

Towards the Verification of Refactorings of Hybrid Simulink Models

Sebastian Schlesinger, Paula Herber, Thomas Göthel, Sabine Glesner Software Engineering for Embedded Systems Technische Universität Berlin

Goal

Automated verification of refactorings of hybrid Simulink models Example

Criteria

- Automated verification
- Transformation correctness
- Support for hybrid models
- Industrial relevance

$$y(t) = \exp(-t)$$

Motivation

- Simulink de facto standard for Model Driven Engineering in Automotive, Aerospace etc.
- Verification esp. in safety-critical environments
- Refactorings improve structure, preserve behaviour

LAND A

Related Work

HHH/

	S	Simulink veri- fication		mate ation	k Ings	k ngs verif.	6
	Simulink semanti	Discrete Models	Hybrid Models	Approxii Bisimula	Simulink refactori	Simulink reactorii	Remark
Mathworks documentation	✓						Informal semantics
Bouissou, Chapoutot, ACM SIGPLAN 2012	✓						Formal semantics
Herber, EMSOFT 2013		\checkmark					Transf. to UCLID
Caspi, ACM TECS 2005		~					Transf. to LUSTRE
Reicherdt, Glesner, ICSE 2014		~					Transf. to BOOGIE
Agrawal, Simon, Karsai, 2004			✓				Transf. to hybrid automata
Girard, Pappas, European Journal of Control, 2011				✓			
Tran, Wilmes, Dziobek, ICSEA 2013					\checkmark		
Stuermer, Mathworks Automotive 2007					✓		
Our approach aims at	✓	~	~	~	~	~	under development

Sebastian Schlesinger

PES Software Engineering for Embedded Systems

- LTS $T_i = (Q_i, Q_i^0, \rightarrow_i, \Pi, \langle . \rangle_i)$
- $\bullet \ B_{\epsilon} \subseteq Q_1 \times Q_2$
- B_{ϵ} approximate bisimulation of precision $\epsilon \Leftrightarrow \forall (q_1, q_2) \in B_{\epsilon}$:

- 1. $d(\langle q_1 \rangle_1, \langle q_2 \rangle_2) \leq \epsilon$
- 2. $\exists q_1': q_1 \rightarrow q_1' \Rightarrow \exists q_2': q_2 \rightarrow q_2' \land (q_1', q_2') \in B_{\epsilon}$ and vice versa
- $T_1 \sim T_2 \Leftrightarrow \forall q_1 \in Q_1^0 \exists q_2 \in Q_2^0 \exists B_{\epsilon} \subseteq Q_1 \times Q_2 \text{ approx. bisimulation relation: } (q_1, q_2) \in B_{\epsilon}$

Overview over our approach

 Abstract Representation (AR): Equation set describing how blocks modify signals

Software Engineering for Embedded Systems

- 2. Proof of soundness of AR with operational semantics
- 3. Adaptation of approximate bisimulation as more suitable notion of equivalence than traditional bisimulation
- 4. Epsilon tubes for the precision of the approximate bisimulations

- Equation set that describes how the signal is modified at a block by relating input and output
- ⇒ Sound with semantics; enables abstraction

$$l_1(t) = 1, l_2(t) = l_1(t) + l_4(t),$$

$$l_3(t) = l_2(t), l_4(t + 2h) = l_3(t)$$

$$l_1(t) = -l_2(t), \frac{d}{dt}l_2(t) = l_1(t)$$

Equation holds for simulation step size
$$h \to 0$$

Adaptation of Approximate Bisimulation

- Simulink Model is graph M = (B, V, I, O)
- States $Q \subseteq \mathbb{R}^{\mathcal{V}}$

Software Engineering for Embedded Systems

- Observations $\Pi \subseteq \mathbb{R}^{\bigcup_{b \in O} var(b)}$
- Metric $d: \Pi \times \Pi \to \mathbb{R}$, $d(\langle \sigma_1 \rangle, \langle \sigma_2 \rangle) = ||\langle \sigma_1 \rangle - \langle \sigma_2 \rangle||_{\infty}$

observation

Constar

 \Rightarrow Unsampled Models: approx. bisimilar with $\epsilon = 0$

Appr. Bisimulation 1/2

Sebastian Schlesinger

\Rightarrow Discrete Models: approx. bisimilar with $\epsilon = 0$

 $\Rightarrow Continuous Models: approx.$ bisimilar with ϵ depending on second derivative of solution (for Euler technique)

Summary and Future Work

Summary

- Our goal: verification methodology of refactorings for hybrid Simulink models
- Ideas:
- 1. abstract representation, sound with operational semantics
- adaptation of approximate bisimulation, allowing observations `close' to each other

Future Work

- Automation
- Support for hybrid models containing both, discrete and continuous parts
- Enhancement of estimation of epsilon tubes

Sebastian Schlesinger Towards the Verification of Refactorings of Hybrid Simulink Models