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Outline

– Introduction to Supercompilation ↓

– Prorgam Transformation for Program Verification (Related Works) ↓

– The SCP4’s Tracer ↓

– Implementation Principles of the Graphical Tracer ↓

– An Example ↓

– Demonstration ↓
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Introduction to Supercompilation

– Supervised Compilation.

– Semantic based program transformation technique (V.Turchin,

1960-70s).

– Can be used for optimization and specialization of (functional)

programs.

– Much of the development has been done in the context of the

Refal functional programming language.

– SCP4 is the most advanced implementation of supercompilation

for Refal (A.Nemytykh, V.Turchin).
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Supercompilation is a Method for Program Specialization

Given a program p and its functions (subprograms) f(x,y) и g(x).

– f(x0,y)

– f(g(x),y)

Given a partially defined entry point Main, a supercompiler unfolds a

potentially infinite tree T of all possible computations of p, starting at

Main, optimizes T and folds it into a finite directed graph representing

the result of supercompilation.
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The problem is to generate an optimal residual program q

(run-time optimization).
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Supercompiler

– observes the behaviour of a functional program 𝑃 running on

partially defined input;

– unfolds a potentially infinite tree of all possible computations of 𝑃 ;

– reduces redundancy, e.g. by pruning unreachable fragments of

code;

– folds the tree into a finite graph of parameterised configurations

of 𝑃 and transitions between them;

– basing on a graph of configurations constructs a new program,

which is (almost) equivalent to the input program.

Resulting program defines a function which is an extention of the

input function.
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The initial specialization task Z, as well as intermediate tasks, can

be automatically decomposed into a number of subtasks.

The supercompiler analyses a complicated structure – a forest of

directed trees labeled with information on parameterized states at the

trees’ nodes and with conditions choosing the branches in a concrete

computation of the program being supercompiled.

The supercompiler’s task is to efficiently fold the forest into a finite

directed graph.
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The quality of the residual programs produced by

supercompilation depends crucially on strategies chosen

for the supercompilation process.

The most strong strategies may lead to:

– a long supercompile-time for some source programs;

– or endless of the process.
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These data makes difficult understanding the linear tracing texts

encoding the graphs and such an understanding frequently takes a

long time and amounts to manual drawing the graphs.

We have developed and implemented a start version of a tool

supporting graphical representation of SCP4’s traces. The tool uses:

– free Graph Visualization Software (AT&T Research), which takes

care of placement of output subgraphs in a way that is convenient

for visual observation (a uniform subgraph density over the screen);

– a graph visualizer ZGRViewer (open software) allows users to

navigate through such graphs and to scale them in various ways.
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Implementation Principles of the Graphical Tracer

– The graphical SCP4’s tracer is based on a concept of a graphical

step:

– corresponds to a logical step changing the directed graph being

analyzed and transformed;

– such graphical steps are not uniform in the logical aspects, they

correspond to the logically closed steps of different mechanisms

of the supercompiler.
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The Graphical Step

– At the end of each such a step the tracer generates a graphical

description of the SCP4 current state in a graph specification

language Dot (AT&T). Dot is an abstract specification language

not depending on any specific graphical format.

– A translator of the SCP4’s states into Dot was implemented

in REFAL-5 language. The same language is both the input and

implementation language of SCP4.
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Drawing and Navigation

– Given a Dot-description of a graph, the system Graphviz draws the

graph on a computer screen. It supports all widely used graphical

formats and is supported under many modern operating systems.

The Graphviz interpreter is directly launched from

the supercompiler.

– The system ZGRViewer allows users to navigate through such

graphs and to scale them in various ways.
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States of the current and previous tracer steps are displayed on the

computer screen by means of a browser.

A console is used to control the tracer and allows to get additional

text information not displayed on the graphical windows.
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A Dot specification of the SCP4 state at the beginning of the current

tracer step is generated on the base of such a Dot specification at

the beginning of the previous step.

Regeneration of the whole Dot specification is not made.
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Example: a Result of the Driving Algorithm

As a rule, any interpreter Int of a given language 𝐿 has the following

structure:

Int(p,d) {

initialization;

while (computations do not finished)

{ STEP; }

return (resulting state);

}

The driving is a meta-extension of the 𝐿-machine step. Given a

parameterized function stack, the driving produces the tree of all

possible computation of this input stack.
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A screenshot of a first call result of the driving algorithm.
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The results of the first and second steps of the tracer.

The red references given in the left upper angles of the windows

provide possibility to enlarge the represented graph.
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The result of the first driving call given in a large-scale representation.
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The specialization task

<Fab #e.x>

The program

Fab {

’a’ e.S = ’b’ <Fab e.S>;

s.1 e.S = s.1 <Fab e.S>;

= ;

}

tracing
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Verification of the MESI cache coherence protocol

<Mesi (#e.actions) (Invalid I #e.i) (Modified ) (Shared ) (Exclusive )>

The program

The MESI cache coherence protocol program model.

tracing

⇑
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Thank you!
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