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Turing, 1936:  
“undecidable”
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Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949 
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http://seahorn.github.io
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SeaHorn Verification Framework

Distinguishing Features
• LLVM front-end(s)
• Constrained Horn Clauses to represent Verification Conditions
• Comparable to state-of-the-art tools at SV-COMP’15

Goals
• be a state-of-the-art Software Model Checker
• be a framework for experimenting and developing CHC-based verification
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Related Tools

CPAChecker
• Custom front-end for C
• Abstract Interpretation-inspired verification engine 
• Predicate abstraction, invariant generation, BMC, k-induction

SMACK / Corral
• LLVM-based front-end
• Reduces C verification to Boogie
• Corral / Q verification back-end based on Bounded Model Checking with SMT
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SeaHorn Usage

> sea pf FILE.c

Outputs sat for unsafe (has counterexample); unsat for safe 

Additional options
• --cex=trace.xml  outputs a counter-example in SV-COMP’15 format
• --track={reg,ptr,mem} track registers, pointers, memory content
• --step={large,small} verification condition step-semantics
– small == basic block, large == loop-free control flow block

• --inline inline all functions in the front-end passes
Additional commands
• sea smt – generates CHC in extension of SMT-LIB2 format
• sea clp  -- generates CHC in CLP format (under development)
• sea lfe-smt – generates CHC in SMT-LIB2 format using legacy front-end
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Verification Pipeline

clang | pp | ms |opt | horn

front-end

compile pre-
process

mixed 
semantics

optimize

VC gen & 
solve
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Constrained Horn Clauses (CHC)

Definition: A Constrained Horn Clause (CHC) is a formula of the form
                8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]), where
• Á is a constrained in a background theory A (e.g., arithmetic, arrays, SMT)
•  p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

We write clauses as rules, with all variables implicitly quantified
h[X] Ã p1[X1],…, pn[Xn], Á.

A model of a set of clauses ¦ is an interpretation of each predicate pi that 
makes all clauses in ¦ valid
A set of clauses is satisfiable if it has a model, and is unsatisfiable 
otherwise 
A model is A-definable, it each pi is definable by a formula Ãi in A
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FROM PROGRAMS TO 
CLAUSES
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Horn Clauses by Weakest Liberal Precondition

Prog = def Main(x) { bodyM }, …, def P (x) { bodyP }

wlp (x=E, Q) = let x=E in Q
wlp (assert (E) , Q) = E Æ Q
wlp (assume(E), Q) = E → Q
wlp (while E do S, Q) = I(w) Æ 
                     8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ :E) → Q))
wlp (y = P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y])

ToHorn (def P(x) {S}) = wlp (x0=x ; assume (ppre(x)); S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) Æ  8{P 2 Prog} . ToHorn (P) 
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Horn Clauses by Dual WLP

Assumptions
• each procedure is represent by a control flow graph
– i.e., statements of the form li:S ; goto lj , where S is loop-free

• program is unsafe iff the last statement of Main() is reachable
– i.e., no explicit assertions. All assertions are top-level.

For each procedure P(x), create predicates
• l(w) for each label, pen(x0,x,w) for entry, pex (x0,r) for exit

The verification condition is a conjunction of clauses:
pen(x0,x) Ã x0=x   
li(x0,w’) Ã lj(x0,w) Æ :wlp (S, :(w=w’)), for each statement li: S; goto lj
p (x0,r) Ã pex(x0,r) 
false Ã Mainex(x, ret)
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Example Horn Encoding
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Large Step Encoding: Single Static Assignment

0: goto 1

1: x_0 = PHI(0:0, x_3:5);

   y_0 = PHI(y:0, y_1:5);

   if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);

   y_1 = -1 * y_0;

   goto 1

6:

int x, y, n;

x = 0;

while (x < N) {

  if (y > 0) 

    x = x + y;

  else

    x = x – y;

  y = -1 * y;

}
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Example: Large Step Encoding

0: goto 1

1: x_0 = PHI(0:0, x_3:5);

   y_0 = PHI(y:0, y_1:5);

   if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);

   y_1 = -1 * y_0;

   goto 1

6:
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1: x_0 = PHI(0:0, x_3:5);

   y_0 = PHI(y:0, y_1:5);

   if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);

   y_1 = -1 * y_0;

   goto 1

Example: Large Step Encoding
x
1
 = x

0
 + y

0

x
2
 = x

0
 – y

0

y
1
 = -1 * y

0
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1: x_0 = PHI(0:0, x_3:5);

   y_0 = PHI(y:0, y_1:5);

   if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);

   y_1 = -1 * y_0;

   goto 1

Example: Large Step Encoding
x
1
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0
 + y

0
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2
 = x

0
 – y

0

y
1
 = -1 * y

0

B
2
 → x
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3
 → B

2
 ∧ y

0 
> 0 
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4
 → B

2
 ∧ y

0 
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0 B
5
 → (B
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∧ x

3
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1
)
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     (B
4 
∧ x

3
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2
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5
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0
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3
 ∧ y’

0
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1

p1(x’0,y’0) Ã p1 (x0, y0), Á.
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PROGRAM TRANSFORMATION
Mixed Semantics
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Mixed Semantics

Stack-free program semantics combining:
• operational (or small-step) semantics
– i.e., usual execution semantics

• natural (or big-step) semantics: function summary [Sharir-Pnueli 81]
– (¾, ¾`) 2 ||f|| iff the execution of f on input state ¾ terminates and results in state ¾’

• some execution steps are big, some are small
Non-deterministic executions of function calls
• update top activation record using function summary, or
• enter function body, forgetting history records (i.e., no return!)

Preserves reachability and non-termination
 Theorem: Let K be the operational semantics, Km the stack-free semantics, 

and L a program location.  Then,           

K ² EF (pc=L) , Km ² EF (pc=L)     and    K ² EG (pc≠L) , Km ² EG (pc≠L)

[GWC’08,LQ’14] 
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def main()

1: int x = nd();

2: x = x+1; 

3: while(x>=0)

4:   x=f(x);

5:   if(x<0)

6:      Error;

7: 

8: END;

def f(int y): ret y  

9:  if(y¸10){

10:    y=y+1;

11:    y=f(y);

12: else if(y>0)

13:   y=y+1; 

14: y=y-1

15:Summary of f(y) 
  (1·y·9 Æ y’=y)   Ç 

(y·0 Æ y’=y-1)

1

2

3

4

6:
Error

9

10

11

12

y ¸ 10

y · 9
y’ = y+1

y’ = f(y)

5

78:
END

13

14

15

y · 0

y’= y+1

y’= y-1

x ¸ 0

x’=nd()

x’ = f(x)

x < 0
x ¸ 0

x < 0

x’=x+1 y’=x

y’=y

   (1·x·9 Æ x’=x) Ç 
(x·0 Æ x’=x-1)

x=3

x=4

x=4

x=4

y=4

y > 0

y=4

y=4

y=5

y=4
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Mixed Semantics as Program Transformation

Mixed Semantics
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SOLVING CHC WITH SMT
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Programs, Cexs, Invariants

A program P = (V, Init, ½, Bad)
• Notation: F(X) = 9 u . (X Æ ½) Ç Init

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe
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IC3/PDR Algorithm Overview

Aaron R. Bradley:SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87
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IC3/PDR in Pictures
PdrMkSafe
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IC3/PDR in Pictures
Cex Queue

Trace

Frame R0 Frame R1
lemma

cex

PdrMkSafe
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Inductive

IC3/PDR in Pictures
PdrPush
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Inductive

IC3/PDR in Pictures
PdrPush

PDR Invariants
      Ri → : Bad     Init → Ri

      Ri → Ri+1         Ri Æ ½ → Ri+1



31
SeaHorn Verification Framework
Gurfinkel, April 11, 2015
© 2015 Carnegie Mellon University

IC3/PDR
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IC3/PDR
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Extending PDR to Arithmetic: APDR

Model Based Projection: MBP(v, m, F)                                      [KGC’14]
• generates an implicant of 9 v . F that contains the model m

Counter-examples are monomials (conjunction of inequalities)
Lemmas are clauses (disjunction of inequalities)

APDR computes an (possibly non-convex) QFLRA invariant in CNF
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Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A ) :B, then 
there exists a FO formula I, denoted ITP(A, B), such that
     A ) I                 I ) :B                atoms(I) 2 atoms(A) Å atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a 
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states
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Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
•  I 2 ITP (A, B)  then :I 2 ITP (B, A)
•  if A is syntactically convex (a monomial), then I is convex
•  if B is syntactically convex, then I is co-convex (a clause)
•  if A and B are syntactically convex, then I is a half-space

A = F(Ri)

B = P

I = lemma
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1. find
(e.g. specific pre-post pair 
that needs to be 
generalized)

Expensive to find a quantifier-free

Models of

Lazy Quantifier 
Elimination!

2. choose disjunct “covering” N
using virtual substitution

Model Based Projection
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MBP for Linear Rational Arithmetic

e t

pick a disjunct that covers a given model

[1] Cooper, Theorem Proving in Arithmetic without Multiplication, 1972
[2] Loos and Weispfenning, Applying Linear Quantifier Elimination, 1993
[3] Bjorner, Linear Quantifier Elimination as an Abstract Decision Procedure, 2010
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Spacer: Solving CHC in Z3

Spacer: solver for SMT-constrained Horn Clauses
• stand-alone implementation in a fork of Z3
• http://bitbucket.org/spacer/code

Support for Non-Linear CHC
• model procedure summaries in inter-procedural verification conditions
• model assume-guarantee reasoning
• uses MBP to under-approximate models for finite unfoldings of predicates
• uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
• Best-effort support for arbitrary SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Full support for Linear arithmetic (rational and integer)
• Quantifier-free theory of arrays
– only quantifier free models with limited applications of array equality

http://bitbucket.org/spacer/code
http://bitbucket.org/spacer/code
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RESULTS
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SV-COMP 2015

4th Competition on Software Verification held (here!) at TACAS 2015
Goals
• Provide a snapshot of the state-of-the-art in software verification to the 

community. 
• Increase the visibility and credits that tool developers receive. 
• Establish a set of benchmarks for software verification in the community. 

Participants:
• Over 22 participants, including most popular Software Model Checkers and 

Bounded Model Checkers
Benchmarks:
• C programs with error location (programs include pointers, structures, etc.)
• Over 6,000 files, each 2K – 100K LOC
• Linux Device Drivers, Product Lines, Regressions/Tricky examples
• http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/

http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://sv-comp.sosy-lab.org/2015/
http://sv-comp.sosy-lab.org/2015/
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Results for DeviceDriver category
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Conclusion

SeaHorn (http://seahorn.github.io)
• a state-of-the-art Software Model Checker
• LLVM-based front-end
• CHC-based verification engine
• a framework for research in logic-based verification

The future
• making SeaHorn useful to users of verification technology
– counterexamples, build integration, property specification, proofs, etc.

• targeting many existing CHC engines
– specialize encoding and transformations to specific engines
– communicate results between engines 

• richer properties
– termination, liveness, synthesis

http://seahorn.github.io
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