(Spec) |= f (p1, . . . , ps,y)

Thus, we have proved (11).

Now let us prove total correctness. By definition of rprog in OpSem, if M(Spec) |= pre(p1, . . . , ps) holds
and prog terminates, then, for some integer y, M(OpSem) |= rprog(p1, . . . , ps,y), and hence, by (11),
M(Spec) |= f (p1, . . . , ps,y). Suppose that the postcondition ψ is f (p1, . . . , ps,zk). Then, by Condition 4.1
of Definition 1, y = zk. Thus {ϕ} prog {ψ}.
Moreover, by Condition 4.2 of Definition 1 and (11), we have that, for all integers p1, . . . , ps,

M(OpSem) |= pre(p1, . . . , ps)→∃Y. rprog(p1, . . . , ps,Y )

and, by Lemma 1, prog terminates. Thus, [ϕ] prog [ψ]. �
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