
Submitted to:
VPT 2015

c© W. Bai & E. M. Tadjouddine
This work is licensed under the
Creative Commons Attribution License.

Automated Program Translation in Certifying Online
Auctions

Wei Bai
Department of Computer Science

University of Liverpool
England, UK

Wei.Bai@liverpool.ac.uk

Emmanuel M. Tadjouddine
Department of Computer Science and Software Engineering

Xi’an Jiaotong-Liverpool University
SIP, Suzhou, China

Building up trust in agent-mediated online auctions requires agents to have a deeper understanding
of the rules of engagement and to be able to certify desirable properties of a given auction mecha-
nism. In previous work [3], we have shown how these mechanisms can be formalised as semantic
web services in OWL-S, a good enough expressive machine-readable formalism enabling software
agents, to discover, invoke, and execute a web service. In this paper, we have automated the trans-
lation of a subset of OWL-S into a COQ imperative language specification in a way that preserves
the semantics of the auction mechanism. The semantics equivalence between the source and target
codes is guaranteed using a one-to-one mapping whose correctness can be established by using rela-
tional Hoare logic. We have also illustrated how we can use Hoare logic to certify auction properties
by presenting a COQ proof of the property: the highest bidder always wins in an English auction
setting. This kind of trustworthy agent-mediated trading is likely to further increase the volume of
transactions in eCommerce systems.

1 Introduction

We envision an e-market wherein human beings can own software agents that can be used for online
shopping. A major issue is whether we can trust our software agent to spend our money on our behalf.
In general, trust is an important issue in building up markets for rational agents. A market is determined
by a mechanism that spells out the rules of engagement for any participant. If the rules are flawed, then
participants may exploit the perceived flaws to their benefit. A good example is that of the LIBOR (Lon-
don Inter Bank Offered Rate) scandal, see for example [17]. The LIBOR relies on a simple mechanism
wherein leading banks in London report estimates of interest rates that they would be charged if they
borrow from other banks; we then drop the four highest and the four lowest rates and then calculate the
arithmetic mean of the remaining rates. This mechanism clearly relies upon trust: banks will report their
rates truthfully. However, a small change in the LIBOR rate could generate large payments to a bank
giving incentives to certain banks to influence the LIBOR rate. The so-called LIBOR scandal arose from
misreporting of interest rates by collusion and manipulation. The question is whether we can ensure
that participants are truthful in their reports. In a much more general setting, can we ensure trust in the
market?

In this paper, we consider electronic markets based on single item auctions whose mechanisms are
described in a machine readable formalism, e.g. OWL-S, so that software agents can understand their
rules. However, we would like to enable potential participants to check that the auction house is trust-
worthy before entering it and bid for items on sale by verifying desirable properties. A desirable property
can be that the highest bidder wins, bidding its true valuation is the optimal strategy or the auction is free
from cheating. To carry out such a verification, we rely upon the PCC (Proof-Carrying Code) paradigm:

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Automated Program Translation in Certifying Online Auctions

an auctioneer can produce a proof certificate of a given property and a buyer agent can check that the
proof is correct, see our previous paper [4] for more details. To implement this approach, we have used
the proof assistant COQ [26]. This implies that the auction mechanism needs be transformed into COQ

descriptions in an automated fashion so that proofs can be developed from within COQ. However, bugs in
the transformation process may potentially invalidate the assurances hardly gained by certifying certain
desirable auction properties. We therefore need to ensure that the transformed mechanism is semantically
equivalent to the original one.

There is already a large body of literature on certifying program transformations [16]. Leroy’s com-
positional approach in certifying a compiler is most relevant to our work: certify that all phases of the
transformation are correct. In our case, we have defined the target language (a WHILE language) within
COQ to mirror the input language (OWL-S) and then have used relational Hoare logic [7] to establish
the correctness of the transformations. This is carried out by using natural semantics of computer pro-
grams to establish that the semantics of the target is equivalent to that of the source program. Besides
the requirement to have a semantics-preserving transformation, we would like to show how to use the
Hoare logic to prove desirable auction properties from within COQ. This approach is different from our
previous work [4], wherein we have relied upon COQ’s constructive approach to carry out the verification
of some game-theoretic properties of the auction mechanism.

In terms of prototype implementation, we have used ANTLR [22] to automatically transform an
OWL-S auction description into a specified COQ imperative language. ANTLR is a widely used tool to
read, process, or translate structured data or texts such as source computer programs. To fully certify the
program translation step in our verification approach, we can proceed as in Leroy’s paper [16] by imple-
menting all transformation phases from within COQ and the Ocaml programming language. However, we
would like to point out at least an example of such a certifying compiler and focus more on verifying auc-
tion properties. Structurally, our transformation is a one-to-one mapping between two kinds of WHILE
languages and the background information we have described in Section 2 is enough to understand the
semantics-preserving nature of our transformation framework. Besides, note that Leroy’s approach [16]
separates the algorithmic and implementation issues in the certification framework. The contributions of
this ongoing work are two-fold: i) we have defined a COQ imperative language to which we can correctly
translate an auction mechanism specification based on a machine readable formalism e.g., OWL-S so as
to enable verification from within COQ; ii) we have shown how to carry out a verification of a desirable
property as a program verification by using the Hoare logic within COQ.

2 Background and Model

We consider single item online auctions that run over a fixed time period in which the seller may have
a reserve revenue under which items cannot be sold. This reserve revenue can typically be the reserve
price for the item on sale. After a bid, the seller waits for some time before accepting the bid if it yields a
revenue that is greater or equal to the reserve one or waits for the expiry time before deciding whether to
reject or accept the bid. In this work, we aim at describing online auctions by using the semantic web e.g.,
the OWL-S specification language and then translate the resulting description into COQ specifications
in order to verify some desirable auction properties. These properties are aimed at ensuring trust in the
auction house and therefore make it more attractive to potential buyers or profitable for the seller. For
example, an online buyer may want to have a guarantee that the auction is always carried out as specified
or that the auction is free from collusion.

W. Bai & E. M. Tadjouddine 3

2.1 Language Used

In this work, we consider a WHILE-language composed of assignments, if, and while statements, and
in which expressions are formed using basic arithmetic or logical operations. We denote V, a set of
program variables that are integer or Boolean, E the set of arithmetic expressions, B the set of Boolean
expressions, and C the set of commands or statements. This language can be described as:

x ∈ V
aop ∈ {+,−,×,/}
rop ∈ {<,>,==,≤, . . .}
lop ∈ {∧,∨,¬, . . .}
E 3 e ::= const | x | e aop e
B 3 b ::= true | f alse | e rop e | b lop b
C 3 c ::= skip | x := e | c;c | if b then c else c | while b do c

The states σ ∈ S = V→ Z are defined as associations of values to variables, and the evaluation of
expressions remains standard in the natural (or big-step) semantics, see for example [16]. We denote
σ �C � σ ′ to mean a command c evaluated in a pre-state σ leads to a post-state σ ′. This allows us to
reason on the program by using Hoare logic.

Hoare logic is a sound and complete formal system providing logical rules for reasoning about the
correctness of computer programs. For a given statement S, the Hoare triple {φ}S{ψ} means the execu-
tion of S in a state satisfying the pre-condition φ will be in a state satisfying the post-condition ψ when
it terminates. The conditions φ and ψ are first order logical formulae called assertions. Hoare proofs are
compositional in the structure of the language in which the program is written. A judgment ` {φ}S{ψ}
is valid if the triple {φ}S{ψ} can be proven in the Hoare calculus.

2.2 A Hoare Logic for Program Translation

A program translation consists in replacing a piece of code C1 by a new one C2 in a target programming
language. For example, we can transform a C program into a Java or Fortran one. In this case, we must
ensure that C1 ∼C2 meaning C1 and C2 are semantically equivalent. Two code fragments C1 and C2 are
semantically equivalent iff for any states σ , σ ′, if σ �C1 � σ ′, then σ �C2 � σ ′.

The inference rules for our WHILE language are given in Fig. 1. They use a variant of the relational
Hoare logic [7], wherein commands are run over one state in lieu of a couple of states as in [7]. The
judgment ` C1 ∼ C2 : φ ⇒ ψ means simply {φ}C1{ψ} ⇒ {φ}C2{ψ}. In the assignment rule (asgn),
the lhs variable may be different but is kept the same for clarity. Also, notice that the same conditional
branches must be taken (see the if rule) and that loops be executed the same number of times (see the
while rule) on the source and target to guarantee their semantics equivalence. The relational Hoare logic
is appropriate in the sense that it is both sound and complete with respect to the intended interpretation.
We define σ |= φ to mean φ holds at the state σ .
Theorem 1 (Soundness of the translation). If C1 ∼ C2 : φ ⇒ ψ , then for any states σ , σ ′ such that
σ �C1 � σ ′, we have σ �C2 � σ ′, and σ |= φ ⇒ σ ′ |= ψ

Proof. The proof of this statement is carried out by induction on the relation∼: C1 7→C2 and subordinate
induction on σ � c � σ ′ for the while loop.

Theorem 2 (Completeness of the translation). If, for any states σ , σ ′ such that σ �C1 � σ ′, we have
σ �C2 � σ ′ and σ |= φ ⇒ σ ′ |= ψ , then C1 ∼C2 : φ ⇒ ψ .

4 Automated Program Translation in Certifying Online Auctions

Figure 1: Hoare logic for a WHILE language translation

` v := e1 ∼ v := e2 : φ [e1/v]∧φ [e2/v]⇒ φ
asgn

` s1 ∼ c1 : φ ⇒ φ0 ` s2 ∼ c2 : φ0⇒ ψ

` s1;s2 ∼ c1;c2 : φ ⇒ ψ
seq

` s1 ∼ c1 : φ ∧ (b1∧b2)⇒ ψ ` s2 ∼ c2 : φ ∧¬(b1∨b2)⇒ ψ

` if b1 then s1 else s2 ∼ if b2 then c1 else c2 : φ ∧ (b1 = b2)⇒ ψ
i f

` s∼ c : φ ∧ (b1∧b2)⇒ φ ∧ (b1 = b2)

` while b1 do s ∼ while b2 do c : φ ∧ (b1 = b2)⇒ φ ∧¬(b1∨b2)
while

` φ ⇒ φ0 ` s∼ c : φ0⇒ ψ0 ` ψ0⇒ ψ

` s∼ c : φ ⇒ ψ
imp

3 Machine Readable Description

This section comes from our previous work [3]. Online auctions for software agents are a good applica-
tion wherein data can be processed by automated reasoning tools. Logic-based languages are useful tools
to model and reason about systems. They allow us to specify behavioral requirements of components
of a system and formulate desirable properties for an individual component or the entire system. The
semantic web [8] enables us to describe and reason about web services by using ontologies. Ontologies
are used to formally describe the semantics of terms representing an area of knowledge and give explicit
meaning to the information, thus allowing for automated reasoning, semantic search and knowledge
management in a specific area of knowledge. OWL [19], a W3C standard, is a description logic-based
language that enables us to describe ontologies by using basic constructs such as concept definitions
and relations between them. It has been used in a wide range of areas including biology, medicine, or
aerospace [5, 11]. In this work, we advocate using OWL for at least the following reasons:
• It is expressive enough so that a range of auction mechanisms can be described in it.

• It provides us with a machine readable formalism enabling software agents to understand auction
mechanisms.

• There is a scope for semantics interoperability for heterogeneous software agents engaging in an
auction.

We view an auction as a web service with enough logical attachments enabling a software agent to
understand the auction rules and to carry out verifications of claimed properties.

Logic-based languages are usually chosen for their expressivity or on the fact that their underlying
logic is sound, complete or decidable. Expressivity provides us with powerful constructs to describe
things that may not be otherwise expressed. Soundness ensures that if a property φ can be deduced from
a system (a set of statements) Γ (Γ ` φ), then φ is true as long as Γ is satisfied(Γ |= φ). Completeness
states that any true statement can be established by proof steps in the logic’s calculus. Formally Γ |= φ

implies Γ ` φ . A logic is decidable if for any statement we can construct an algorithm that decides if the
statement is true or false.

To enable automated reasoning in the auction system, we have used the ontology language OWL-S,
which is based on Description Logics (DL), to build up the auction ontology, See [3] for further details.

W. Bai & E. M. Tadjouddine 5

3.1 The OWL-S Description Language

In this section, we argue that we can describe online auction houses as web services by using the OWL-S
language, which provides us with a machine readable formalism and logical reasoning capabilities for
software agents. We will start by showing that OWL-S is expressive enough to enable us to describe
online auction mechanisms.

expressiveness

XML: Syntactic, No Logic
“Agent buyer has bid 100.”
OWL-DL: Description Logic
sound, complete, decidable
“Auction A has at least 2 buyers.”
SWRL: OWL-DL + RuleML (including
MathML and Horn rules)
sound, complete, undecidable
“Utility = Valuation - Payment”
OWL-S: SWRL + Programming Constructs
sound, complete, undecidable
“While newbid >currentbid Do ”

To describe online auctions, we may ask why not use XML (Extensible Markup Language) as a
description language for this task. XML provides a syntactic approach but no logical basis for reasoning.
The meaning of the relationships between XML elements cannot be encoded. A language that builds
upon XML and allows for reasoning is the OWL-DL(Web Ontology Language), which is based on DL
(Description Logic). Description logics are a family of logics that are decidable fragments of first-order
logic. OWL-DL is sound, complete, and decidable but with limited expressivity. For example, we
cannot express arithmetic statements that ’The winner’s utility is the value of payment minus valuation’.
To extend OWL-DL, the SWRL (Semantic Web Rule Language) combines OWL-DL with RULEML
that includes among others, MATHML and Horn rules. As a result, SWRL is more expressive than
OWL-DL but SWRL is not decidable [14]. However, in SWRL, we cannot express the statement that
’while newbid >currentbid do’. Furthermore, auction mechanisms can be viewed as functions with
inputs, outputs, preconditions or post-conditions. They may contain complex programming constructs
such as branching or iterations. OWL-S enables us to describe online auctions as Web Services.

An OWL-S description is mainly composed of a service profile for advertising and discovering ser-
vices; a process model, which describes the operation of a service; and the grounding, which specifies
how to access a service. In our case, the process contains information about inputs, outputs, and a natural
language description of the auction, e.g., this is an English auction. The grounding contains information
on the service location so that an agent can run the service by using the OWL-S API. The process model
is described as follows:

define composite process Auction

(inputs: (...)

outputs: (...)

preconditions: (...)

results: (...)

)

{ // Process’s Body

WinDetermAlgo(...);

PayeAndUtil(...) }

<process:CompositeProcess rdf:ID="EnglishAuction">

<process:hasInput> ...

<process:hasOutput>

<process:hasPrecondition> ...

<process:hasResult> ...

...

<process:AtomicProcess rdf:ID="WinDetermAlgo"> ...

<process:AtomicProcess rdf:ID="PayeAndUtil"> ...

</process:CompositeProcess>

The auction process model is basically composed of inputs, outputs, preconditions, results and

6 Automated Program Translation in Certifying Online Auctions

a composition of two processes, which are the winner determination algorithm WinDetermAlgo and
PayeAndUtil that calculates the payments as well as the utilities for the buyer agents.

4 Automated Program Translation

In Section 3, we have sketched how online auction mechanisms can be described using the OWL-S
description language in order to have machine-understandable protocols by software agents. Further-
more, we have illustrated [4] that auction mechanisms can be specified within COQ so as to develop
machine-checkable proofs of desirable mechanism properties that can be automatically verified by soft-
ware agents [4]. To bridge the gap between these two processes, we have used ANTLR to systematically
transform OWL-S code into COQ specifications by

1. identifying a subset of the OWL-S language formed by key constructs used in our description of
auction mechanisms; this basically mirrors a WHILE-language for imperative programming.

2. translating these OWL-S-constructs into a tailored subset of COQ specifications so that an OWL-
S program or logical formula can be transformed into a COQ one in an automated fashion.

This translation is semantics-preserving since it is a one-to-one mapping from the source language (a
subset of OWL-S) into the target language (a specialized COQ WHILE-language).

4.1 Translation Architecture

The structure of the translator is an ANTLR grammar file (owlsmall.g), a Java class (Olws2Coq.java)
that transforms an OWL-S parse tree into a valid COQ parse tree and a main program that launches the
generated parser and the parse tree transformer for an input OWL-S code.

ANTLR [22] is a powerful tool that takes as input a formal language description or EBNF grammar
to generate a parser for that language along with tree-walkers that can be used to visit the nodes of
those trees and run application-specific code. For an input code in the input language, it generates
appropriate representations as parse trees that can be transformed into parse trees for a target language
and be unparsed or pretty-printed. ANTLR parsers use so-called Adaptive LL(*) that performs a just-in-
time analysis of the input grammar in lieu of analyzing it statically before execution. It is a widely used
tool to read, process, or translate structured data or texts such as source computer programs.

We have proceeded by translating an OWL-S process model, which includes variable declarations,
inputs, outputs, preconditions, results, and IF and WHILE constructs, into the target language. In the
following diagram, we illustrate how the transformation can preserve the semantics of the original mech-
anism: a mechanism M, written in OWL-S, is translated into a COQ imperative language description
and we would like to ensure that the semantics of the target is equivalent to that of the source code. In this
way, true or false properties that are established from within COQ can be inferred back into the OWL-S
description.

MOWL-S

Semantics

��

Translation // MCOQ

Semantics

��

JMOWL-SK // JMCOQK

W. Bai & E. M. Tadjouddine 7

4.1.1 Syntax and Semantics of the COQ Imperative Language

We have used COQ as a meta-language to define the syntax and semantics for the simple imperative
language described in Section 2.1. Let us start by defining few basic variables to be used in future
definitions. A bidder is defined as a type and the relation bidderpair binds a bidder with a bid,
which is a natural number.
Variable bidder : Type.

Inductive bidderpair : Type :=

bpair : bidder -> nat -> bidderpair.

Variables are represented by identifiers Id that are mapped into natural numbers in an obvious and
incremental way. For simplicity, we assume that all variables are global and this does not conflict with
the notion of variable scope in OWL-S.
Inductive id : Type :=

Id : nat -> id.

The state of all variables at some point in the execution of a program is represented as a mapping
from identifiers to natural numbers.

Definition state := id -> nat.

After defining a variable and a state, we have then defined the arithmetic and Boolean expressions.
Each definition is composed of two functions: one function to define the syntax and the other to de-
fine the semantics. The syntax of the arithmetic expressions contains basic data types (e.g. bidderpair
(ABidderp), numbers (ANum) and identifier (AId)), arithmetic expressions (e.g., addition (APlus), sub-
traction (AMinus) and multiplication (AMult)) and operations on a List data structure (e.g., AHeadb,
ATail, ACons and ANil). The semantics of these mathematical operations are defined as a relational
function. For example, the operation AHeadb returns the bid of the first bidder in a list.

The syntax of the Boolean expressions defines two basic types: True (BTrue) and False (BFalse).
It also contains the syntax of comparison operators, such as equality (BEq), less than (BLt) and negation
(BNot). Another term in this syntax is BIsCons, which is used to check whether a list is empty or not.
The semantics for the Boolean expressions are also defined as a relational function. For readability, we
do not show the COQ code for these two expressions. We finally define the syntax of our mini-language
as in the COQ definition of com below for commands such as skip, assignment, conditional statements,
sequences, and loops. To ease up the presentation, we have introduced the Notation declarations to
abbreviate these commands.

Inductive com : Type :=

| CSkip : com

| CAsgn : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com

| CRepeat : com -> bexp -> com.

Notation "’SKIP’" :=

CSkip.

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "X ’::=’ a" :=

(CAsgn X a) (at level 60).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).

Notation "’REPEAT’ e1 ’UNTIL’ b2 ’END’" :=

(CRepeat e1 b2) (at level 80, right associativity).

The following definition ceval defines the semantics of commands in our COQ imperative language.
For example, ESeq means that the state will change from st to st’ after executing command c1, and
after running command c2, the state moves to st’’.

8 Automated Program Translation in Certifying Online Auctions

Inductive ceval : state -> com -> state -> Prop :=

| ESkip : forall st,

ceval st SKIP st

| EAss : forall st a1 n X,

aeval st a1 = n ->

ceval st (X ::= a1) (update st X n)

| ESeq : forall c1 c2 st st’ st’’,

ceval st c1 st’ ->

ceval st’ c2 st’’ ->

ceval st (c1 ; c2) st’’

...

Since we have defined the syntax and semantics of all the components of our COQ imperative lan-
guage, we can proceed by showing how we have translated the OWL-S into the COQ descriptions.

4.1.2 Translating Pre- and Post- conditions and Effect

Hoare Logic is used as a paradigm to implement program verification. On one hand, it provides a way
to describe the pre/post conditions of programs by defining Hoare triples. On the other hand, it provides
compositional proof rules to prove the validity of Hoare triples. To build up the Hoare triples, we need to
make assertions about properties that hold during the execution of a program. An Assertion is defined
as a proposition indexed by a state.

Definition Assertion := state -> Prop.

A Hoare triple is composed of three components: the precondition P, command c and post-condition
Q. As recalled in Section 2.2, a Hoare triple {P} c {Q} is valid iff the claimed relation among P, c and
Q is true. This means that if a command c starts in a state where P is true, it will move to a state wherein
Q is true when c terminates.

Definition hoare_triple (P:Assertion)

(c:com) (Q:Assertion) : Prop :=

forall st st’,

c / st || st’ ->

P st ->

Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q) (at level 90, c at next level).

The proof rules of Hoare logic provide a compositional way to prove the validity of Hoare triples.
For each command that was defined in com, we have constructed its inference rule in the usual way.
These inference rules are used to prove the desirable property in Section 5. The precondition and effect
in OWL-S is mapped to the precondition and post-condition of Hoare triples respectively.

4.1.3 Translating SWRL into our COQ Imperative Language

The Semantic Web Rule Language (SWRL) is a proposed language to express rules in the Semantic Web.
SWRL is used to represent the pre/post-conditions in OWL-S, and it is also used to express comparison
and arithmetic operations. In our project, we have just selected a subset of the SWRL, which are used
to build up the auction mechanism, see Section 3. The translation of these operations into our COQ

imperative language is shown in Table 1.
To illustrate this translation, let us consider the addition of 5 and 3. This operation can be expressed

as swrlb:add(?x,5,3) in SWRL, while the related COQ imperative language formula should be X

::= (APlus (ANum 5) (ANum 3)).

W. Bai & E. M. Tadjouddine 9

Table 1: The Mapping of SWRL and COQ definitions

SWRL COQ definitions

Comparison
swrlb:equal

swrlb:lessThan

BEq

BLt

Arithmetic Operations
swrlb:add

swrlb:subtract

swrlb:multiply

APlus

AMinus

AMult

List Operations
swrlb:listConcat

swrlb:rest

swrlb:empty

Acons

ATail

BIsCons

4.1.4 Translating Variable Declarations

In OWL-S, variable declarations are part of Input, Output and Local. As mentioned in the OWL-S
standards document, the variables of input, output and local have the same scope as the entire process
they occur in. The grammar of these three elements is defined as follows.

<!-- inputs -->

inputs ::= ’<process:hasInput>’

input ’</process:hasInput>’ inputs;

input ::= ’<process:Input

rdf:ID=’ quotedString ’>’

parameterType ’</process:Input>’;

<!-- outputs -->

outputs ::= ’<process:hasOutput>’

output ’</process:hasOutput>’ outputs;

output ::= ’<process:Output

rdf:ID=’ quotedString ’>’

parameterType ’</process:Output>’;

<!-- locals -->

locals ::= ’<process:hasOutput>’

local ’</process:hasOutput>’ locals;

local ::= ’<process:Loc

rdf:ID=’ quotedString ’>’

parameterType ’</process:Loc>’;

parameterType ::= ’<process:parameterType

rdf:datatype=’ xsdURI ’>’

type ’</process:parameterType>’;

The keyword type in the line of parameterType, could be any XML data type or the type of
objects that are defined as an OWL Class. The corresponding variable declaration in our COQ imperative
language is defined as:

Definition VARIABLE : id := Id NUM.

In this declaration, VARIABLE is the variable name and NUM is an unique identifier for this variable.

4.1.5 Translating an Assignment

The OWL-S assignment operation is defined as an element of data flow, output binding, Set or Produce
operations. Here, we give one example of how we map an output binding to an assignment operation in
our COQ imperative language. The grammar of an output binding can be described as below.

10 Automated Program Translation in Certifying Online Auctions

<!-- OutputBinding -->

OutputBinding ::= ’<process:OutputBinding>’

toVar valueSource

’<process:OutputBinding>’ OutputBinding;

toVar ::= ’<process:toVar

rdf:resource=’ quotedString ’/>’;

valueSource ::= ’<process:ValueOf>’

fromProcess theVar’</process:ValueOf>’;

fromProcess ::= ’<process:fromProcess

rdf:resource="&process;#ThisPerform"/>’;

theVar ::= ’<process:theVar

rdf:resource=’ quotedString ’/>’;

The keyword quotedString in the line of theVar is defined as the combination of characters. The
related assignment operation in our COQ imperative language is in the format of ‘‘X ’::=’ a’’. The
pre- and post- conditions of an OWL-S description is translated to comments in our COQ imperative
language. Since we have defined the Hoare Logic rules in COQ, when we develop a proof, we can
introduce the related pre- or post- conditions to this proof and verify their correctness for example.

4.1.6 Translating Control Constructs

Composite processes in OWL-S can be decomposed into atomic processes by using control constructs.
OWL-S contains ten control constructs including Sequence, Split, Choice, If-Then-Else and Repeat-
While. To give an idea of the translation of these complex structures, we describe how we have carried
out the translation of the If-Then-Else and Repeat-While control constructs. The grammar of the
control constructs If-Then-Else and Repeat-While is defined as follows.

<!-- If-Then-Else -->

ifthenelse ::= ’<process:composedOf>’

’<process:If-Then-Else

rdf:ID=’ quotedString ’>’

if then else

’</process:If-Then-Else>’

’</process:composedOf>’;

if ::= ’<process:ifCondition>’

SWRL-Condition ’</process:ifCondition>’;

then ::= ’<process:then>’

ControlConstruct ’</process:then>’;

else ::= ’<process:else>’

ControlConstruct ’</process:else>’;

<!-- Repeat-While -->

repeatWhile ::= ’<process:Repeat-While

rdf:ID=’ quotedString ’>’

whileCondition whileProcess

’</process:Repeat-While>’ ;

whileCondition ::= ’<process:whileCondition>’

SWRL-Condition ’</process:whileCondition>’;

whileProcess ::= ’<process:whileProcess

rdf:resource=’ quotedString ’/>’;

W. Bai & E. M. Tadjouddine 11

The keyword SWRL-Condition is the condition that is written in SWRL, and ControlConstruct
represents the combination of control constructs. The related syntax of the branching and while com-
mands in our COQ imperative language are defined respectively as follows:

’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’

’WHILE’ b ’DO’ c ’END’

5 Certifying Desirable Properties

In order to effectively enable automatic checking of desirable properties, we need to take into account
the fact that software agents have limited computer resources and may be constrained in their reasoning.
On one hand, it is difficult for a software agent to find the best possible or optimal bidding strategy on
its own or to optimize its utility out of various strategies in the same way humans might. On the other
hand, if the specification of auction protocols and proofs are published in a machine-readable formalism,
then automatic checking by software agents can be facilitated and the computational complexity will be
reduced. In previous work [4], we have relied upon the Proof-Carrying-Code (PCC) ideas since it allows
us to shift the burden of proof from the buyer agent to the auctioneer who can spend time to prove a
claimed property once for all so that it can be checked by a software agent willing to join the auction
house. The certification procedure works as follows. The buyer agent arriving at the auction house can
download its specification and the claimed proof of a desirable property. Then, the buyer installs the
proof checker, which is a standalone verifier for COQ proofs. After the proof checker is installed on the
consumer side, the buyer can now perform all verifications of claimed properties of the auction before
deciding whether to join and with which bidding strategy.

COQ [26] is an interactive theorem prover based on the calculus of inductive constructions allowing
definitions of data types, predicates, and functions. It also enables us to express mathematical theorems
and to interactively develop proofs that are checked from within the system. We have used COQ because
it has been developed for more than twenty years [12] and is widely used for formal proof development
in a variety of contexts related to software and hardware correctness and safety. COQ has been used to
model and verify sequential programs and concurrent programs [1]. In [16], COQ was used to develop
and certify a compiler. A fully computer-checked proof of the Four Colour Theorem was developed
in [13]. In [27], a COQ-formalized proof that all non-cooperative and sequential games have a Nash
equilibrium point is presented. It turns out that COQ is a good example of a combination of logic and
computation as it allows for the formalization of different types of logic (e.g.,first order logic, typed
lambda-calculus, etc.) while providing the possibility of defining functions, which are the cornerstone of
computation [9].

Definition ListBP : id := Id 0.

Definition newBid : id := Id 1.

Definition sample_englishAuction :=

WHILE BIsCons (AId ListBP) DO

newBid ::= (AHeadb (AId ListBP));

IFB (BLt (AId CurrentBid)(AId newBid)) THEN

CurrentBid ::= (AId newBid)

ELSE

SKIP

FI;

ListBP ::= ATail (AId ListBP)

END.

12 Automated Program Translation in Certifying Online Auctions

Table 2: Proof Sketch of a Sample of an English Auction
(1) {{ListBP = l ∧ CurrentBid = 0 ∧ newBid = 0}}
(2) {{CurrentBid ≥ newBid}} Invariant ∧ Hoare consequence

WHILE BIsCons (AId ListBP) DO

(3) {{CurrentBid ≥ newBid ∧ (BIsCons (AId ListBP))}} Invariant ∧ The WHILE guard

(4) {{TRUE}} Hoare asgn

newBid ::= (AHeadb (AId ListBP));

(5) {{TRUE}} Precondition of IF sentence

IFB (BLt (AId CurrentBid) (AId newBid)) THEN

(6) {{TRUE ∧ (BLt (AId CurrentBid) (AId newBid))}} Precondition of IF sentence ∧
The IF guard

(7) {{newBid ≥ newBid}} Hoare asgn

CurrentBid ::= (AId newBid)

(8) {{CurrentBid ≥ newBid}} Invariant

ELSE

(9) {{TRUE ∧ !(BLt (AId CurrentBid) (AId newBid))}} Precondition of IF sentence ∧
The negation of the IF guard

(10) {{CurrentBid ≥ newBid}} Hoare skip

SKIP

(11) {{CurrentBid ≥ newBid}} Invariant

FI;

(12) {{CurrentBid ≥ newBid}} Hoare asgn

ListBP ::= ATail (AId ListBP)

(13) {{CurrentBid ≥ newBid}} Invariant

END.

(14) {{CurrentBid ≥ newBid ∧ !(BIsCons (AId ListBP))}} Invariant ∧
The negation of the WHILE guard

(15) {{CurrentBid ≥ newBid}} Hoare consequence

A well-defined auction mechanism can be viewed as a function that maps a set of typed agents into
outcomes characterized by utilities usually defined as pseudo-linear functions. Not only, do we need to
specify rules and properties but we also need to carry out some calculations. The constructive approach
provided by COQ offers possibilities to describe auctions along with desirable properties and prove them.
To illustrate how we can specify an auction within COQ, let us consider the English auction example. In
the sample code above, ListBP is a list of bidders with their own bid variable. newBid is the bid for one
bidder in one round of the auction. The auction runs from the first bidder in the bidders’ list to the last
bidder of the list. In a round, a bidder, who does not want to bid in that round, is supposed to have a
lower bid for the round. This way, we can simulate the English auction.

Table 2 illustrates a COQ proof of the property ”the winner has the highest bid” by using Hoare logic.
The invariant in this proof is the relation CurrentBid ≥ newBid. The precondition of this program is
that ListBP is a bidding list, the values of CurrentBid and newBid are set as zero, which is shown in line
(1). The post-condition of this program is the same as the invariant as in line (15). The proof starts as
the while guard holds in line (3). In the while loop it is a sequence of commands, which is constructed
using the rule of Hoare seq. The precondition of the inner if-sentence is set as TRUE in line (4). The
proof in the if-sentence is branched as the guard holds in line (5) and not holds in line (9). Line (2) is
implied from line (1), while line (15) is implied from line (14). Note that if a property is proven from
within COQ, then this property holds in our OWL-S specification since the OWL-S-to-COQ translation
is sound and complete.

We can prove more complicated game-theoretic properties from within COQ. In previous work [4],
we have developed a COQ proof of the well-known statement that bidding its true valuation is the domi-
nant strategy for each agent in a Vickrey or English auction. An important property that can be checked

W. Bai & E. M. Tadjouddine 13

is that the auction is a well-defined function and that it does implement its specifications through certified
code generation [10]. More challenging properties to be checked might be that the auction mechanism is
collusion-free or that it is free from fictitious bidding. In this work, we focus on the mapping of auction
specifications from OWL-S to COQ so as to enable the verification in a more dedicated and powerful
proof development tool.

6 Related Work

There is by now a large body of literature on program transformations and their verification. For example,
we may be interested in translating a C code into a Java code or vice versa. More importantly, we may
have to ensure the correctness of all compilation phases and any optimization technique used to improve
code performance for safety-critical software. This implies the verification of program transformations
from one source into a target in a possibly different programming language, see for example [16] and
the references therein. Usually, the verification of these kind of program transformations rely upon the
concept of refinement; that is that the set of behaviors of the target program is a subset of that of the
source program. In our work, we have translated OWL-S specifications into specifications in a COQ

imperative language by using ANTLR. Our transformation is merely a one-to-one mapping between two
WHILE languages and the semantics equivalence between the source and target specifications can be
established using the relational Hoare logic in [7].

In the context of specifications translation, the work reported in [20], OWL-S was mapped into Frame
logic for using first order logic based model checking to verify certain properties of semantic web service
systems. In our work, we have automated a syntactic translation scheme that preserves the semantics of
the source code so that properties that are shown to be true or false from within COQ will stay respectively
true or false in the OWL-S paradigm.

The idea of software agents automatically checking desirable properties has been investigated in [24,
25] by using a model checking approach. The computational complexity of such costly verification
procedures are investigated in [23]. A typed language which allows for automatic verification that an
allocation algorithm is monotonic and therefore truthful was introduced in [15]. More recently, a proof-
carrying code approach [21, 2] relying on proofs development tools to enable automatic certification of
auction mechanisms have been investigated in [4, 10]. Our work is aimed at bridging the gap between the
need for a machine-readable formalism to specify online auction mechanisms and the ability of software
agents to formally verify possibly complex auction properties.

7 Concluding Remarks

In this paper, we have considered the problem of trust in a network of online auctions by software agents.
This requires software agents to understand auction protocols and to prove some desirable properties
whose correctness will give confidence in the system. We have first discussed how OWL-S is expressive
enough to be used as a machine-readable formalism to describe these mechanisms. We have then shown
how such an OWL-S specification can be automatically translated into a COQ imperative program in
order to enable us to develop proofs that are machine-checkable. Machine-checkable proofs are required
as we have used the proof-carrying code paradigm wherein an auctioneer will have to provide proofs of
claimed properties of its auction and buyer agents will need to check the correctness of those proofs.

The translation from a OWL-S to a COQ imperative language code is carried out using a one-to-one
mapping between two WHILE languages and the correctness of the transformation is based on semantics

14 Automated Program Translation in Certifying Online Auctions

equivalence between the source and the target codes. This semantics equivalence can be justified by using
a relational Hoare logic [7] that is sound and complete. This automatic transformation is implemented
using ANTLR. Finally, we have illustrated the verification of auction properties by developing a COQ

proof of the fact that in an English auction, the highest bidder wins the auction.
In future work, we will introduce dialogue games [18], which are rule-governed interactions between

two or more participants, to build up a framework that enable software agents to automatically query
information from a semantic web service holder. The proof-carrying code paradigm will be integrated
within an inquiry dialogue, so that the service holder can provide a proof for the buyer agent when
she is queried if a desirable property is held in the specific service. Another interesting direction is to
explicitly consider the acceptance of properties without formal proofs (e.g., the reputation of a service)
in a dialogue. This framework will be instantiated in JADE [6], which is a java platform to develop agent
applications for interoperable intelligent multi-agent systems.

References

[1] R. Affeldt, N. Kobayashi & A. Yonezawa (2005): Verification of Concurrent Programs Using the Coq Proof
Assistant: A Case Study. IPSJ Digital Courier 1(0), pp. 117–127, doi:10.2197/ipsjdc.1.117.

[2] A.W. Appel (2001): Foundational proof-carrying code. In: Logic in Computer Science, 2001. Proceedings.
16th Annual IEEE Symposium on, IEEE, pp. 247–256, doi:10.1109/LICS.2001.932501.

[3] Wei Bai, Emmanuel M Tadjouddine & Yu Guo (2014): Enabling Automatic Certification of Online Auctions.
arXiv preprint arXiv:1404.0854, doi:10.4204/EPTCS.147.9.

[4] Wei Bai, Emmanuel M. Tadjouddine, Terry Payne & Steven Guan (2013): A Proof-Carrying Code Approach
to Certificate Auction Mechanisms. In: The 10th International Symposium on Formal Aspects of Component
Software, doi:10.1007/978-3-319-07602-7 4.

[5] Christopher JO Baker & Kei-Hoi Cheung (2007): Semantic web: Revolutionizing knowledge discovery in the
life sciences. Springer, doi:10.1007/978-0-387-48438-9.

[6] Fabio Bellifemine, Agostino Poggi & Giovanni Rimassa (2001): JADE: a FIPA2000 compliant agent devel-
opment environment. In: Proceedings of the fifth international conference on Autonomous agents, ACM, pp.
216–217, doi:10.1145/375735.376120.

[7] Nick Benton (2004): Simple relational correctness proofs for static analyses and program transformations.
In: ACM SIGPLAN Notices, 39, ACM, pp. 14–25, doi:10.1145/982962.964003.

[8] Tim Berners-Lee, James Hendler, Ora Lassila et al. (2001): The semantic web. Scientific american 284(5),
pp. 28–37.

[9] Yves Bertot & Pierre Castéran (2004): Interactive theorem proving and program development: Coq’Art: the
calculus of inductive constructions. springer, doi:10.1007/978-3-662-07964-5.

[10] Marco B. Caminati, Manfred Kerber, Christoph Lange & Colin Rowat (2013): Proving soundness of com-
binatorial Vickrey auctions and generating verified executable code. CoRR abs/1308.1779. Available at
http://arxiv.org/abs/1308.1779.

[11] A-S Dadzie, R Bhagdev, A Chakravarthy, S Chapman, J Iria, V Lanfranchi, J Magalhães, D Petrelli &
F Ciravegna (2009): Applying semantic web technologies to knowledge sharing in aerospace engineering.
Journal of Intelligent Manufacturing 20(5), pp. 611–623, doi:10.1007/s10845-008-0141-1.

[12] G. Dowek, A. Felty, H. Herbelin, G. Huet, B. Werner, C. Paulin-Mohring et al. (1991): The COQ proof
assistant user’s guide: Version 5.6.

[13] G. Gonthier (2008): The four colour theorem: Engineering of a formal proof. Computer Mathematics, pp.
333–333, doi:10.1007/978-3-540-87827-8 28.

http://dx.doi.org/10.2197/ipsjdc.1.117
http://dx.doi.org/10.1109/LICS.2001.932501
http://dx.doi.org/10.4204/EPTCS.147.9
http://dx.doi.org/10.1007/978-3-319-07602-7_4
http://dx.doi.org/10.1007/978-0-387-48438-9
http://dx.doi.org/10.1145/375735.376120
http://dx.doi.org/10.1145/982962.964003
http://dx.doi.org/10.1007/978-3-662-07964-5
http://arxiv.org/abs/1308.1779
http://dx.doi.org/10.1007/s10845-008-0141-1
http://dx.doi.org/10.1007/978-3-540-87827-8_28

W. Bai & E. M. Tadjouddine 15

[14] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, Mike Dean et al. (2004):
SWRL: A semantic web rule language combining OWL and RuleML. W3C Member submission 21, p. 79.

[15] A. Lapets, A. Levin & D. Parkes (2008): A Typed Language for Truthful One-Dimensional Mechanism
Design. Technical Report, Boston University Computer Science Department.

[16] X. Leroy (2009): Formal verification of a realistic compiler. Communications of the ACM 52(7), pp. 107–
115, doi:10.1145/1538788.1538814.

[17] James McAndrews, Asani Sarkar & Zhenyu Wang (2008): The effect of the term auction facility on the
london inter-bank offered rate. Technical Report, Staff Report, Federal Reserve Bank of New York,
doi:10.2139/ssrn.1183671.

[18] Peter McBurney & Simon Parsons (2009): Dialogue games for agent argumentation. In: Argumentation in
artificial intelligence, Springer, pp. 261–280, doi:10.1007/978-0-387-98197-0 13.

[19] Deborah L McGuinness, Frank Van Harmelen et al. (2004): OWL web ontology language overview. W3C
recommendation 10(2004-03), p. 10.

[20] Huaikou Miao, Tao He & Liping Li (2009): Formal semantics of OWL-S with F-logic. In: Computer and
Information Science 2009, Springer, pp. 105–117, doi:10.1007/978-3-642-01209-9 10.

[21] G.C. Necula (1997): Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, ACM, pp. 106–119, doi:10.1145/263699.263712.

[22] Terence John Parr & Russell W. Quong (1995): ANTLR: A Predicated- LL(k) Parser Generator. Software -
Practice and Experience 25, pp. 789–810, doi:10.1002/spe.4380250705.

[23] Emmanuel M. Tadjouddine (2011): Computational Complexity of Some Intelligent Computing Sys-
tems. International Journal of Intelligent Computing and Cybernetics 4(2), pp. 144 – 159,
doi:10.1108/17563781111136676.

[24] Emmanuel M Tadjouddine & Frank Guerin (2007): Verifying dominant strategy equilibria in auctions. In:
Multi-Agent Systems and Applications V, Springer, pp. 288–297, doi:10.1007/978-3-540-75254-7 29.

[25] Emmanuel M Tadjouddine, Frank Guerin & Wamberto Vasconcelos (2009): Abstracting and Verifying
Strategy-Proofness for Auction Mechanisms. In: Declarative Agent Languages and Technologies VI,
Springer, pp. 197–214, doi:10.1007/978-3-540-93920-7 13.

[26] The Coq Development Team (2012): The Coq proof assistant reference manual: Version 8.4. http://coq.
inria.fr.

[27] R. Vestergaard (2006): A constructive approach to sequential Nash equilibria. Information Processing Letters
97(2), pp. 46–51, doi:10.1016/j.ipl.2005.09.010.

http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.2139/ssrn.1183671
http://dx.doi.org/10.1007/978-0-387-98197-0_13
http://dx.doi.org/10.1007/978-3-642-01209-9_10
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1108/17563781111136676
http://dx.doi.org/10.1007/978-3-540-75254-7_29
http://dx.doi.org/10.1007/978-3-540-93920-7_13
http://coq.inria.fr
http://coq.inria.fr
http://dx.doi.org/10.1016/j.ipl.2005.09.010

	Introduction
	Background and Model
	Language Used
	A Hoare Logic for Program Translation

	Machine Readable Description
	The OWL-S Description Language

	Automated Program Translation
	Translation Architecture
	Syntax and Semantics of the Coq Imperative Language
	Translating Pre- and Post- conditions and Effect
	Translating SWRL into our Coq Imperative Language
	Translating Variable Declarations
	Translating an Assignment
	Translating Control Constructs

	Certifying Desirable Properties
	Related Work
	Concluding Remarks

