A Note on Program Specialization

What Syntactical Properties of Residual Programs
Can Reveal?

A. P Lisitsa' A. P. Nemytykh?

"Department of Computer Science
The University of Liverpool

2Program Systems Institute
Russian Academy of Sciences

Workshop on Verification and Program Transformation
Vienna, 2014

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 1/50

Non-traditional Uses of Program Specialization
Traditional Goals of Program Transformation

@ The time efficiency of transformed programs
@ The space-efficiency of transformed programs
@ Translation

@ Refactoring programs

@ Formatting
° ...

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 2/50

Non-traditional Uses of Program Specialization
Traditional Goals of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

The first Futamura projection aims to:
@ effective changing of the semantics of the programs;
@ effective compilation from one programming language to another;

@ the generation of efficient programs implementing inverse
functions;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 3/50

Non-traditional Uses of Program Specialization
Traditional Goals of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

The first Futamura projection aims to:
@ effective changing of the semantics of the programs;
@ effective compilation from one programming language to another;

@ the generation of efficient programs implementing inverse
functions;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 3/50

Non-traditional Uses of Program Specialization
Traditional Goals of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

The first Futamura projection aims to:
@ effective changing of the semantics of the programs;
@ effective compilation from one programming language to another;

@ the generation of efficient programs implementing inverse
functions;

@ Undecidability issue

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 3/50

Non-traditional Uses of Program Specialization
Traditional Goals of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

The first Futamura projection aims to:
@ effective changing of the semantics of the programs;
@ effective compilation from one programming language to another;

@ the generation of efficient programs implementing inverse
functions;

@ Undecidability issue
@ There still many very interesting examples

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 3/50

Non-traditional Uses of Program Specialization
Traditional Uses of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

@ The second Futamura projection aims to:
o effective generation of compilers from the interpreters;

@ The third Futamura projection aims to:
o effective genaration of compiler generaters;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

4/50

Non-traditional Uses of Program Specialization
Traditional Uses of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

@ The second Futamura projection aims to:
o effective generation of compilers from the interpreters;

@ The third Futamura projection aims to:
o effective genaration of compiler generaters;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

4/50

Non-traditional Uses of Program Specialization
Traditional Uses of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

@ The second Futamura projection aims to:
o effective generation of compilers from the interpreters;

@ The third Futamura projection aims to:
o effective genaration of compiler generaters;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

4/50

Non-traditional Uses of Program Specialization
Traditional Uses of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

@ The second Futamura projection aims to:
o effective generation of compilers from the interpreters;

@ semi-automated (in some sense — interactive).

@ The third Futamura projection aims to:
o effective genaration of compiler generaters;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 4/50

Non-traditional Uses of Program Specialization
Traditional Uses of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

@ The second Futamura projection aims to:
o effective generation of compilers from the interpreters;

@ semi-automated (in some sense — interactive).

@ The third Futamura projection aims to:
o effective genaration of compiler generaters;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 4/50

Non-traditional Uses of Program Specialization
Traditional Uses of Program Specialization.

The efficiency of the transformed programs w.r.t. time.

@ The second Futamura projection aims to:
o effective generation of compilers from the interpreters;

@ semi-automated (in some sense — interactive).

@ The third Futamura projection aims to:
o effective genaration of compiler generaters;

@ a source of intricate tasks to be solved.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

4/50

Non-traditional Uses of Program Specialization
There is Something More in Program Transformation

It can be used for:
@ analysis of the programs;
@ and more specifically for program verification.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 5/50

Introduction Non-traditional Uses of Program Specialization

Program Verification by Program Trasformation
Related Works - |

@ M. Leuschel et al. (1999, ...)
suggested to apply a program specialization method for
verification of various infinite state computing systems modeled in
terms of logic programs;

@ A. Pettorossi, M. Proietti et al. (2001, ...) proposed to use
constraint logic programs, which give more powerful means for
dealing with infinite sets of states;

@ A. Roychoudhury and C. R. Ramakrishnan (2004) used fold/unfold
transformations of logic programs for the verification of
parameterized concurrent systems;

@ G. W. Hamilton (2007) used his distillation algorithm as a proof
assistant for transformation of programs into a tail recursive form
in which some properties of the programs can be easily verified by
the application of inductive proof rules;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 6/50

Introduction Non-traditional Uses of Program Specialization

Program Verification by Program Trasformation
Related Works - llI

@ A. Lisitsa and A. Nemytykh (2005, . ..) studied functional modeling
and verification (by supercompilation) of global safety properties
of nondeterministic parameterized cache coherence protocols;

@ A. Lisitsa and A. Nemytykh (2008), and A. Klimov (2012) applied
supercompilation to verification of Petri Nets models;

@ A. Ahmed (2008), A. Lisitsa and A. Nemytykh (2013) addressed
the verification of the cryptographic protocols via supercompilation
using the functional modeling;

@ Antonina Nepeivoda (2013, 2014) modeled and verified a class of
the ping-pong crypto-protocols by use of a generalization based
on Turchin’s relation (1988).

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 7150

A Step Further: Solution of Combinatorial Problems
Solution of Two Combinatorial Problems

by Turchin’s Supercompilation

Specialization can be used for the solution of combinatorial and
algebraic problems encoded in the programs.

@ Two examples illustrating use of Turchin’s supercompilation for:

e Describing the solution set of a word equation;
@ Solving “Missionaries and Cannibals” puzzle.

We hope that these examples will be able to motivate further research
in (semi)automated program specialization.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 8/50

Syntactical Properties of Residual Programs

Produced by Supercompilation

Recipe

@ Given a combinatorial problem, encode the corresponding
dynamics by a functional iterpreter Int;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

9/50

Syntactical Properties of Residual Programs

Produced by Supercompilation

Recipe

@ Given a combinatorial problem, encode the corresponding
dynamics by a functional iterpreter Int;

@ Specialize Int w.r.t. the initial parametrized state of this computing
system;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 9/50

Syntactical Properties of Residual Programs

Produced by Supercompilation

Recipe

@ Given a combinatorial problem, encode the corresponding
dynamics by a functional iterpreter Int;

@ Specialize Int w.r.t. the initial parametrized state of this computing
system;

@ Analyze relation between the given encoded problem and the
syntactical properties of the residual program.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 9/50

Interactive Use of a Supercompiler

on the Base of the Analysis of Intermediate Residual Programs

If necessary:

@ Correct Int, basing on the analysis of the syntactical properties of
the (intermediate) residual program;

Until the obtained residual programs do

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 10/50

Interactive Use of a Supercompiler

on the Base of the Analysis of Intermediate Residual Programs

If necessary:

@ Correct Int, basing on the analysis of the syntactical properties of
the (intermediate) residual program;

e thus we give the supercompiler
a hint of clarification of the problem definition;

Until the obtained residual programs do display the solution of the
given combinatorial problem explicitly.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 10/50

Interactive Use of a Supercompiler

on the Base of the Analysis of Intermediate Residual Programs

If necessary:

@ Correct Int, basing on the analysis of the syntactical properties of
the (intermediate) residual program;

e thus we give the supercompiler
a hint of clarification of the problem definition;

@ Specialize the corrected Int encoding the problem to be solved;

Until the obtained residual programs do display the solution of the
given combinatorial problem explicitly.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 10/50

Interactive Use of a Supercompiler

on the Base of the Analysis of Intermediate Residual Programs

If necessary:

@ Correct Int, basing on the analysis of the syntactical properties of
the (intermediate) residual program;

e thus we give the supercompiler
a hint of clarification of the problem definition;

@ Specialize the corrected Int encoding the problem to be solved;
@ Repeat the previous two steps.

Until the obtained residual programs do display the solution of the
given combinatorial problem explicitly.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 10/50

Term Rewriting Systems

Based on Pattern Matching

Example Program

main(e.xs) = equal ('ab’ ++ e.xs, e.xs ++ ’'ba’);

@ Two kinds of variables:

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization

The Presentation Language Pseudocode for Functional Programs

Term Rewriting Systems

Based on Pattern Matching

Example Program

main(e.xs) = equal ('ab’ ++ e.xs, e.xs ++ ’'ba’);

equal (s.x:e.xs, s.x:e.ys) = equal(e.xs, e.ys);

@ The sentences are ordered to be matched;
@ Two kinds of variables:

Ibl.lal.[] Ibal
"aba’ te.x="a’:’'b’

~

falre.x

A. P. Lisitsa, A. P. Nemytykh ()

A Note on Program Specialization VPT 2014 11/50

Pseudocode for Functional Programs
Term Rewriting Systems

Based on Pattern Matching

Example Program

main(e.xs) = equal ('ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.xX:e.ys) = equal(e.xs, e.ys);
equal ([], []) = True;

@ The sentences are ordered to be matched;
@ Two kinds of variables:

Ibl:lal:[] Ibal

~

"aba’:e.x="a’":'b":"a’ :e.x

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

11/50

Pseudocode for Functional Programs
Term Rewriting Systems

Based on Pattern Matching

Example Program

main(e.xs) = equal ('ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.xX:e.ys) = equal(e.xs, e.ys);
equal ([], []) = True;

equal (e.xs, e.ys) = False;

@ The sentences are ordered to be matched;
@ Two kinds of variables:

Ibal

b iral]

~

"aba’:te.x="a’":'b":"a’:e.x

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 11/50

Pseudocode for Functional Programs
Term Rewriting Systems

Based on Pattern Matching

Example Program

main(e.xs) = equal ('ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.x:e.ys) = equal(e.xs, e.ys);
equal ([], []) = True;

equal (e.xs, e.ys) = False;

@ The sentences are ordered to be matched;

@ Two kinds of variables:
@ s.-variables;

Ibl.lal.[] E,ba,
"aba’:e.x="a’":'b":"a’:e.x

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 11/50

Pseudocode for Functional Programs
Term Rewriting Systems

Based on Pattern Matching

Example Program

main(e.xs) = equal ('ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.xX:e.ys) = equal(e.xs, e.ys);
equal ([]1, []) = True;

equal (e.xs, e.ys) = False;

@ The sentences are ordered to be matched;
@ Two kinds of variables:
@ s.-variables;
@ range over characters and identifiers;

Ibl.lal.[] Elbal
"aba’:e.x="a’":'b":"a’te.x

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 11/50

Pseudocode for Functional Programs
Term Rewriting Systems

Based on Pattern Matching

Example Program

main(e.xs) = equal ('ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.xX:e.ys) = equal(e.xs, e.ys);
equal ([], []) = True;

equal (e.xs, e.ys) = False;

@ The sentences are ordered to be matched;
@ Two kinds of variables:
@ s.-variables;
@ range over characters and identifiers;
@ e.-variables;

@ range over the whole set of the s-expressions;

Ibl.lal.[] E,ba,
"aba’:e.x="a’":'b":"a’":e.x

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

11/50

Definition
Definitions

Definition
Given a finite alphabet X of constants and a set of variables X disjoint
with X, a word expression is L = R, where L, R € (X U X)*.

Definition

A solution of a word equation L = R is any substitution of its unknowns
in the word equation by words from X * that turns the equation L = R
into literal/syntactic equality.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 12/50

Word Equations

Simplest Examples

Example

"ab’ ++ e.xs = e.xs ++ ’'ba’ J

@ e.Xxs

"a’ is a solution;

@ e.xs := ’"aba’ is a solution;
o ...

Example

"ab’ ++ e.xs ++ "a’ = e.xs ++ ’'ba’ J

There is no solution.

A. P. Lisitsa, A. P. Nemytykh ()

A Note on Program Specialization

On Makanin’s Algorithm

Problem

Given a word equation, describe its solution set by a constructive
(transparent) way.

@ Yu.l. Khmelevskii (the late 1960’s) an important contribution in
solving the problem:;

@ G.S. Makanin (1970’s) suggested an algorithm deciding whether
or not there exists a solution of any given word equation.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 14 /50

On Makanin’s Algorithm

Problem

Given a word equation, describe its solution set by a constructive
(transparent) way.

@ Yu.l. Khmelevskii (the late 1960’s) an important contribution in
solving the problem;

@ G.S. Makanin (1970’s) suggested an algorithm deciding whether
or not there exists a solution of any given word equation.

@ There is an algorithm based on Makanin’s ideas, which for a given
word equation generates a finite graph describing the
corresponding solution set.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 14 /50

On Makanin’s Algorithm

Problem

Given a word equation, describe its solution set by a constructive
(transparent) way.

@ Yu.l. Khmelevskii (the late 1960’s) an important contribution in
solving the problem;

@ G.S. Makanin (1970’s) suggested an algorithm deciding whether
or not there exists a solution of any given word equation.

@ There is an algorithm based on Makanin’s ideas, which for a given
word equation generates a finite graph describing the
corresponding solution set.

@ Supercompilation is able to generate the same graph as
Makanin’s algorithm does for some word equations.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 14 /50

Solving Word Equations

by Supercompilation

Input Program

main(e.xs) = equal(’ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.x:e.ys) = equal(e.xs, e.ys);
equal ([], []) = True;

equal (e.xs, e.ys) = False;

@ equal is a predicate checking whether two given words are equal.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization

Solving Word Equations

by Supercompilation

Input Program

main(e.xs) = equal(’ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.x:e.ys) = equal(e.xs, e.ys);
equal ([], []) = True;

equal (e.xs, e.ys) = False;

@ equal is a predicate checking whether two given words are equal.

@ main is a predicate testing whether a given word is a solution of
the equation:

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 15/50

Solving Word Equations

by Supercompilation

Input Program

main(e.xs) = equal (’ab’ ++ e.xs, e.xs ++ ’'ba’);
equal (s.x:e.xs, s.x:e.ys) = equal(e.xs, e.ys);
equal ([], []) = True;

equal (e.xs, e.ys) = False;

@ equal is a predicate checking whether two given words are equal.

@ main is a predicate testing whether a given word is a solution of
the equation:

@ 'ab’ ++ e.xs = e.xs ++ ’'ba’

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 15/50

Solving Word Equations

by Supercompilation

Residual program p produced by the supercompiler SCP4

main("a’:'b’:e.xs) = main(e.xs);
main("a’:[]) = True;
main(e.xs) = False;

@ The last sentence is redundant for description of the solution set.

VPT 2014 16 /50

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization

Solving Word Equations

by Supercompilation

Residual program p produced by the supercompiler SCP4

main("a’:'b’:e.xs) = main(e.xs);
main("a’:[]) = True;
main(e.xs) = False;

@ The last sentence is redundant for description of the solution set.
@ This sentence will be absent, if we will remove the last sentence of
the original function equal.

VPT 2014 16 /50

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization

Solving Word Equations

by Supercompilation

Residual program p
main("a’:'b’:e.xs) = main(e.xs);

main("a’:[]) = True;

P (as any program!) can be seen as a graph:
@ vertices of the graph correspond to:

VPT 2014 17/ 50

A Note on Program Specialization

A. P. Lisitsa, A. P. Nemytykh ()

Solving Word Equations

by Supercompilation

Residual program p
main("a’:'b’:e.xs) = main(e.xs);

main("a’:[]) = True;

P (as any program!) can be seen as a graph:

@ vertices of the graph correspond to:
e the function calls;

edges are labeled with:

VPT 2014 17/ 50

A Note on Program Specialization

A. P. Lisitsa, A. P. Nemytykh ()

Solving Word Equations

by Supercompilation

Residual program p
main("a’:'b’:e.xs) = main(e.xs);

main("a’:[]) = True;

P (as any program!) can be seen as a graph:

@ vertices of the graph correspond to:

e the function calls;
e and the return expressions;

@ edges are labeled with:

VPT 2014 17 /50

A Note on Program Specialization

A. P. Lisitsa, A. P. Nemytykh ()

Solving Word Equations

by Supercompilation

Residual program p
main("a’:'b’":e.xs) = main(e.xs);

main("a’:[]) = True;

P (as any program!) can be seen as a graph:

@ vertices of the graph correspond to:

e the function calls;
e and the return expressions;

@ edges are labeled with:
o the case expressions

VPT 2014 17/ 50

A Note on Program Specialization

A. P. Lisitsa, A. P. Nemytykh ()

Solving Word Equations

by Supercompilation

Residual program p
main("a’:'b’:e.xs) = main(e.xs);

main("a’:[]) = True;

P (as any program!) can be seen as a graph:

@ vertices of the graph correspond to:

e the function calls;
e and the return expressions;

@ edges are labeled with:
o the case expressions
@ or assignments.

VPT 2014 17 /50

A Note on Program Specialization

A. P. Lisitsa, A. P. Nemytykh ()

Word Equations Specialization

Solving Word Equations

Syntactical Properties of Residual Programs

Residual program p

main("a’:'b’:e.xs) = main(e.xs);
main("a’:[]) = True;

Figure: Graph describing the solution set (’ ab’) *’ a’ of the word equation.

A. P. Lisitsa, A. P. Nemytykh ()

A Note on Program Specialization VPT 2014 18/50

Solving Word Equations

Supercompilation vs. Makanin’s algorithm

Word Equation J

"ab’ ++ e.xs = e.xs ++ ’'Dba’

Figure: Graph describing the solution set (" ab’) *’ a’ of the word equation.

The obtained graph coincides with the graph generated by Makanin’s
algorithm.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 19/50

Solving Word Equations

Supercompilation vs. Makanin’s algorithm

Word Equation J

"ab’ ++ e.xs ++ "a’ = e.xs ++ "ba’

Supercompilation of the following task (by the supercompiler SCP4)
main(e.xs) = equal ('ab’+t+te.xs++’'a’,e.xs++’'ba’);

yields the residual program:

main(e.xs) = False;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 20/50

Solving Word Equations

Supercompilation vs. Makanin’s algorithm

@ A result of specialization may be interesting not only because of
effective performance of the residual program as compared to a
source program.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 21/50

Solving Word Equations

Supercompilation vs. Makanin’s algorithm

@ A result of specialization may be interesting not only because of
effective performance of the residual program as compared to a
source program.

@ The syntactical structure of the result may serve as a solution to
the problem encoded in the source program.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 21/50

Solving Word Equations

Supercompilation vs. Makanin’s algorithm

@ A result of specialization may be interesting not only because of
effective performance of the residual program as compared to a
source program.

@ The syntactical structure of the result may serve as a solution to
the problem encoded in the source program.

@ For arbitrary word equations the supercompiler SCP4, in general,
is not able to reproduce the same graph as Makanin’s algorithm
does.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 21/50

Solving Word Equations

Supercompilation vs. Makanin’s algorithm

@ A result of specialization may be interesting not only because of
effective performance of the residual program as compared to a
source program.

@ The syntactical structure of the result may serve as a solution to
the problem encoded in the source program.

@ For arbitrary word equations the supercompiler SCP4, in general,
is not able to reproduce the same graph as Makanin’s algorithm
does.

@ The ideas underlying Makanin’s algorithm may be borrowed for
further development of the supercompilation method.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 21/50

“Missionaries and Cannibals” Puzzle

The Classical Problem

Three missionaries and three cannibals come to the bank of a river
and see a boat. They want to cross the river. The boat can carry no
more than two people. At no time should the number of cannibals on
either bank of the river (including the moored boat) exceed the number
of missionaries. How (if at all) is it possible to cross the river?

v

Generalization

Given n missionaries and k cannibals is it possible to cross the river
and to save all the missionaries?

If the answer is true, then we are interested in the algorithm carrying
the strange crowd.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 22/50

sz il G s
Encoding

A. V. Korlyukov’s Idea

The dynamic system moving the crowd from the left bank to the right.

mainInt (e.l, e.path) = True:e.p | False:e.q

@ Takes on:

@ Returns:

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 23/50

sz il G s
Encoding

A. V. Korlyukov’s Idea
The dynamic system moving the crowd from the left bank to the right.
mainInt (e.l, e.path) = True:e.p | False:e.q

@ Takes on:
e the pair n, k describing the initial crowd on the left bank;

@ Returns:

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 23/50

sz il G s
Encoding

A. V. Korlyukov’s Idea

The dynamic system moving the crowd from the left bank to the right.

mainInt (e.l, e.path) = True:e.p | False:e.q

@ Takes on:

e the pair n, k describing the initial crowd on the left bank;
e a finite sequence of the boat states (an evaluation path).

@ Returns:

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 23/50

sz il G s
Encoding

A. V. Korlyukov’s Idea

The dynamic system moving the crowd from the left bank to the right.

mainInt (e.l, e.path) = True:e.p | False:e.q

@ Takes on:

e the pair n, k describing the initial crowd on the left bank;
o a finite sequence of the boat states (an evaluation path).

@ Returns:

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 23/50

sz il G s
Encoding

A. V. Korlyukov’s Idea

The dynamic system moving the crowd from the left bank to the right.

mainInt (e.l, e.path) = True:e.p | False:e.q

@ Takes on:

e the pair n, k describing the initial crowd on the left bank;
o a finite sequence of the boat states (an evaluation path).

@ Returns:

e does a prefix of the path bring the crowd to the right bank?
If the answer is:

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 23/50

sz il G s
Encoding

A. V. Korlyukov’s Idea

The dynamic system moving the crowd from the left bank to the right.

mainInt (e.l, e.path) = True:e.p | False:e.q

@ Takes on:
e the pair n, k describing the initial crowd on the left bank;
o a finite sequence of the boat states (an evaluation path).
@ Returns:

@ does a prefix of the path bring the crowd to the right bank?
If the answer is:

@ True, then the rest of the path, which did not take a part in moving the
crowd;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 23/50

sz il G s
Encoding

A. V. Korlyukov’s Idea

The dynamic system moving the crowd from the left bank to the right.

mainInt (e.l, e.path) = True:e.p | False:e.q

@ Takes on:
e the pair n, k describing the initial crowd on the left bank;
o a finite sequence of the boat states (an evaluation path).
@ Returns:

@ does a prefix of the path bring the crowd to the right bank?
If the answer is:
@ True, then the rest of the path, which did not take a part in moving the
crowd;
@ False, then the part of the crowd brought to the right bank.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 23/50

The Banks’ States n, k (the First Trick)

A. V. Korlyukov’s Idea

The pair n, k is encoded as a triple of nonnegative integers m, p, ¢
such that

m=max{n—k,0},c=max{k—n,0},n=m+p,k=c+p

Unary notation is used to represent the integers m, p, c.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 24 /50

The Banks’ States n, k (the First Trick)

A. V. Korlyukov’s Idea

The pair n, k is encoded as a triple of nonnegative integers m, p, ¢
such that

m=max{n—k,0},c=max{k—n,0},n=m+p,k=c+p

Unary notation is used to represent the integers m, p, c.

@ mis is the overweight of missionaries compared to cannibals;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 24/50

The Banks’ States n, k (the First Trick)

A. V. Korlyukov’s Idea

The pair n, k is encoded as a triple of nonnegative integers m, p, ¢
such that

m=max{n—k,0},c=max{k—n,0},n=m+p,k=c+p

Unary notation is used to represent the integers m, p, c.

@ mis is the overweight of missionaries compared to cannibals;
@ cis the same vice versa;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 24 /50

The Banks’ States n, k (the First Trick)

A. V. Korlyukov’s Idea

The pair n, k is encoded as a triple of nonnegative integers m, p, ¢
such that

m=max{n—k,0},c=max{k —n,0},n=m+p,k=c+p

Unary notation is used to represent the integers m, p, c.

@ mis is the overweight of missionaries compared to cannibals;
@ cis the same vice versa;
@ pis the number of those who are outnumbered.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 24 /50

“Missionaries and Cannibals” Puzzle Encoding

The Banks’ States n, k (the First Trick)

A. V. Korlyukov’s Idea

The pair n, k is encoded as a triple of nonnegative integers m, p, ¢
such that

m=max{n—k,0},c=max{k —n,0},n=m+p,k=c+p

Example

[['mm’], ["ppp’], [1] —five missionaries and three cannibals.

D—

Example

[[1,['pp’]1, [’'c’]1] —1two missionaries and three cannibals.

 —

A. P. Lisitsa, A. P. Nemytykh ()

A Note on Program Specialization VPT 2014 25/50

“Missionaries and Cannibals” Puzzle Encoding

The Boat States
A. V. Korlyukov’s Idea

A state of the boat is encoded as one identifier, the name of which
consists of the first capital letters of its passengers.

@ MM — the state with two missionaries on the boat;
@ C —the state with one cannibal.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 26/50

The Second Trick

A. V. Korlyukov’s Idea

Interpretation Example

mainInt ([[], ["ppp’1,[1],
(cc,c,cc,c,mMM,MC, MM, C,CC,M,MC,MC]) = [True, [MC]];

This property of the interpreter is one of the tricks incidental to the
supercompiler SCP4.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 27/50

The Second Trick

A. V. Korlyukov’s Idea

Interpretation Example

mainInt ([[], ["ppp’1,[1],
(cc,c,cc,c,MM,MC, MM, C,CC,M,MC,MC]) = [True, [MC]];

@ By definition, the last MC does matter. It is not used to solve the
puzzle.

This property of the interpreter is one of the tricks incidental to the
supercompiler SCP4.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 27/50

The Second Trick

A. V. Korlyukov’s Idea

Interpretation Example

mainInt ([[], ["ppp’], [1],
([cc,c,cc,c,mMM,MC, MM, C,CC,M,MC,MC]) = [True, [MC]];

@ By definition, the last MC does matter. It is not used to solve the
puzzle.
@ [CC,C,CcC,C,MM,MC,MM, C,CC,M,MC] is a solution path.

This property of the interpreter is one of the tricks incidental to the
supercompiler SCP4.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 27/50

“Missionaries and Cannibals” Puzzle Encoding

The Dynamic System - |
A. V. Korlyukov’s Idea

mainInt (e.l, [s.a, e.path]) =
Int(s.a, Move(s.a,L,e.l,[[]1,[1,[11),e.path);

/+ The boat on the left bank. <.,.,.> is a tuple.x/
Move(s.a, L, e.l, e.r) =
<R, Minus(s.a, e.l), Plus(s.a, e.r)>;
/* The boat on the right bank. x/
Move(s.a, R, e.l, e.r) =
<L, Minus(s.a, e.l), Plus(s.a, e.r)>;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 28/50

“Missionaries and Cannibals” Puzzle Encoding

The Dynamic System - |
A. V. Korlyukov’s Idea

mainInt (e.l, [s.a, e.path]) =
Int(s.a, Move(s.a,L,e.l,[[]1,[1,[11),e.path);

/+ The boat on the left bank. <.,.,.> is a tuple.x/
Move(s.a, L, e.l, e.r) =
<R, Minus(s.a, e.l), Plus(s.a, e.r)>;
/* The boat on the right bank. x/
Move(s.a, R, e.l, e.r) =
<L, Minus(s.a, e.l), Plus(s.a, e.r)>;

@ Move modifies the banks’ states and returns the new active bank
and the two modified states.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 28/50

=rzedlis
The Dynamic System - ||

A. V. Korlyukov’s Idea

Int(s.pa, R, [I[],I]1,I1], e.r, e.path) =
True : e.path;
Int(s.pa, s.d, e.l, e.r, [] = False : e.r;
Int(s.pa, s.d, e.l, e.xr, []) =
CutFalse ([]);
Int(s.pa, s.d, e.l, e.r, [s.pa,e.path]) =
BlockRepetition([]);
Int(s.pa, s.d, e.l, e.r, [s.x,e.path]) =
Int(s.x, Move(s.x, s.l, e.l, e.r), e.path);

N
I

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 29/50

=rzedlis
The Dynamic System - ||

A. V. Korlyukov’s Idea

Int(s.pa, R, [I[],I]1,I1], e.r, e.path) =
True : e.path;
Int(s.pa, s.d, e.l, e.r, = False : e.r;
Int(s.pa, s.d, e.l, e.xr, []) =
CutFalse([]);
Int(s.pa, s.d, e.l, e.r, [s.pa,e.path]) =
BlockRepetition([]);
Int(s.pa, s.d, e.l, e.r, [s.x,e.path]) =
Int(s.x, Move(s.x, s.l, e.l, e.r), e.path);

—
—
~

@ We skip over the functions CutFalse, BlockRepetition and
will consider them later.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 29/50

“Missionaries and Cannibals” Puzzle Encoding

Unary Arithmetic
A. V. Korlyukov’s Idea

Minus (MM, [['mm’,e.m],e.p,[]]) = [e.m,e.p,[1];
Minus (MM, [[],["pp"1,[11) = [[]1,[],["cc’]];

Minus (MM, [['m"],["p"]1,[11) = [[1,[1,['c"1];
Minus(CC, [[],[],['cc’, e.cl]) = [[],[],e.cl;

Minus (CC, [e.m, ["pp’,e.p], []1])= [['mm’,e.m],e.p, [1];
Minus (MC, [e.m, ['p’,e.p],[]1]) = [e.m,e.p, []];

Minus (M, [[1,['p"1,[11) = [[1,[1,["c"11;

Minus(M, [['m’,e.m],e.p,[]1]) = [e.m,e.p,[]];
Minus(C, [[],[],["c",e.c]l]) = [[],[]l,e.cl;

Minus (C, [e.m, ['p’,e.p],[]]) = [['m",e.m],e.p, []1];

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 30/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

The Specialization Task
A. V. Korlyukov’s Idea

The Problem in Program Terms
For the parameterized call mainInt (e.1lg, e.path) and a given
state e. 1 on the left bank we are interested in an answer to the

question:
Does a path e.pathg exist such that (a part of) the result of the call is

True?
4

We answer the given question interactively using the supercompiler
SCP4 and analyzing the residual programs produced by the
supercompiler.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 31/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

The Specialization Task
A. V. Korlyukov’s Idea

By the precondition we narrow the initial left state’s set
e.left = [[e.m], [e.p], [e.c]]
to one of the forms:

[[e.m], [e.p], []]and [[], (], [e.c]]

Thus we have the two tasks:

@ mainInt ([[e.m], [e.p],[]], e.path)
@ mainInt ([[]1,[], [e.c]], e.path)

to be solved.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 32/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

Two More Tricks
A. V. Korlyukov’s Idea

To make the residual programs more compact we use:

The Third Trick

Among the paths, moving the boat, there are meaningless paths. The
simplest of them contain at least two identical states staying side by
side in the path.

We exclude such paths. We do that by calling the function

BlockRepetition with an argument which never matches the
function definition.

. MC,MC,

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 33/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

Two More Tricks
A. V. Korlyukov’s Idea

To make the residual programs more compact we use:

Int(s.pa, s.d, e.l, e.r, [s.pa,e.path]) =
BlockRepetition([]);

BlockRepetition(Deadlock) = [];

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 34/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

Two More Tricks
A. V. Korlyukov’s Idea

To make the residual programs more compact we use:

Int(s.pa, s.d, e.l, e.r, [s.pa,e.path]) =
BlockRepetition([]);

BlockRepetition(Deadlock) = [];

@ The first argument s . pa of the function Int serves to recognize
two identical states staying side by side in a given path.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 34/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

Yet Two Tricks
A. V. Korlyukov’s Idea

For the same reason, whenever we hope for a positive answer to the
problem question we will replace the following sentence of Int

Int(s.pa, s.d, e.l, e.r, []) False : e.r;

with the sentence

Int(s.pa, s.d, e.l, e.r, []) = CutFalse([]);

CutFalse (Deadlock) = [1;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 35/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

Diagonal Cases
A. V. Korlyukov’s Idea

mainInt ([[], [e.p], []], e.path)
Our first experiment is for two missionaries and two cannibals:
mainInt ([[], ["pp’]1,[]], e.path)

The program contains the sentence with the call CutFalse ([]).

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 36/50

Diagonal Cases

mainInt ([[]1, ['pp’1,[]1], e.path)

Supercompilation produces the following residual program:

mainInt’ ([s.x , e.path]) = True:[f(s.x,e.path)];

f(cc, [C,MM,M,MC,e.path]) = e.path;
f(Ccc, [C,MM,C,CC,e.path]) = e.path;
f(cc, [C,M,MC,s.x,e.path]) = f(s.x, e.path);
f(MC, [M,MM,M,MC,e.path]) = e.path;
f(MC, [M,MM,C,CC,e.path]) = e.path;
f(MC, [M,C,CC,s.x,e.path]) = f(s.x, e.path);

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 37/50

Diagonal Cases

mainInt ([[]1, ['pp’1,[]1], e.path)

Supercompilation produces the following residual program:

mainInt’ ([s.x , e.path]) = True:[f(s.x,e.path)];

f(cc, [C,MM,M,MC,e.path]) = e.path;
f(cc, [C,MM,C,CC,e.path]) = e.path;
f(cc, [C,M,MC,s.x,e.path]) = f(s.x, e.path);
f(MCc, [M,MM,M,MC,e.path]) = e.path;
f(MC, [M,MM,C,CC,e.path]) = e.path;
f(MC, [M,C,CC,s.x,e.path]) = f(s.x, e.path);

@ The exits from the recursion show the shortest paths moving the
crowd to the right bank.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 37/50

Diagonal Cases

mainInt ([[],['p’]1,[1], e.path)

One missionary and one cannibal.
The program contains the sentence with the call CutFalse ([]).
The residual program:

mainInt’ ([MC , e.path]) = True : [e.path];

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 38/50

Diagonal Cases

mainInt ([[1, ["ppp’]1,[1], e.path)

The program contains the sentence with the call CutFalse ([]).

The residual program:

mainInt’ ([s.x , e.path]) = True : [f(s.x,e.

[Cc,Ccc,Cc,MM,MC, MM, C,CC,M,MC,e.path]) =
[c,Ccc,C,MM,MC,MM, C,CC,C,CC,e.path]) =
c, [C,M,MC,s.x,e.path]) = f(s.x, e.path);
[M,CC,C,MM,MC,MM, C,CC,M,MC,e.path]) =
[M,CC,C,MM,MC,MM, C,CC,C,CC,e.path]) =
[M,C,CC,s.x,e.path]) = f(s.x, e.path);

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization

path)];

e.path;
e.path;

e.path;
e.path;

VPT 2014 39/50

Diagonal Cases

mainInt ([[1, ["ppp’]1,[1], e.path)

The program contains the sentence with the call CutFalse ([]).
The residual program:

mainInt’ ([s.x , e.path]) = True : [f(s.x,e.path)];

[Cc,CcCc,C, MM, MC,MM, C,CC,M,MC,e.path]) = e.path;
[C,CcC,C,MM,MC,MM, C,CC,C,CC,e.path]) = e.path;
c, [C,M,MC,s.x,e.path]) = f(s.x, e.path);
[M,CC,C,MM,MC,MM, C,CC,M,MC,e.path]) = e.path;
[M,CC,C,MM,MC,MM, C,CC,C,CC,e.path]) = e.path;
[M,C,CC,s.x,e.path]) = f(s.x, e.path);

@ The residual program specifies the whole set of the successful
paths.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 39/50

Diagonal Cases

mainInt ([[], ["pppp’, e.pl,[1], e.path)

An equal number of missionaries and cannibals, and it > 3.

If the source program contains the sentence with:

@ False, then the residual never returns True and that is a
syntactical property of the program.
The source program terminates for any given arguments.
Hence there exist no paths moving the crowd to the right bank.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 40/50

Diagonal Cases

mainInt ([[], ["pppp’, e.pl,[1], e.path)

An equal number of missionaries and cannibals, and it > 3.

If the source program contains the sentence with:

@ False, then the residual never returns True and that is a
syntactical property of the program.
The source program terminates for any given arguments.
Hence there exist no paths moving the crowd to the right bank.

@ Thecall cutFalse ([]), then the residual program is empty: a
trivial program with the empty domain and this property is
syntactical. We might infer the negative answer to the problem
question from the emptiness of the residual program.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 40/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

The Number of Missionaries is Greater Than the
Number of Cannibals

mainInt ([['m’,e.m], [e.p], []], e.path)

In all experiments concerning this case the source programs contain
the sentence with the call CutFalse ([]).

SCP4 produces quite a large residual program:

@ Unfortunately we have to analyze the residual program.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 41/50

Interactive Supercompilation
The Number of Missionaries is Greater Than the
Number of Cannibals

mainInt ([['m’,e.m], [e.p], []], e.path)

In all experiments concerning this case the source programs contain
the sentence with the call CutFalse ([]).

SCP4 produces quite a large residual program:

@ Unfortunately we have to analyze the residual program.

@ The method used in the first example cannot be applied here,
because it is unknown in advance to which pair of the numbers a
given exit from the recursion corresponds, and maybe for a pair
there exist no exits from the recursion at all (i.e. all paths starting
with a given pair lead to an abnormal stop of the program).

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 41/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

The Number of Missionaries is Greater Than the
Number of Cannibals

mainInt ([['m’,e.m], [e.p], []], e.path)

A large residual program may be indirect evidence of the fact that the
set of the successful paths is too large.

Assuming that we may narrow the paths’ set, where we are looking for
the successful path’s witnesses. The idea is to increase stepwise the
number of the people on the right bank and in such a way to approach
a resolution of the task.

The boat crossing the river in the direction to the right bank may have
only three states MM, MC, McC, while it crossing the river in the
opposite direction may have only two states M, C.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 42/50

Interactive Supercompilation
The Number of Missionaries is Greater Than the
Number of Cannibals

mainInt ([['m’,e.m], [e.p], []], e.path)

With such an aim we restrict the boat states. We change the original
function Move with the following:

/* The boat on the left bank. %/
Move (MM, L, e.l, e.r) =

<R, Minus (MM, e.l), Plus (MM, e.r)>;
Move (MC, L, e.l, e.r) =

<R, Minus(MC, e.l), Plus(MC, e.r)>;
Move(CC, L, e.l, e.r) =

<R, Minus(CC, e.l), Plus(CC, e.r)>;

This function filters out the forbidden states of the boat.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 43/50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

The Number of Missionaries is Greater Than the
Number of Cannibals

mainInt ([['m’,e.m], [e.p], []], e.path)

This function filters out the forbidden states of the boat.

/* The boat on the right bank. x/
Move(M, R, e.l, e.r) =
<L, Minus (M, .1), Plus (M, e.r)>;

e
Move(C, R, e.l, e.r) =
<L, Minus(C, e

.1), Plus(C, e.r)>;

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 44 /50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

The Number of Missionaries is Greater Than the
Number of Cannibals

mainInt ([['m"], ['pp’],[]], e.path)

The residual program:

mainInt’ ([MC,M,MM,M, MM, M, MC, e.path])=True: [e.path];
mainInt’ ([MC,M,MM,M,MM,C,CC,e.path])=True: [e.path];
mainInt’ ([MC,M,MM,M,MC,C,MC,e.path])=True: [e.path];
mainInt’ ([MC,C,MC,M,MM,M,MC,e.path])=True: [e.path];
mainInt’ ([MC,C,MC,M,MM,C,CC,e.path])=True: [e.path];
mainInt’ ([MC,C,MC,M,MC,C,MC,e.path])=True: [e.path];
mainInt’ ([CC,C,MM,M,MM, M, MC,e.path])=True: [e.path];
mainInt’ ([CC,C,MM,M,MM,C,CC,e.path])=True: [e.path];
mainInt’ ([CC,C,MM,M,MC,C,MC,e.path])=True: [e.path];

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 45/50

Interactive Supercompilation
The Number of Missionaries is Greater Than the

Number of Cannibals
mainInt ([['m"], ["pp’]l,[]], e.path)

mainInt’ ([MC,C,MC,M,MM,M,MC,e.path])=True: [e.path];
mainInt’ ([MC,C,MC,M,MM,C,CC,e.path])=True: [e.path];
mainInt’ ([MC,C,MC,M,MC,C,MC,e.path])=True: [e.path];

@ If the boat is on the left bank, then the path [Mc, ¢, MC, M] adds a
pair (M-C) on the right bank, provided that on the left bank the
number of the missionaries greater than the number of the
cannibals. Repeated iteration of such a path leads to success.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 46 /50

Interactive Supercompilation
The Number of Missionaries is Greater Than the
Number of Cannibals

mainInt ([['m"], ['pp’],[]], e.path)

mainInt’ ([MC,C,MC,M,MM,M,MC,e.path])=True: [e.path];
mainInt’ ([MC,C,MC,M,MM,C,CC,e.path])=True: [e.path];
mainInt’ ([MC,C,MC,M,MC,C,MC,e.path])=True: [e.path];

@ If the boat is on the left bank, then the path [Mc, ¢, MC, M] adds a
pair (M-C) on the right bank, provided that on the left bank the
number of the missionaries greater than the number of the
cannibals. Repeated iteration of such a path leads to success.

@ The path [MC, ¢, MC] decides the problem with two missionaries
and one cannibal.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 46 /50

The Other Cases

@ the number of the cannibals is greater than the number of the
missionaries;

@ no cannibals;
@ No missionaries.

These cases are trivial.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 47 /50

“Missionaries and Cannibals” Puzzle Interactive Supercompilation

Summary
M. 0 1 2 3 4 5 6 7
C.
0 True | True | True | True | True | True | True | True
1 True | True | True | True | True | True | True | True
2 True True | True | True | True | True | True
3 True True | True | True | True | True
4 True True | True | True
5 True True | True
6 True True
7 True
A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014

48 /50

Conclusion

@ We explored syntactical properties of the residual programs.
@ SCP4 was exploited as a kind of a “PROLOG interpreter”.

@ Unlike PROLOG, when the substitution set cannot be described
as a finite union of parameterized lists, SCP4 produces a finite
residual program describing the substitution set more
transparently as compared with the source program.

@ The dynamics system “missionaries-cannibals” may be
considered as a nondeterministic protocol.

@ Actually all our experiments were done in a strict functional
programming language REFAL.

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization VPT 2014 49/50

Thank You

A. P. Lisitsa, A. P. Nemytykh () A Note on Program Specialization

	Introduction
	Non-traditional Uses of Program Specialization

	Our Contribution
	A Step Further: Solution of Combinatorial Problems
	Basic Ideas

	The Presentation Language
	Pseudocode for Functional Programs

	Word Equations
	Definition
	Examples
	A Classical Problem
	Encoding
	Specialization
	Resume

	Puzzles as Non-deterministic Parameterized Protocols
	A Case Study
	``Missionaries and Cannibals''

	``Missionaries and Cannibals'' Puzzle
	Encoding
	Interactive Supercompilation

