
Control Flow
Analysis for SF

Combinator Calculus

Martin Lester

Department of Computer Science,
University of Oxford

Verification and Program
Transformation,

2015–04–11

Motivation

I Programs that transform other programs are a form of
metaprogramming.

I In most languages, program code is not a first-class citizen.
I This makes formal reasoning about the behaviour of

program-transforming programs difficult.

I Recent work on analysis of metaprogramming focuses mainly
on extensional operations, such as composition of well-formed
code templates.

I Many program transformations are intensional: they
decompose code.

I SF Combinator Calculus succinctly expresses intensional
operations.

I Let’s try to analyse that too.

I 0CFA is a well-understood and widely-used program analysis.
I Let’s try to formulate it for SF Combinator Calculus.

Outline

Motivation

Outline

Background
SK Combinator Calculus
SF Combinator Calculus
0CFA for λ-calculus

0CFA for SK-calculus

0CFA for SF-calculus

Conclusion

SK Combinator Calculus — Review

SF Combinator Calculus is similar to SK Combinator Calculus, so
let us first review that.
SK Combinator Calculus is a Turing-powerful model of
computation [HS08].
Consider terms:

I built from two combinators S and K . . .
I . . . each with an associated rewrite rule:
I S f g x → f x (g x)
I K x y → x

I using application;

I viewed as trees.

Then:

I a term is a function or a program;

I a sequence of rewrites is execution of a program.

SK Combinator Calculus — Terms as Trees

@

y@

xK

→ x @

x@

g@

fS

→ @

@

xg

@

xf

@

x@

K@

KS

→ @

@

xK

@

xK

→ x

SK Combinator Calculus — and λ-Calculus
How does SK-calculus relate to λ-calculus?

I S and K can be translated into λ-calculus by lambda:
I lambda(S) ≡ λf .λg .λx .f x (g x)
I lambda(K) ≡ λx .λy .x

I Any closed term e of λ-calculus can be written as a purely
applicative term t built from S and K using a translation
unlambda.

I unlambda is left-inverse to lambda:

t
lambda−→ e

unlambda−→ t

I But in general:

e
unlambda−→ t

lambda

6−→ e

I The relationship is preserved by reduction:

t
reduce−→ t ′

lambda↓ ↑ unlambda

e
reduce+−→ e′

SK Combinator Calculus — Advantages and Disadvantages

Advantages:

I no need to reason about bound variables;

I all transformations are local;

I practical as an “assembly language” for functional programs.

Disadvantages:

I hard for humans to read.

I can be larger than equivalent λ-terms (unless extended
combinator set is used).

SF Combinator Calculus — Reductions
S behaves the same as in SK-calculus.
F allows factorisation of its first argument.

F f x y → x if f = S or f = F
F (u v) x y → y u v if u v is a factorable form

A factorable form is a term of form S , S u, S u v , F , F u or F u v .
Properties:

I By encoding K as F F , we get all the power of SK-calculus.

I We can check for equality of terms in normal form.

I We can distinguish between two terms that compute the same
function in a different way.

I The restriction to factorable forms ensures confluence, hence
a consistent equational theory [GJ11].

I Adding types in the style of System F, we can type a
self-interpreter for SF-calculus [JP11].

Claim: SF-calculus is a good formalism for writing
program-transforming programs.

SF Combinator Calculus — Terms as Trees

@

y@

x@

SF

→ x @

y@

x@

FF

→ x

SF Combinator Calculus — Terms as Trees

@

y@

x@

@

vu

F

→ @

v@

uy

SF Combinator Calculus — Terms as Trees

@

x@

K@

KS

→ @

@

xK

@

xK

→ x

@

x@

@

FF

@

@

FF

S

→ @

@

x@

FF

@

x@

FF

→ x

0CFA for λ-calculus — Overview
0CFA is a Control Flow Analysis [Mid12]:

I For each variable x in a program, it tell us what functions can
be bound to x .

I This is important in functional programs, where functions
determine control flow.

I Numerous applications, including compiler optimisations and
as the foundation for other analysis, such as abstract
interpretation frameworks.

Properties of 0CFA:
I Practical time complexity: O(n3) or better.
I Necessarily some imprecision; this arises when the same

function is called from two different places.

More advanced analyses:
I k-CFA adds k levels of calling context.

I When k = 0, this is 0CFA.
I For k ≥ 1, precision improves, but EXPTIME-complete.

I CFA2 uses a pushdown abstraction.
I Often faster and more precise than k-CFA.

0CFA for λ-calculus — Analysis Rules

Give each subexpression a distinct label l .
Generate and solve set constraints over Γ.

Labels Label 3 l
Variables Var 3 x
Labelled Expressions e ::= x l | e1@le2 | λlx .e
Abstract Values Abs 3 v ::= FUN(x , l)
Abstract Environment Γ : Label] Var → P(Abs)

Γ |= x l ⇐⇒ Γ(x) ⊆ Γ(l)
Γ |= λl1x .e l2 ⇐⇒ Γ |= e l2 ∧ FUN(x , l2) ∈ Γ(l1)

Γ |= e l11 @le l22 ⇐⇒ Γ |= e l11 ∧ Γ |= e l22 ∧
(∀FUN(x , l3) ∈ Γ(l1).Γ(l2) ⊆ Γ(x) ∧ Γ(l3) ⊆ Γ(l))

I FUN(x , l2) — any function that binds x with body labelled l2
I FUN(x , l2) ∈ Γ(l1) — such a function could occur at l1
I Γ(l3) ⊆ Γ(l) — anything that occurs at l3 could occur at l

0CFA for SK-calculus

To work out how to do 0CFA for SF-calculus, let us first look at
SK-calculus.

I 0CFA tracks which functions can be bound to which variables.

I How do we do that with no variables?

I Easy: Just use the lambda translation.

I But that won’t help us with SF-calculus.

I So reformulate the constraints to get rid of variable binding.

I Give each combinator and application a distinct label n or l .
I Key idea: Abstract values indicate a node’s local left children

in weak normal form.
I Sn

0 ∈ Γ(l) — Sn may occur at the node labelled l
I Sn

1 ∈ Γ(l) — Sn may occur at l ’s left child
I Sn

2 ∈ Γ(l) — Sn may occur at l ’s left child’s left child
I Sn

3 — not needed, as it can never occur in normal form
I ϕ(n) — if true, Sn might be reduced

0CFA for SK-calculus — Analysis Rules

Base Labels n
Sublabel Names s ::= S .0 | S .1 | S .2 | S .3 | S .L | S .R | K .0
Labels Label 3 l ::= n | n.s
Labelled Terms t ::= Sn | Kn | t1@l t2 | 〈x〉l
Abstract Values Abs 3 v ::= Sn

0 | Sn
1 | Sn

2 | Kn
0 | Kn

1

Abstract Environment Γ : Label → P(Abs)
Abstract Activation ϕ : Label → Bool

Γ, ϕ |= Sn ⇐⇒ Sn
0 ∈ Γ(n) ∧ (ϕ(n)⇒ Γ, ϕ |= tSn)

Γ, ϕ |= Kn ⇐⇒ Kn
0 ∈ Γ(n)

Γ, ϕ |= t l11 @l3t l22 ⇐⇒ Γ, ϕ |= t1 ∧ Γ, ϕ |= t2
∧ ∀Sn

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .0) ∧ Sn
1 ∈ Γ(l3)

∧ ∀Sn
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .1) ∧ Sn

2 ∈ Γ(l3)
∧ ∀Sn

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .2) ∧ Γ(n.S .3) ⊆ Γ(l3) ∧ ϕ(n)
∧ ∀Kn

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.K .0) ∧ Kn
1 ∈ Γ(l3)

∧ ∀Kn
1 ∈ Γ(l1).Γ(n.K .0) ⊆ Γ(l3)

Γ, ϕ |= 〈x〉l ⇐⇒ true

tSn
def
= (〈f 〉n.S .0@n.S.L〈x〉n.S.2)@n.S .3(〈g〉n.S.1@n.S .R〈x〉n.S .2)

0CFA for SK-calculus — Analysis Rules

@3

y4@1

x2K 0

At K 0: K 0
0 ∈ Γ(0)
⇓

At @1: K 0
1 ∈ Γ(1) Γ(2) ⊆ Γ(0.K .0)
⇓

At @3: Γ(0.K .0) ⊆ Γ(3)
⇓

So: Γ(2) ⊆ Γ(0.K .0) ⊆ Γ(3)

0CFA for SK-calculus — Analysis Rules

@5

x6@3

g4@1

f 2S0

At S0: S0
0 ∈ Γ(0)
⇓

At @1: S0
1 ∈ Γ(1) Γ(2) ⊆ Γ(0.S .0)
⇓

At @3: S0
2 ∈ Γ(3) Γ(4) ⊆ Γ(0.S .1)
⇓

At @5: ϕ(0) Γ(6) ⊆ Γ(0.S .2) Γ(0.S .3) ⊆ Γ(5)
⇓

0CFA for SK-calculus — Analysis Rules

@5

x6@3

g4@1

f 2S0

ϕ(0) ⇒ @0.S .3

@0.S.R

〈x〉0.S.2〈g〉0.S.1

@0.S .L

〈x〉0.S.2〈f 〉0.S.0

Suppose f = K :
K 2
0 ∈ Γ(2)
⇓

K 2
0 ∈ Γ(0.S .0)
⇓

Γ(0.S .2) ⊆ Γ(0.S .3)

So : Γ(6) ⊆ Γ(0.S .2) ⊆ Γ(0.S .3) ⊆ Γ(5)

0CFA for SF-calculus — Challenges

S behaves the same in SK-calculus and SF-calculus, so use the
same rules.
How can we handle F? There are two challenges:

I How do we determine which reduction is used?
I Abstract values already record how many arguments a

combinator has.
I Atoms have 0 arguments — abstractly Sn

0 and F n
0 .

I Compounds have ≥ 1 argument — Sn
1 ,S

n
2 ,F

n
1 ,F

n
2 .

I How do we factorise abstractly?
I Add new abstract values that record the source of an

application.
I @l1,l2 ∈ Γ(l3) — the subtree at l3 might have been built by

applying the subtree at l1 to the subtree at l2.

0CFA for SF-calculus — Analysis Rules
Base Labels n
Sublabel Names s ::= S .0 | S .1 | S .2 | S .3 | S .L | S .R |

F .0 | F .1 | F .2 | F .3 | F .L | F .R | F .M
Labels Label 3 l ::= n | n.s
Labelled Terms t ::= Sn | F n | t1@l t2 | 〈x〉l
Abstract Values Abs 3 v ::= Sn

0 | Sn
1 | Sn

2 | F n
0 | F n

1 | F n
2 | @(l1,l2)

Abstract Environment Γ : Label → P(Abs)
Abstract Activation ϕ : Label → Bool

Γ, ϕ |= Sn ⇐⇒ Sn
0 ∈ Γ(n) ∧ (ϕ(n)⇒ Γ, ϕ |= tSn)

Γ, ϕ |= F n ⇐⇒ F n
0 ∈ Γ(n)

∧ ϕ(n)⇒ (∃n0.Sn0
0 ∈ Γ(n.F .0) ∨ F n0

0 ∈ Γ(n.F .0))⇒ Γ(n.F .1) ⊆ Γ(n.F .3)
∧ ϕ(n)⇒ (∃n0.Sn0

1 ∈ Γ(n.F .0) ∨ Sn0
2 ∈ Γ(n.F .0) ∨

F n0
1 ∈ Γ(n.F .0) ∨ F n0

2 ∈ Γ(n.F .0))⇒ Γ, ϕ |= tF n ∧
∀@l1,l2 ∈ Γ(n.F .0).Γ(l1) ⊆ Γ(n.F .L) ∧ Γ(l2) ⊆ Γ(n.F .R)

Γ, ϕ |= t l11 @l3t l22 ⇐⇒ Γ, ϕ |= t1 ∧ Γ, ϕ |= t2
∧ ∃@l4,l5 ∈ Γ(l3).Γ(l1) ⊆ Γ(l4) ∧ Γ(l2) ⊆ Γ(l5)
∧ ∀Sn

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .0) ∧ Sn
1 ∈ Γ(l3)

∧ ∀Sn
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .1) ∧ Sn

2 ∈ Γ(l3)
∧ ∀Sn

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .2) ∧ Γ(n.S .3) ⊆ Γ(l3) ∧ ϕ(n)
∧ ∀F n

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .0) ∧ F n
1 ∈ Γ(l3)

∧ ∀F n
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .1) ∧ F n

2 ∈ Γ(l3)
∧ ∀F n

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .2) ∧ Γ(n.F .3) ⊆ Γ(l3) ∧ ϕ(n)
Γ, ϕ |= 〈x〉l ⇐⇒ true

tSn
def
= (〈f 〉n.S .0@n.S .L〈x〉n.S .2)@n.S .3(〈g〉n.S .1@n.S.R〈x〉n.S.2)

tF n
def
= (〈y〉n.F .2@n.F .M〈u〉n.F .L)@n.F .3〈v〉n.F .R

0CFA for SF-calculus — Analysis Rules

Base Labels n
Sublabel Names s ::= . . . | F .0 | F .1 | F .2 | F .3 | F .L | F .R | F .M
Labels Label 3 l ::= n | n.s
Labelled Terms t ::= Sn | F n | t1@l t2 | 〈x〉l
Abstract Values Abs 3 v ::= . . . | F n

0 | F n
1 | F n

2 | @(l1,l2)

Abstract Environment Γ : Label → P(Abs)
Abstract Activation ϕ : Label → Bool

Γ, ϕ |= F n ⇐⇒ F n
0 ∈ Γ(n)

∧ ϕ(n)⇒ (∃n0.Sn0
0 ∈ Γ(n.F .0) ∨ F n0

0 ∈ Γ(n.F .0))⇒ Γ(n.F .1) ⊆ Γ(n.F .3)
∧ ϕ(n)⇒ (∃n0.Sn0

1 ∈ Γ(n.F .0) ∨ Sn0
2 ∈ Γ(n.F .0) ∨

F n0
1 ∈ Γ(n.F .0) ∨ F n0

2 ∈ Γ(n.F .0))⇒ Γ, ϕ |= tF n ∧
∀@l1,l2 ∈ Γ(n.F .0).Γ(l1) ⊆ Γ(n.F .L) ∧ Γ(l2) ⊆ Γ(n.F .R)

Γ, ϕ |= t l11 @l3t l22 ⇐⇒ Γ, ϕ |= t1 ∧ Γ, ϕ |= t2
. . .

∧ ∃@l4,l5 ∈ Γ(l3).Γ(l1) ⊆ Γ(l4) ∧ Γ(l2) ⊆ Γ(l5)
∧ ∀F n

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .0) ∧ F n
1 ∈ Γ(l3)

∧ ∀F n
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .1) ∧ F n

2 ∈ Γ(l3)
∧ ∀F n

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .2) ∧ Γ(n.F .3) ⊆ Γ(l3) ∧ ϕ(n)
Γ, ϕ |= 〈x〉l ⇐⇒ true

tF n
def
= (〈y〉n.F .2@n.F .M〈u〉n.F .L)@n.F .3〈v〉n.F .R

0CFA for SF-calculus — Analysis Rules

@5

y6@3

x4@1

f 2F 0

At F 0: F 0
0 ∈ Γ(0)
⇓

At @1: F 0
1 ∈ Γ(1) Γ(2) ⊆ Γ(0.F .0)
⇓

At @3: F 0
2 ∈ Γ(3) Γ(4) ⊆ Γ(0.F .1)
⇓

At @5: ϕ(0) Γ(6) ⊆ Γ(0.F .2) Γ(0.F .3) ⊆ Γ(5)
⇓

0CFA for SF-calculus — Analysis Rules

@5

y6@3

x4@1

S2F 0

Suppose f = S :
S2
0 ∈ Γ(2)
⇓

S2
0 ∈ Γ(0.F .0)

⇓
Γ(0.F .1) ⊆ Γ(0.F .3)

So : Γ(4) ⊆ Γ(0.F .1) ⊆ Γ(0.F .3) ⊆ Γ(5)

0CFA for SF-calculus — Analysis Rules

@5

y6@3

x4@1

@2

F 8S7

F 0

ϕ(0) ⇒ @0.F .M

v0.F .R@0.F .3

u0.F .Ly0.F .2

Suppose f = u v = S F :

ϕ(0) S7
1 ∈ Γ(2) At @2: @7,8 ∈ Γ(2)

⇓ ⇓ ⇓
S7
1 ∈ Γ(0.F .0) @7,8 ∈ Γ(0.F .0)

⇓ ⇓
Γ(7) ⊆ Γ(0.F .L) Γ(8) ⊆ Γ(0.F .R)

0CFA for SF-calculus — Properties
Relationship with 0CFA for SK-calculus:

I Encoding an SK-calculus program in SF-calculus with K as
F F , the two analyses give the same results.

I 0CFA for SF-calculus retains polynomial time-complexity.

Sources of imprecision:

I As with 0CFA for λ-calculus, the analysis conflates multiple
uses of the same argument.

I If our analysis of the 1st argument of F is imprecise, we may
activate constraints for both rules, when really only one case
applies.

I If an F can use both rules, we apply both sets of constraints
to all arguments, not just those that activate the rules.

I If two distinct applications are factorised by the same F , we
lose co-ordination between them.

I When we factorise abstractly, we have no way of discarding
unfactorable forms.

Conclusion

Contributions:

I A formulation of 0CFA for SK-calculus.
I A formulation of 0CFA for SF-calculus.

I The first static analysis for SF-calculus.

I Correctness proofs and preliminary evaluation for the above.

Future work:

I A translation from a higher-level language into SF-calculus.

I Address sources of imprecision in analysis.

I Try extending other CFA-style analyses (k-CFA, CFA2, . . .)
to SF-calculus.

Thanks for listening. Questions are welcome.

Conclusion

Contributions:

I A formulation of 0CFA for SK-calculus.
I A formulation of 0CFA for SF-calculus.

I The first static analysis for SF-calculus.

I Correctness proofs and preliminary evaluation for the above.

Future work:

I A translation from a higher-level language into SF-calculus.

I Address sources of imprecision in analysis.

I Try extending other CFA-style analyses (k-CFA, CFA2, . . .)
to SF-calculus.

Thanks for listening. Questions are welcome.

References

Thomas Given-Wilson and Barry Jay.
A combinatory account of internal structure.
J. Symb. Log., 76(3):807–826, 2011.

J. Roger Hindley and Jonathan P. Seldin.
Lambda-Calculus and Combinators: An Introduction.
Cambridge University Press, New York, NY, USA, 2 edition,
2008.

C. Barry Jay and Jens Palsberg.
Typed self-interpretation by pattern matching.
In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier
Danvy, editors, Proceeding of the 16th ACM SIGPLAN
international conference on Functional Programming, ICFP
2011, Tokyo, Japan, September 19-21, 2011, pages 247–258.
ACM, 2011.

Jan Midtgaard.
Control-flow analysis of functional programs.
ACM Comput. Surv., 44(3):10, 2012.

	Motivation
	Outline
	Background
	SK Combinator Calculus
	SF Combinator Calculus
	0CFA for -calculus

	0CFA for SK-calculus
	0CFA for SF-calculus
	Conclusion

