Language	Temporal Properties	Conclusions

Verifying Temporal Properties of Reactive Systems by Transformation

G.W. Hamilton

School of Computing Dublin City University Dublin 9, Ireland hamilton@computing.dcu.ie

VPT 2015

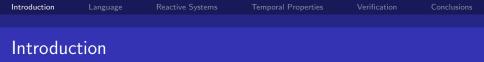
3 1 4 3

	Language	Temporal Properties	Conclusions
Outline			

2 Language

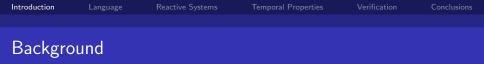
- 3 Reactive Systems
- 4 Temporal Properties
- **5** Verification

6 Conclusions



- We consider the problem of verifying properties of reactive systems
 - continuously react to external events by changing their internal state and producing outputs
- Properties of such systems are usually expressed using a temporal logic
 - safety properties (nothing bad will ever happen)
 - liveness properties (something good will eventually happen)
- One well established technique for this verification is model checking
 - originally developed for finite state systems
 - reactive systems often have an infinite number of states

伺 ト イ ヨ ト イ ヨ



- Fold/unfold program transformation has been proposed as an automatic approach to this verification problem
 - folding corresponds to the application of a (co)-inductive hypothesis
 - generalization corresponds to abstraction
- Many techniques have been developed for logic programs
 - e.g. Leuschel & Massart, 1999; Roychoudhuri et al., 2000; Fioravanti et al., 2001; Pettorossi et al., 2009; Seki, 2011
- Less techniques have been developed for functional programs
 - notable exception: Lisitsa & Nemytykh, 2007 & 2008
- Most have some limitation such as restriction to finite states, restriction to safety properties or the need for an external constraint solver

伺 ト イ ヨ ト イ ヨ

Introduction	Language	Temporal Properties	Conclusions
Approad	ch		

- Apply distillation to the program defining the reactive system
 - produces a simplified form of program which is easier to analyse
 - removes more intermediate data structures so less generalization is required
- Oefine a number of verification rules on the resulting simplified form of program
 - less limitations than those associated with previous techniques
 - always terminates, but may not produce a meaningful result

We apply these techniques to example systems intended to model mutually exclusive access to a shared resource

- safety property: mutual exclusion
- liveness property: non-starvation

4 3 6 4 3

Language

Syntax

e ::= x	Variable
$ c e_1 \dots e_k$	Constructor Application
$\lambda x.e$	λ -Abstraction
f	Function Call
$ e_0 e_1$	Application
\mid case e_0 of $p_1 ightarrow e_1 \mid \cdots \mid p_k ightarrow e_k$	Case Expression
$ $ let $x = e_0$ in e_1	Let Expression
$ e_0$ where $f_1 = e_1 \dots f_n = e_n$	Local Function Definitions
	-

$$p ::= c x_1 \dots x_k$$

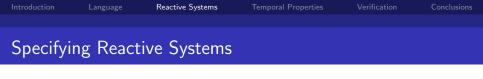
<ロ> <同> <同> < 同> < 同>

æ

	Language	Temporal Properties	Conclusions
Languag	ge		

Semantics

$((\lambda x.e_0) \ e_1) \stackrel{eta}{\sim} (e_0\{x \mapsto e_1\})$	$(\textbf{let } x = e_0 \textbf{ in } e_1) \stackrel{\beta}{\rightsquigarrow} (e_1\{x \mapsto e_0\})$
$\frac{f = e}{f \stackrel{f}{\leadsto} e}$	$rac{e_0\stackrel{r}{\leadsto}e_0'}{(e_0\ e_1)\stackrel{r}{\leadsto}(e_0'\ e_1)}$
	$e_0 \stackrel{r}{\sim} e_0'$
(case e_0 of $p_1 : e_1 p_k : e_1$	$e_k) \stackrel{r}{\leadsto} (case \ e_0' \ of \ p_1 : e_1 \dots p_k : e_k)$
p_i =	$= c x_1 \dots x_n$
(case $(c \ e_1 \dots e_n)$ of $p_1 : e_1' \dots$	$ p_k:e_k') \stackrel{c}{\leadsto} (e_i\{x_1\mapsto e_1,\ldots,x_n\mapsto e_n\})$



Reactive systems have to react to a series of external events by updating their state. We use a stream datatype:

For our example mutual exclusion systems, external events belong to the following datatype:

 $Event ::= Request_1 | Request_2 | Take_1 | Take_2 | Release_1 | Release_2$

System states belong to the following datatype:

SysState ::= State ProcState ProcState

$$ProcState ::= T \mid W \mid U$$

4 B b 4 B

	Language	Reactive Systems	Temporal Properties	Conclusions
Fxample	e 1			

```
f es T T
where
f = \lambda es s_1 s_2. Cons (SysState s_1 s_2) (case es of
                                                                  Cons e es \rightarrow case e of
                                                                                                Request<sub>1</sub> \rightarrow case s<sub>1</sub> of
                                                                                                                           U \rightarrow f \ es \ s_1 \ s_2
                                                                                                                        \rightarrow case s<sub>2</sub> of
                                                                                                                                           U \rightarrow f \ es \ s_1 \ s_2
                                                                                                                                        | \_ \rightarrow f \text{ es } W s_2
                                                                                               Request: \rightarrow case s? of
                                                                                                                          U \rightarrow f es s_1 s_2
                                                                                                                        | \_ \rightarrow case s_1 of
                                                                                                                                           U \rightarrow f \ es \ s_1 \ s_2
                                                                                                                                        \rightarrow f es s_1 W
                                                                                                Take<sub>1</sub>
                                                                                                               \rightarrow case s_1 of
                                                                                                                          W \rightarrow f es U s_2
                                                                                                                       | \_ \rightarrow f es s_1 s_2
                                                                                                            \rightarrow case s_2 of
                                                                                                Take<sub>2</sub>
                                                                                                                         W \rightarrow f es s_1 U
                                                                                                                       \rightarrow f es s_1 s_2
                                                                                               Release<sub>1</sub> \rightarrow case s<sub>1</sub> of
                                                                                                                          U \rightarrow f es T s_2
                                                                                                                       \rightarrow f es s_1 s_2
                                                                                              | Release<sub>2</sub> \rightarrow case s<sub>2</sub> of
                                                                                                                         U \rightarrow f es s_1 T
                                                                                                                       | \_ \rightarrow f \ es \ s_1 \ s_2)
```

イロト イポト イヨト イヨト 三日

	Language	Reactive Systems	Temporal Properties	Conclusions
Exampl	e 2			

```
f es T T
where
f = \lambda es s_1 s_2. Cons (SysState s_1 s_2) (case es of
                                                                   Cons e es \rightarrow case e of
                                                                                                 Request<sub>1</sub> \rightarrow case s<sub>1</sub> of
                                                                                                                            T \rightarrow f es W s_2
                                                                                                                          \rightarrow f \text{ es } s_1 s_2
                                                                                                Request<sub>2</sub> \rightarrow case s<sub>2</sub> of
                                                                                                                            T \rightarrow f es s_1 W
                                                                                                                         \rightarrow f es s_1 s_2
                                                                                               Take1
                                                                                                                 \rightarrow case s_1 of
                                                                                                                             W \rightarrow case s_2 of
                                                                                                                                            T \rightarrow f es U s_2
                                                                                                                                           | \_ \rightarrow f \ es \ s_1 \ s_2
                                                                                                                          | \rightarrow f \ es \ s_1 \ s_2
                                                                                                                \rightarrow case s<sub>2</sub> of
                                                                                                Take<sub>2</sub>
                                                                                                                             W \rightarrow case s_1 of
                                                                                                                                             T \rightarrow f es s_1 U
                                                                                                                                           | \_ \rightarrow f \ es \ s_1 \ s_2
                                                                                                                           \_ \rightarrow f es s_1 s_2 
                                                                                                Release<sub>1</sub> \rightarrow case s<sub>1</sub> of
                                                                                                                            U \rightarrow f es T s_2
                                                                                                                         \rightarrow f es s_1 s_2
                                                                                               | Release<sub>2</sub> \rightarrow case s<sub>2</sub> of
                                                                                                                           U \rightarrow f es s_1 T
                                                                                                                          | \_ \rightarrow f \text{ es } s_1 s_2)
```

3

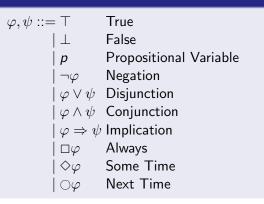
```
Reactive Systems
Example 3
             f es T T Zero Zero
             where
             f = \lambda es s_1 s_2 t_1 t_2. Cons (SysState s_1 s_2) (case es of
                                                                  Cons e es \rightarrow case e of
                                                                                                  Request_1 \rightarrow case s_1 of
                                                                                                                                T \rightarrow f \ es \ W \ s_2 \ (Succ \ t_2) \ t_2
                                                                                                                            | \_ \rightarrow f \ es \ s_1 \ s_2 \ t_1 \ t_2
                                                                                                 Request<sub>2</sub> \rightarrow case s<sub>2</sub> of
                                                                                                                                T \rightarrow f es s_1 W t_1 (Succ t_1)
                                                                                                                            | \_ \rightarrow f \ es \ s_1 \ s_2 \ t_1 \ t_2
                                                                                                  Take<sub>1</sub>
                                                                                                                   \rightarrow case s_1 of
                                                                                                                               W \rightarrow case s_2 of
                                                                                                                                                 T \rightarrow f es U s_2 t_1 t_2
                                                                                                                                              | \_ \rightarrow case (t_1 < t_2) of
                                                                                                                                                                  True \rightarrow f es U s<sub>2</sub> t<sub>1</sub> t<sub>2</sub>
                                                                                                                                                                | False \rightarrow f es s<sub>1</sub> s<sub>2</sub> t<sub>1</sub> t<sub>2</sub>
                                                                                                                            | \_ \rightarrow f es s_1 s_2 t_1 t_2
                                                                                                 Takeo
                                                                                                                \rightarrow case s<sub>2</sub> of
                                                                                                                               W \rightarrow case s_1 of
                                                                                                                                                 T \rightarrow f es s_1 U t_1 t_2
                                                                                                                                              | \_ \rightarrow case (t_2 < t_1) of
                                                                                                                                                                  True \rightarrow f es s<sub>1</sub> U t<sub>1</sub> t<sub>2</sub>
                                                                                                                                                                | False \rightarrow f es s<sub>1</sub> s<sub>2</sub> t<sub>1</sub> t<sub>2</sub>
                                                                                                                            | \_ \rightarrow f es s_1 s_2 t_1 t_2
                                                                                                 Release<sub>1</sub> \rightarrow case s<sub>1</sub> of
                                                                                                                               U \rightarrow f \ es \ T \ s_2 \ Zero \ t_2
                                                                                                                            | \_ \rightarrow f \ es \ s_1 \ s_2 \ t_1 \ t_2
                                                                                                  Release<sub>2</sub> \rightarrow case s<sub>2</sub> of
                                                                                                                               U \rightarrow f es s_1 T t_1 Zero
                                                                                                                             | \rightarrow f es s_1 s_2 (\overline{t}_1 t_2) \equiv \lor \langle \equiv \lor \rangle \equiv
```

A B > A B >

A 10

Linear-time Temporal Logic

Syntax



Linear-time Temporal Logic

Semantics

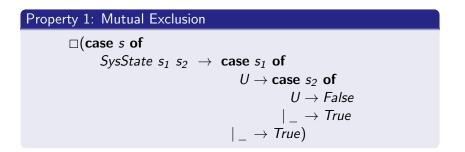
Models π consist of an infinite number of states $\langle s_0, s_1, \ldots \rangle$ such that each state supplies an assignment to the atomic propositions. For a model π and position *i*:

$$\begin{split} \pi, i &\models \top \\ \pi, i &\models \mu \\ \pi, i &\models \rho \\ \pi, i &\models \gamma \varphi \\ \pi, i &\models \neg \varphi \\ \pi, i &\models \varphi \lor \psi \\ \pi, i &\models \varphi \lor \psi \\ \pi, i &\models \varphi \land \psi \\ \pi, i &\models \varphi \land \psi \\ \pi, i &\models \varphi \Rightarrow \psi \\ \pi, i &\models \varphi \Rightarrow \psi \\ \pi, i &\models \varphi \Rightarrow \psi \\ \pi, i &\models \Box \varphi \\ \pi,$$

900

We translate the atomic propositions of temporal formulae into our functional language, using the following datatype for truth values:

```
TruthVal ::= True | False | Undefined
```



Temporal Properties

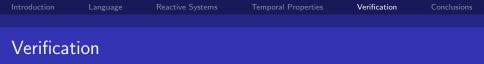
Property 2: Non-Starvation (Process 1)

 $\Box((\mathsf{case } s \mathsf{ of} \\ SysState \ s_1 \ s_2 \ \to \ \mathsf{case } \ s_1 \mathsf{ of} \\ W \to True \\ |_ \to False) \Rightarrow \Diamond(\mathsf{case } s \mathsf{ of} \\ SysState \ s_1 \ s_2 \ \to \ \mathsf{case } \ s_1 \mathsf{ of} \\ U \to True \\ |_ \to False))$

And similarly for Process 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

э



We first of all transform the reactive systems definitions into the following simplified form using distillation:

Distilled Form

$$e^{\rho} ::= Cons \ e_0^{\rho} \ e_1^{\rho}$$

$$| f \ x_1 \dots x_n$$

$$| case \ x \ of \ p_1 \to e_1^{\rho} \ | \dots | \ p_k \to e_n^{\rho}, \text{ where } x \notin \rho$$

$$| x \ e_1^{\rho} \dots e_n^{\rho}, \text{ where } x \in \rho$$

$$| let \ x = \lambda x_1 \dots x_n . e_0^{\rho} \text{ in } e_1^{(\rho \cup \{x\})}$$

$$| e_0^{\rho} \text{ where } f_1 = \lambda x_{1_1} \dots x_{1_k} . e_1^{\rho} \dots f_n = \lambda x_{n_1} \dots x_{n_k} . e_n^{\rho}$$

During verification, all let variables are given an undefined value, so there will be a finite number of states.

→ 3 → < 3</p>

	Language	Temporal Properties	Verification	Conclusions
Verificat	tion			

We define verification rules $\mathcal{P}\llbracket e \rrbracket \varphi \phi \rho$ where *e* is an expression in this simplified form, φ is the temporal formula to be verified, ϕ is a function variable environment and ρ is the set of previously encountered function calls (used for the detection of loops).

Theorem (Soundness)

$$\forall e \in \mathsf{Prog}, \varphi \in \mathsf{WFF}: \mathcal{P}\llbracket e \rrbracket \varphi \ \emptyset = \mathit{True} \Rightarrow \pi, 0 \vDash \varphi$$

where π is a model for e .

Theorem (Termination)

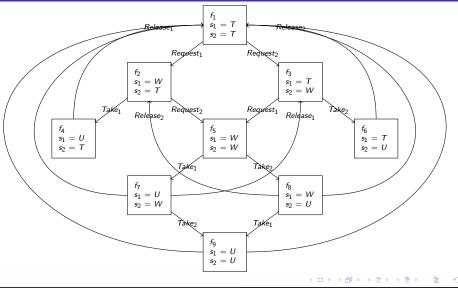
 $\forall e \in \mathsf{Prog}, \, \varphi \in \mathsf{WFF} : \mathcal{P}[\![e]\!] \, \varphi \ \emptyset \ \texttt{always terminates}.$

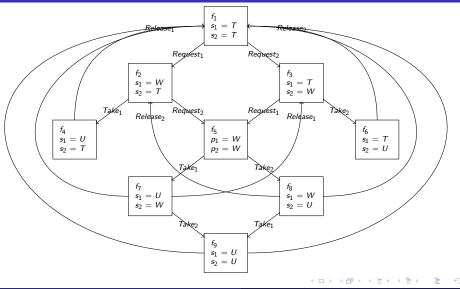
伺 ト イ ヨ ト イ ヨ ト

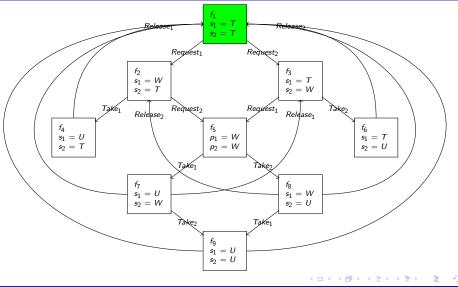
Result of Transforming Example 1

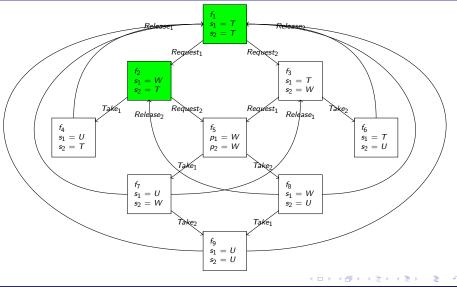
 f_1 es where $f_1 = \lambda es.Cons$ (SysState T T) (case es of Cons e es \rightarrow case e of $Request_1 \rightarrow f_2 es$ $Request_2 \rightarrow f_3 es$ $\rightarrow f_1 es$) $f_2 = \lambda es.Cons$ (SysState W T) (case es of Cons e es \rightarrow case e of Take₁ $\rightarrow f_4 es$ $Request_2 \rightarrow f_5 es$ $\rightarrow f_2 es$) $f_3 = \lambda es. Cons$ (SysState T W) (case es of Cons e es \rightarrow case e of Request $1 \rightarrow f_5$ es Take₂ $\rightarrow f_6 es$ $\rightarrow f_3 es$) $f_4 = \lambda es.Cons$ (SysState U T) (case es of Cons e es \rightarrow case e of $Release_1 \rightarrow f_1 es$ $\rightarrow f_{A} es$) $f_5 = \lambda es.Cons$ (SysState W W) (case es of Cons $e es \rightarrow$ case e of $Take_1 \rightarrow f_7 es$ $Take_2 \rightarrow f_8 es$ $\rightarrow f_5 es$) $f_6 = \lambda es. Cons$ (SysState T U) (case es of Cons e es \rightarrow case e of $Release_2 \rightarrow f_1 es$ $\rightarrow f_6 es) < \Box \rightarrow$ ・ 同 ト ・ ヨ ト ・ ヨ ト G.W. Hamilton Verifying Temporal Properties by Transformation

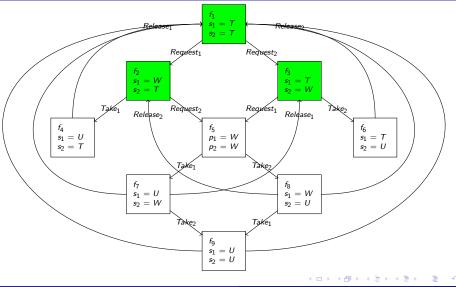
LTS Representation of Transformed Example 1

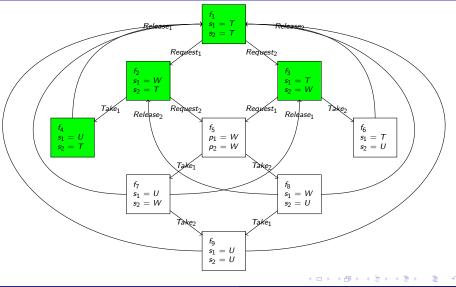


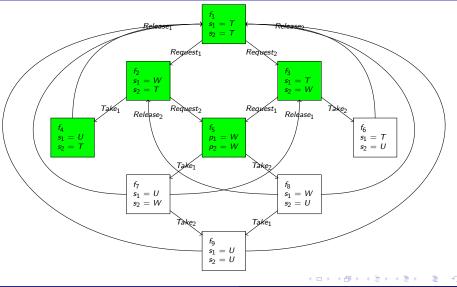


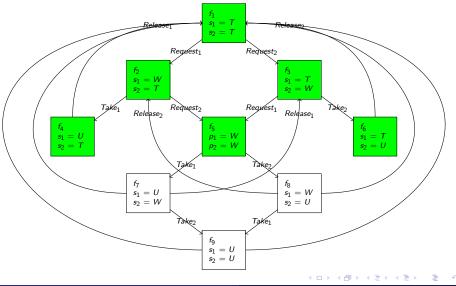


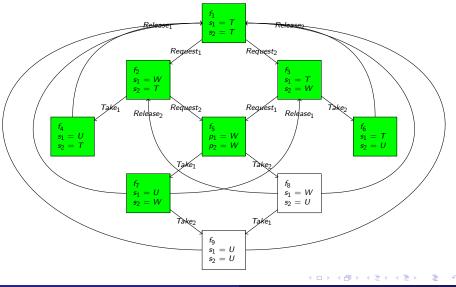


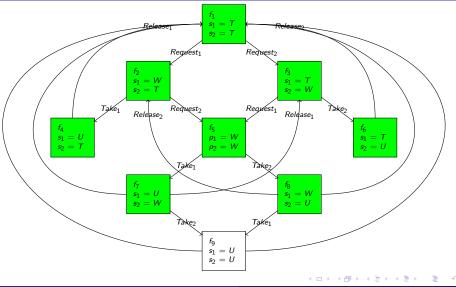


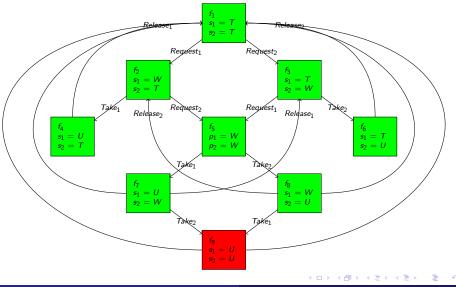










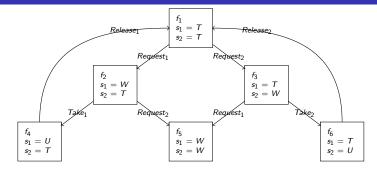


< ∃ →

Result of Transforming Example 2

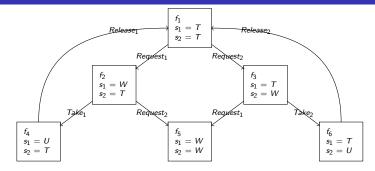
f₁ es where $f_1 = \lambda es.Cons$ (SysState T T) (case es of Cons e es \rightarrow case e of $Request_1 \rightarrow f_2 es$ Request₂ \rightarrow f₃ es $\rightarrow f_1 es$) $f_2 = \lambda es.Cons$ (SysState W T) (case es of Cons e es \rightarrow case e of Take₁ $\rightarrow f_4 es$ Request₂ \rightarrow f₅ es $\rightarrow f_2 es$) $f_3 = \lambda es. Cons$ (SysState T W) (case es of Cons e es \rightarrow case e of Request $1 \rightarrow f_5$ es Take₂ $\rightarrow f_6 es$ $\rightarrow f_3 es$) $f_4 = \lambda es.Cons$ (SysState U T) (case es of Cons e es \rightarrow case e of $Release_1 \rightarrow f_1 es$ $\rightarrow f_{A} es$) $f_{\rm F} = \lambda es. Cons (SvsState W W)$ (case es of Cons e es \rightarrow case e of $\rightarrow f_5 es$) $f_6 = \lambda es.Cons$ (SysState T U) (case es of Cons e es \rightarrow case e of $Release_2 \rightarrow f_1 es$ $\rightarrow f_6 es$)

LTS Representation of Transformed Example 2



< 一型

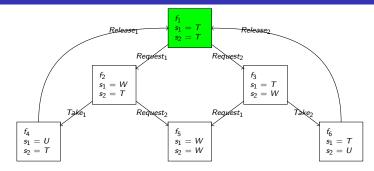
< ∃⇒



< (□)

3

-∢ ≣ →



▲ 同 ▶ → ● 三

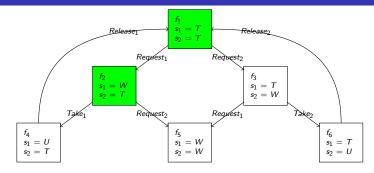
- ∢ ⊒ →

э

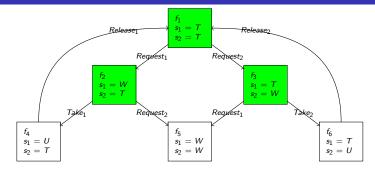
э

- ∢ ⊒ →

Verification of Property 1 for Example 2



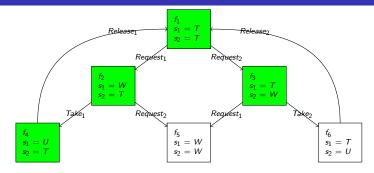
▲ 同 ▶ → ● 三



▲ 同 ▶ → ● 三

- ∢ ⊒ →

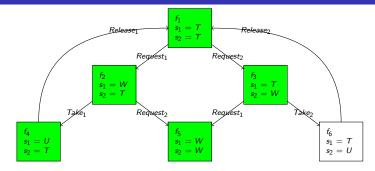
э



< (□)

∃ → < ∃ →</p>

э

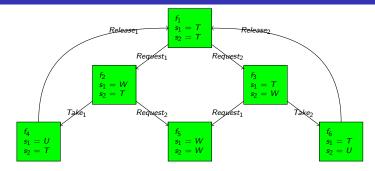


< 同 ▶

3

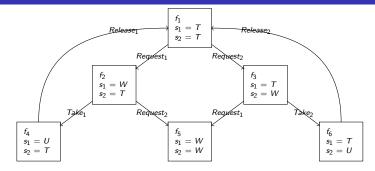
-∢ ≣ →

Verification of Property 1 for Example 2



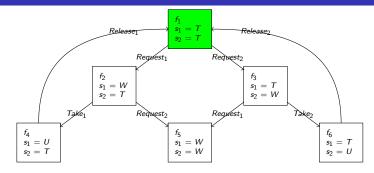
< 同 ▶

∃ → < ∃ →</p>



< 同 ▶

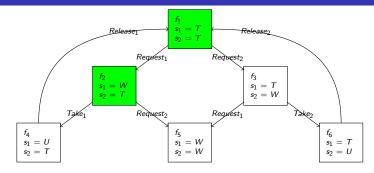
< ∃⇒



< 同 ▶

3

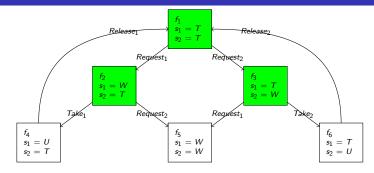
-∢ ≣ →



< 同 ▶

3

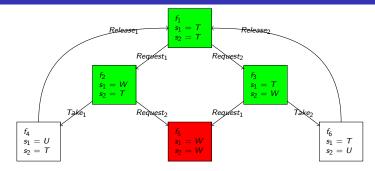
-∢ ≣ →



< 同 ▶

3

-∢ ≣ →



< 同 ▶

< ∃⇒

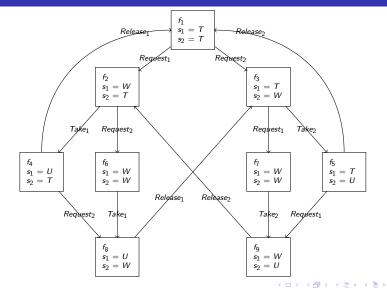
Result of Transforming Example 3

 f_1 es where $f_1 = \lambda es.Cons$ (SysState T T) (case es of Cons e es \rightarrow case e of Request $1 \rightarrow f_2$ es $Request_2 \rightarrow f_3 es$ $\rightarrow f_1 es$) $f_2 = \lambda es. Cons (SysState W T)$ (case es of Cons e es \rightarrow case e of Take₁ $\rightarrow f_4 es$ $Request_2 \rightarrow f_6 es$ $\rightarrow f_2 es$) $f_3 = \lambda es. Cons$ (SysState T W) (case es of Cons e es \rightarrow case e of Take? $\rightarrow f_5 es$ Request₁ \rightarrow f₇ es $\rightarrow f_3 es$) $f_4 = \lambda es.Cons$ (SysState U T) (case es of Cons e es \rightarrow case e of $Release_1 \rightarrow f_1 es$ Request₂ \rightarrow f₈ es $\rightarrow f_A \ es$) $f_5 = \lambda es.Cons$ (SysState T U) (case es of Cons e es \rightarrow case e of $Release_2 \rightarrow f_1 es$ $Request_1 \rightarrow f_0 es$ $\rightarrow f_5 es$) $f_6 = \lambda es. Cons (SysState W W)$ (case es of Cons e es \rightarrow case e of $Take_1 \rightarrow f_8 \ es$ - * ロ > * 個 > * 注 > * 注 > э G.W. Hamilton Verifying Temporal Properties by Transformation

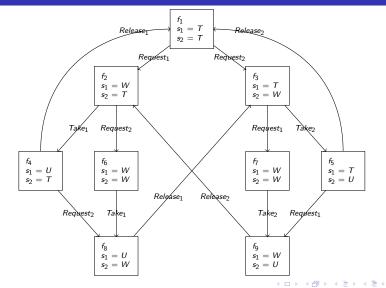
Introduction

э

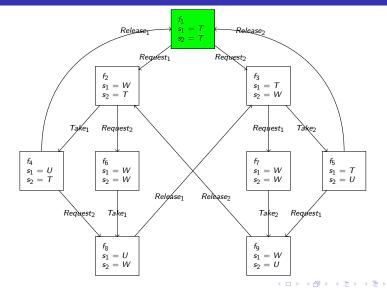
LTS Representation of Transformed Example 3



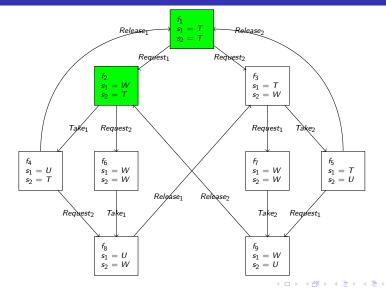
Verification of Property 1 for Example 3



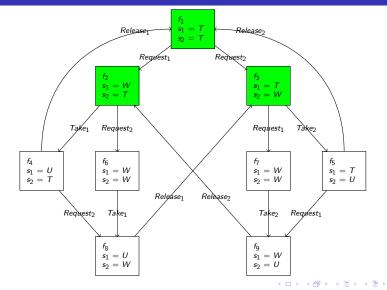
Verification of Property 1 for Example 3



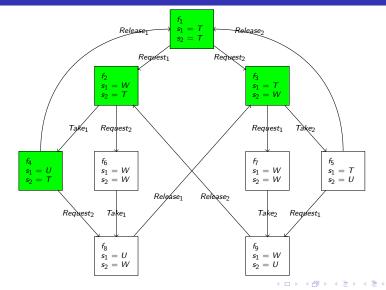
Verification of Property 1 for Example 3



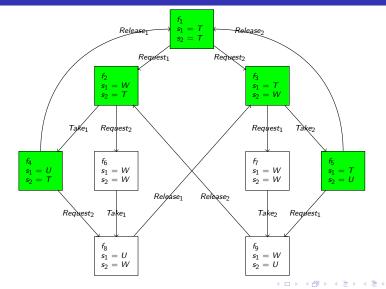
Verification of Property 1 for Example 3



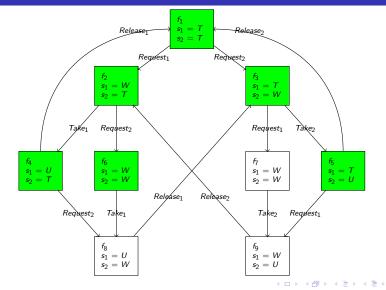
Verification of Property 1 for Example 3



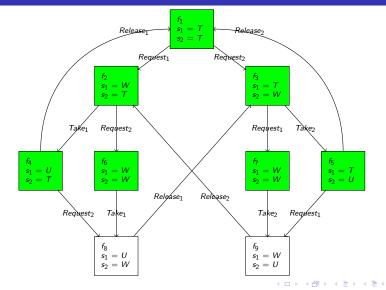
Verification of Property 1 for Example 3



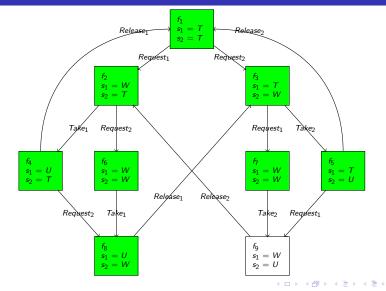
Verification of Property 1 for Example 3



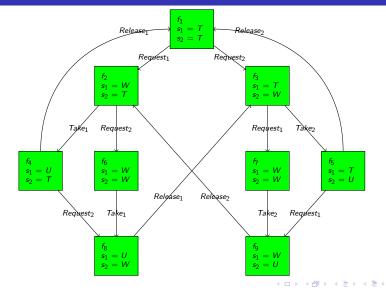
Verification of Property 1 for Example 3



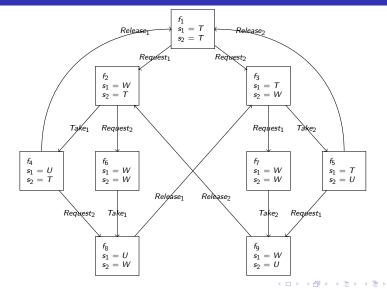
Verification of Property 1 for Example 3



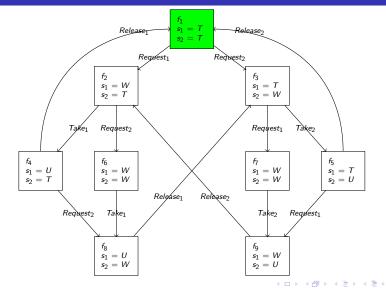
Verification of Property 1 for Example 3



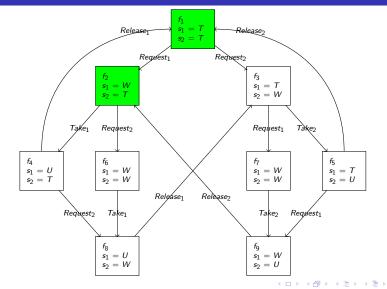
Verification of Property 2 for Example 3



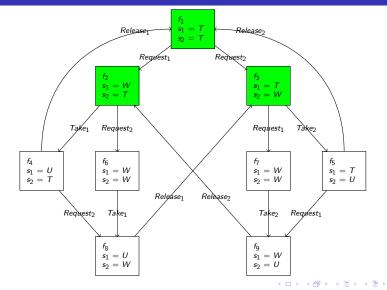
Verification of Property 2 for Example 3



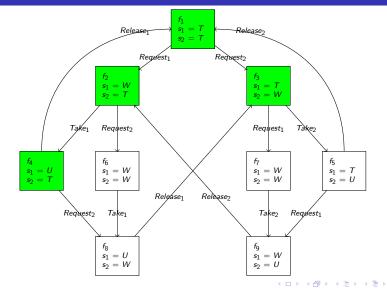
Verification of Property 2 for Example 3



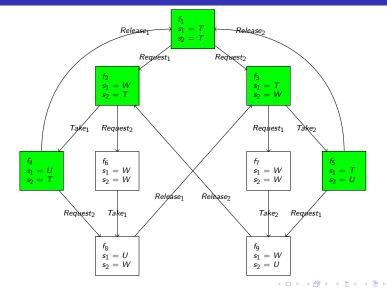
Verification of Property 2 for Example 3



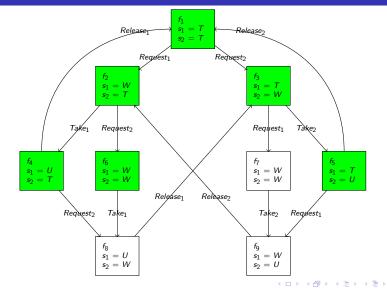
Verification of Property 2 for Example 3



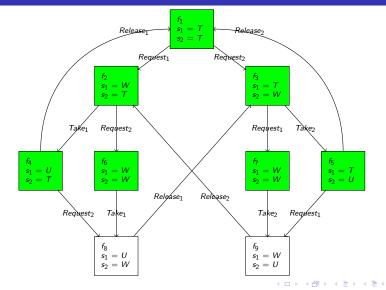
Verification of Property 2 for Example 3



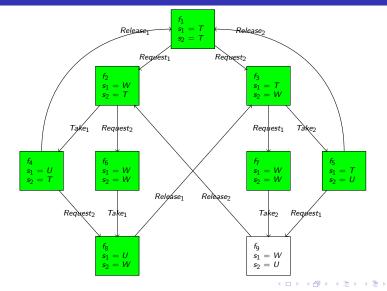
Verification of Property 2 for Example 3



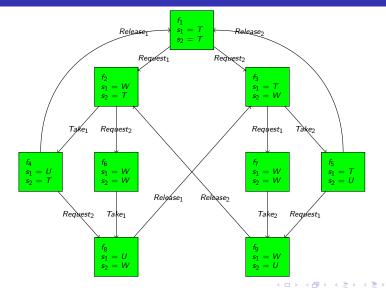
Verification of Property 2 for Example 3

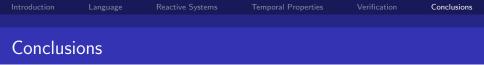


Verification of Property 2 for Example 3



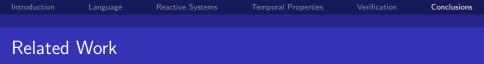
Verification of Property 2 for Example 3





- We have shown how distillation can be used to verify both safety and liveness properties of reactive systems.
- Our technique gives a finite state approximation of the original system in which all intermediate data is given an undefined value.
- Standard finite state model checking techniques can then be applied.
- Since more intermediate data structures are removed using distillation than other comparable techniques such as positive supercompilation and partial evaluation, more accurate results are obtained.

化氯化 化氯



• Verification of temporal properties using logic programs:

- Leuschel & Massart, 1999
- Roychoudhuri et al., 2000
- Fioravanti et al., 2001
- Pettorossi et al., 2009
- Seki, 2011
- Verification of temporal properties using functional programs:
 - Supercompilation: Lisitsa & Nemytykh, 2007 & 2008
 - Higher Order Recursion Schemes (HORS): Kobayashi, 2009; Lester et al., 2010

4 3 5 4