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Motivation

I Programs that transform other programs are a form of
metaprogramming.

I In most languages, program code is not a first-class citizen.
I This makes formal reasoning about the behaviour of

program-transforming programs difficult.

I Recent work on analysis of metaprogramming focuses mainly
on extensional operations, such as composition of well-formed
code templates.

I Many program transformations are intensional: they
decompose code.

I SF Combinator Calculus succinctly expresses intensional
operations.

I Let’s try to analyse that too.

I 0CFA is a well-understood and widely-used program analysis.
I Let’s try to formulate it for SF Combinator Calculus.
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SK Combinator Calculus — Review

SF Combinator Calculus is similar to SK Combinator Calculus, so
let us first review that.
SK Combinator Calculus is a Turing-powerful model of
computation [HS08].
Consider terms:

I built from two combinators S and K . . .
I . . . each with an associated rewrite rule:
I S f g x → f x (g x)
I K x y → x

I using application;

I viewed as trees.

Then:

I a term is a function or a program;

I a sequence of rewrites is execution of a program.



SK Combinator Calculus — Terms as Trees
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SK Combinator Calculus — and λ-Calculus
How does SK-calculus relate to λ-calculus?

I S and K can be translated into λ-calculus by lambda:
I lambda(S) ≡ λf .λg .λx .f x (g x)
I lambda(K ) ≡ λx .λy .x

I Any closed term e of λ-calculus can be written as a purely
applicative term t built from S and K using a translation
unlambda.

I unlambda is left-inverse to lambda:

t
lambda−→ e

unlambda−→ t

I But in general:

e
unlambda−→ t

lambda

6−→ e

I The relationship is preserved by reduction:

t
reduce−→ t ′

lambda↓ ↑ unlambda

e
reduce+−→ e′



SK Combinator Calculus — Advantages and Disadvantages

Advantages:

I no need to reason about bound variables;

I all transformations are local;

I practical as an “assembly language” for functional programs.

Disadvantages:

I hard for humans to read.

I can be larger than equivalent λ-terms (unless extended
combinator set is used).



SF Combinator Calculus — Reductions
S behaves the same as in SK-calculus.
F allows factorisation of its first argument.

F f x y → x if f = S or f = F
F (u v) x y → y u v if u v is a factorable form

A factorable form is a term of form S , S u, S u v , F , F u or F u v .
Properties:

I By encoding K as F F , we get all the power of SK-calculus.

I We can check for equality of terms in normal form.

I We can distinguish between two terms that compute the same
function in a different way.

I The restriction to factorable forms ensures confluence, hence
a consistent equational theory [GJ11].

I Adding types in the style of System F, we can type a
self-interpreter for SF-calculus [JP11].

Claim: SF-calculus is a good formalism for writing
program-transforming programs.



SF Combinator Calculus — Terms as Trees
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SF Combinator Calculus — Terms as Trees
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SF Combinator Calculus — Terms as Trees
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0CFA for λ-calculus — Overview
0CFA is a Control Flow Analysis [Mid12]:

I For each variable x in a program, it tell us what functions can
be bound to x .

I This is important in functional programs, where functions
determine control flow.

I Numerous applications, including compiler optimisations and
as the foundation for other analysis, such as abstract
interpretation frameworks.

Properties of 0CFA:
I Practical time complexity: O(n3) or better.
I Necessarily some imprecision; this arises when the same

function is called from two different places.

More advanced analyses:
I k-CFA adds k levels of calling context.

I When k = 0, this is 0CFA.
I For k ≥ 1, precision improves, but EXPTIME-complete.

I CFA2 uses a pushdown abstraction.
I Often faster and more precise than k-CFA.



0CFA for λ-calculus — Analysis Rules

Give each subexpression a distinct label l .
Generate and solve set constraints over Γ.

Labels Label 3 l
Variables Var 3 x
Labelled Expressions e ::= x l | e1@le2 | λlx .e
Abstract Values Abs 3 v ::= FUN(x , l)
Abstract Environment Γ : Label ] Var → P(Abs)

Γ |= x l ⇐⇒ Γ(x) ⊆ Γ(l)
Γ |= λl1x .e l2 ⇐⇒ Γ |= e l2 ∧ FUN(x , l2) ∈ Γ(l1)

Γ |= e l11 @le l22 ⇐⇒ Γ |= e l11 ∧ Γ |= e l22 ∧
(∀FUN(x , l3) ∈ Γ(l1).Γ(l2) ⊆ Γ(x) ∧ Γ(l3) ⊆ Γ(l))

I FUN(x , l2) — any function that binds x with body labelled l2
I FUN(x , l2) ∈ Γ(l1) — such a function could occur at l1
I Γ(l3) ⊆ Γ(l) — anything that occurs at l3 could occur at l



0CFA for SK-calculus

To work out how to do 0CFA for SF-calculus, let us first look at
SK-calculus.

I 0CFA tracks which functions can be bound to which variables.

I How do we do that with no variables?

I Easy: Just use the lambda translation.

I But that won’t help us with SF-calculus.

I So reformulate the constraints to get rid of variable binding.

I Give each combinator and application a distinct label n or l .
I Key idea: Abstract values indicate a node’s local left children

in weak normal form.
I Sn

0 ∈ Γ(l) — Sn may occur at the node labelled l
I Sn

1 ∈ Γ(l) — Sn may occur at l ’s left child
I Sn

2 ∈ Γ(l) — Sn may occur at l ’s left child’s left child
I Sn

3 — not needed, as it can never occur in normal form
I ϕ(n) — if true, Sn might be reduced



0CFA for SK-calculus — Analysis Rules

Base Labels n
Sublabel Names s ::= S .0 | S .1 | S .2 | S .3 | S .L | S .R | K .0
Labels Label 3 l ::= n | n.s
Labelled Terms t ::= Sn | Kn | t1@l t2 | 〈x〉l
Abstract Values Abs 3 v ::= Sn

0 | Sn
1 | Sn

2 | Kn
0 | Kn

1

Abstract Environment Γ : Label → P(Abs)
Abstract Activation ϕ : Label → Bool

Γ, ϕ |= Sn ⇐⇒ Sn
0 ∈ Γ(n) ∧ (ϕ(n)⇒ Γ, ϕ |= tSn)

Γ, ϕ |= Kn ⇐⇒ Kn
0 ∈ Γ(n)

Γ, ϕ |= t l11 @l3t l22 ⇐⇒ Γ, ϕ |= t1 ∧ Γ, ϕ |= t2
∧ ∀Sn

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .0) ∧ Sn
1 ∈ Γ(l3)

∧ ∀Sn
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .1) ∧ Sn

2 ∈ Γ(l3)
∧ ∀Sn

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .2) ∧ Γ(n.S .3) ⊆ Γ(l3) ∧ ϕ(n)
∧ ∀Kn

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.K .0) ∧ Kn
1 ∈ Γ(l3)

∧ ∀Kn
1 ∈ Γ(l1).Γ(n.K .0) ⊆ Γ(l3)

Γ, ϕ |= 〈x〉l ⇐⇒ true

tSn
def
= (〈f 〉n.S .0@n.S.L〈x〉n.S.2)@n.S .3(〈g〉n.S.1@n.S .R〈x〉n.S .2)



0CFA for SK-calculus — Analysis Rules

@3

y4@1

x2K 0

At K 0: K 0
0 ∈ Γ(0)
⇓

At @1: K 0
1 ∈ Γ(1) Γ(2) ⊆ Γ(0.K .0)
⇓

At @3: Γ(0.K .0) ⊆ Γ(3)
⇓

So: Γ(2) ⊆ Γ(0.K .0) ⊆ Γ(3)



0CFA for SK-calculus — Analysis Rules

@5

x6@3

g4@1

f 2S0

At S0: S0
0 ∈ Γ(0)
⇓

At @1: S0
1 ∈ Γ(1) Γ(2) ⊆ Γ(0.S .0)
⇓

At @3: S0
2 ∈ Γ(3) Γ(4) ⊆ Γ(0.S .1)
⇓

At @5: ϕ(0) Γ(6) ⊆ Γ(0.S .2) Γ(0.S .3) ⊆ Γ(5)
⇓



0CFA for SK-calculus — Analysis Rules

@5

x6@3

g4@1

f 2S0

ϕ(0) ⇒ @0.S .3

@0.S.R

〈x〉0.S.2〈g〉0.S.1

@0.S .L

〈x〉0.S.2〈f 〉0.S.0

Suppose f = K :
K 2
0 ∈ Γ(2)
⇓

K 2
0 ∈ Γ(0.S .0)
⇓

Γ(0.S .2) ⊆ Γ(0.S .3)

So : Γ(6) ⊆ Γ(0.S .2) ⊆ Γ(0.S .3) ⊆ Γ(5)



0CFA for SF-calculus — Challenges

S behaves the same in SK-calculus and SF-calculus, so use the
same rules.
How can we handle F? There are two challenges:

I How do we determine which reduction is used?
I Abstract values already record how many arguments a

combinator has.
I Atoms have 0 arguments — abstractly Sn

0 and F n
0 .

I Compounds have ≥ 1 argument — Sn
1 ,S

n
2 ,F

n
1 ,F

n
2 .

I How do we factorise abstractly?
I Add new abstract values that record the source of an

application.
I @l1,l2 ∈ Γ(l3) — the subtree at l3 might have been built by

applying the subtree at l1 to the subtree at l2.



0CFA for SF-calculus — Analysis Rules
Base Labels n
Sublabel Names s ::= S .0 | S .1 | S .2 | S .3 | S .L | S .R |

F .0 | F .1 | F .2 | F .3 | F .L | F .R | F .M
Labels Label 3 l ::= n | n.s
Labelled Terms t ::= Sn | F n | t1@l t2 | 〈x〉l
Abstract Values Abs 3 v ::= Sn

0 | Sn
1 | Sn

2 | F n
0 | F n

1 | F n
2 | @(l1,l2)

Abstract Environment Γ : Label → P(Abs)
Abstract Activation ϕ : Label → Bool

Γ, ϕ |= Sn ⇐⇒ Sn
0 ∈ Γ(n) ∧ (ϕ(n)⇒ Γ, ϕ |= tSn)

Γ, ϕ |= F n ⇐⇒ F n
0 ∈ Γ(n)

∧ ϕ(n)⇒ (∃n0.Sn0
0 ∈ Γ(n.F .0) ∨ F n0

0 ∈ Γ(n.F .0))⇒ Γ(n.F .1) ⊆ Γ(n.F .3)
∧ ϕ(n)⇒ (∃n0.Sn0

1 ∈ Γ(n.F .0) ∨ Sn0
2 ∈ Γ(n.F .0) ∨

F n0
1 ∈ Γ(n.F .0) ∨ F n0

2 ∈ Γ(n.F .0))⇒ Γ, ϕ |= tF n ∧
∀@l1,l2 ∈ Γ(n.F .0).Γ(l1) ⊆ Γ(n.F .L) ∧ Γ(l2) ⊆ Γ(n.F .R)

Γ, ϕ |= t l11 @l3t l22 ⇐⇒ Γ, ϕ |= t1 ∧ Γ, ϕ |= t2
∧ ∃@l4,l5 ∈ Γ(l3).Γ(l1) ⊆ Γ(l4) ∧ Γ(l2) ⊆ Γ(l5)
∧ ∀Sn

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .0) ∧ Sn
1 ∈ Γ(l3)

∧ ∀Sn
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .1) ∧ Sn

2 ∈ Γ(l3)
∧ ∀Sn

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.S .2) ∧ Γ(n.S .3) ⊆ Γ(l3) ∧ ϕ(n)
∧ ∀F n

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .0) ∧ F n
1 ∈ Γ(l3)

∧ ∀F n
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .1) ∧ F n

2 ∈ Γ(l3)
∧ ∀F n

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .2) ∧ Γ(n.F .3) ⊆ Γ(l3) ∧ ϕ(n)
Γ, ϕ |= 〈x〉l ⇐⇒ true

tSn
def
= (〈f 〉n.S .0@n.S .L〈x〉n.S .2)@n.S .3(〈g〉n.S .1@n.S.R〈x〉n.S.2)

tF n
def
= (〈y〉n.F .2@n.F .M〈u〉n.F .L)@n.F .3〈v〉n.F .R



0CFA for SF-calculus — Analysis Rules

Base Labels n
Sublabel Names s ::= . . . | F .0 | F .1 | F .2 | F .3 | F .L | F .R | F .M
Labels Label 3 l ::= n | n.s
Labelled Terms t ::= Sn | F n | t1@l t2 | 〈x〉l
Abstract Values Abs 3 v ::= . . . | F n

0 | F n
1 | F n

2 | @(l1,l2)

Abstract Environment Γ : Label → P(Abs)
Abstract Activation ϕ : Label → Bool

Γ, ϕ |= F n ⇐⇒ F n
0 ∈ Γ(n)

∧ ϕ(n)⇒ (∃n0.Sn0
0 ∈ Γ(n.F .0) ∨ F n0

0 ∈ Γ(n.F .0))⇒ Γ(n.F .1) ⊆ Γ(n.F .3)
∧ ϕ(n)⇒ (∃n0.Sn0

1 ∈ Γ(n.F .0) ∨ Sn0
2 ∈ Γ(n.F .0) ∨

F n0
1 ∈ Γ(n.F .0) ∨ F n0

2 ∈ Γ(n.F .0))⇒ Γ, ϕ |= tF n ∧
∀@l1,l2 ∈ Γ(n.F .0).Γ(l1) ⊆ Γ(n.F .L) ∧ Γ(l2) ⊆ Γ(n.F .R)

Γ, ϕ |= t l11 @l3t l22 ⇐⇒ Γ, ϕ |= t1 ∧ Γ, ϕ |= t2
. . .

∧ ∃@l4,l5 ∈ Γ(l3).Γ(l1) ⊆ Γ(l4) ∧ Γ(l2) ⊆ Γ(l5)
∧ ∀F n

0 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .0) ∧ F n
1 ∈ Γ(l3)

∧ ∀F n
1 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .1) ∧ F n

2 ∈ Γ(l3)
∧ ∀F n

2 ∈ Γ(l1).Γ(l2) ⊆ Γ(n.F .2) ∧ Γ(n.F .3) ⊆ Γ(l3) ∧ ϕ(n)
Γ, ϕ |= 〈x〉l ⇐⇒ true

tF n
def
= (〈y〉n.F .2@n.F .M〈u〉n.F .L)@n.F .3〈v〉n.F .R



0CFA for SF-calculus — Analysis Rules

@5
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x4@1

f 2F 0

At F 0: F 0
0 ∈ Γ(0)
⇓

At @1: F 0
1 ∈ Γ(1) Γ(2) ⊆ Γ(0.F .0)
⇓

At @3: F 0
2 ∈ Γ(3) Γ(4) ⊆ Γ(0.F .1)
⇓

At @5: ϕ(0) Γ(6) ⊆ Γ(0.F .2) Γ(0.F .3) ⊆ Γ(5)
⇓



0CFA for SF-calculus — Analysis Rules

@5

y6@3

x4@1

S2F 0

Suppose f = S :
S2
0 ∈ Γ(2)
⇓

S2
0 ∈ Γ(0.F .0)

⇓
Γ(0.F .1) ⊆ Γ(0.F .3)

So : Γ(4) ⊆ Γ(0.F .1) ⊆ Γ(0.F .3) ⊆ Γ(5)



0CFA for SF-calculus — Analysis Rules

@5

y6@3

x4@1

@2

F 8S7

F 0

ϕ(0) ⇒ @0.F .M

v0.F .R@0.F .3

u0.F .Ly0.F .2

Suppose f = u v = S F :

ϕ(0) S7
1 ∈ Γ(2) At @2: @7,8 ∈ Γ(2)

⇓ ⇓ ⇓
S7
1 ∈ Γ(0.F .0) @7,8 ∈ Γ(0.F .0)

⇓ ⇓
Γ(7) ⊆ Γ(0.F .L) Γ(8) ⊆ Γ(0.F .R)



0CFA for SF-calculus — Properties
Relationship with 0CFA for SK-calculus:

I Encoding an SK-calculus program in SF-calculus with K as
F F , the two analyses give the same results.

I 0CFA for SF-calculus retains polynomial time-complexity.

Sources of imprecision:

I As with 0CFA for λ-calculus, the analysis conflates multiple
uses of the same argument.

I If our analysis of the 1st argument of F is imprecise, we may
activate constraints for both rules, when really only one case
applies.

I If an F can use both rules, we apply both sets of constraints
to all arguments, not just those that activate the rules.

I If two distinct applications are factorised by the same F , we
lose co-ordination between them.

I When we factorise abstractly, we have no way of discarding
unfactorable forms.



Conclusion

Contributions:

I A formulation of 0CFA for SK-calculus.
I A formulation of 0CFA for SF-calculus.

I The first static analysis for SF-calculus.

I Correctness proofs and preliminary evaluation for the above.

Future work:

I A translation from a higher-level language into SF-calculus.

I Address sources of imprecision in analysis.

I Try extending other CFA-style analyses (k-CFA, CFA2, . . . )
to SF-calculus.

Thanks for listening. Questions are welcome.
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