
0

Graphical Tracing of Supercompilation:

An Intermediate Report

Andrei P. Nemytykh

Program Systems Institute of Russian Academy of Sciences

VPT’13, 14 July 2013, Saint Petersburg, Russia



Graphical Tracing of Supercompilation Outline 1

Outline

– Introduction to Supercompilation ↓

– Prorgam Transformation for Program Verification (Related Works) ↓

– The SCP4’s Tracer ↓

– Implementation Principles of the Graphical Tracer ↓

– An Example ↓

– Demonstration ↓

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Supercompilation 2

Introduction to Supercompilation

– Supervised Compilation.

– Semantic based program transformation technique (V.Turchin,

1960-70s).

– Can be used for optimization and specialization of (functional)

programs.

– Much of the development has been done in the context of the

Refal functional programming language.

– SCP4 is the most advanced implementation of supercompilation

for Refal (A.Nemytykh, V.Turchin).

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Supercompilation 3

Supercompilation is a Method for Program Specialization

Given a program p and its functions (subprograms) f(x,y) и g(x).

– f(x0,y)

– f(g(x),y)

Given a partially defined entry point Main, a supercompiler unfolds a

potentially infinite tree T of all possible computations of p, starting at

Main, optimizes T and folds it into a finite directed graph representing

the result of supercompilation.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Supercompilation 4

The problem is to generate an optimal residual program q

(run-time optimization).

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Supercompilation 5

Supercompiler

– observes the behaviour of a functional program 𝑃 running on

partially defined input;

– unfolds a potentially infinite tree of all possible computations of 𝑃 ;

– reduces redundancy, e.g. by pruning unreachable fragments of

code;

– folds the tree into a finite graph of parameterised configurations

of 𝑃 and transitions between them;

– basing on a graph of configurations constructs a new program,

which is (almost) equivalent to the input program.

Resulting program defines a function which is an extention of the

input function.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Supercompilation 6

The initial specialization task Z, as well as intermediate tasks, can

be automatically decomposed into a number of subtasks.

The supercompiler analyses a complicated structure – a forest of

directed trees labeled with information on parameterized states at the

trees’ nodes and with conditions choosing the branches in a concrete

computation of the program being supercompiled.

The supercompiler’s task is to efficiently fold the forest into a finite

directed graph.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Supercompilation 7

The quality of the residual programs produced by

supercompilation depends crucially on strategies chosen

for the supercompilation process.

The most strong strategies may lead to:

– a long supercompile-time for some source programs;

– or endless of the process.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation The SCP4’s Tracer 8

These data makes difficult understanding the linear tracing texts

encoding the graphs and such an understanding frequently takes a

long time and amounts to manual drawing the graphs.

We have developed and implemented a start version of a tool

supporting graphical representation of SCP4’s traces. The tool uses:

– free Graph Visualization Software (AT&T Research), which takes

care of placement of output subgraphs in a way that is convenient

for visual observation (a uniform subgraph density over the screen);

– a graph visualizer ZGRViewer (open software) allows users to

navigate through such graphs and to scale them in various ways.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Implementation Principles 9

Implementation Principles of the Graphical Tracer

– The graphical SCP4’s tracer is based on a concept of a graphical

step:

– corresponds to a logical step changing the directed graph being

analyzed and transformed;

– such graphical steps are not uniform in the logical aspects, they

correspond to the logically closed steps of different mechanisms

of the supercompiler.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Implementation Principles 10

The Graphical Step

– At the end of each such a step the tracer generates a graphical

description of the SCP4 current state in a graph specification

language Dot (AT&T). Dot is an abstract specification language

not depending on any specific graphical format.

– A translator of the SCP4’s states into Dot was implemented

in REFAL-5 language. The same language is both the input and

implementation language of SCP4.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Implementation Principles 11

Drawing and Navigation

– Given a Dot-description of a graph, the system Graphviz draws the

graph on a computer screen. It supports all widely used graphical

formats and is supported under many modern operating systems.

The Graphviz interpreter is directly launched from

the supercompiler.

– The system ZGRViewer allows users to navigate through such

graphs and to scale them in various ways.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Implementation Principles 12

States of the current and previous tracer steps are displayed on the

computer screen by means of a browser.

A console is used to control the tracer and allows to get additional

text information not displayed on the graphical windows.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Implementation Principles 13

A Dot specification of the SCP4 state at the beginning of the current

tracer step is generated on the base of such a Dot specification at

the beginning of the previous step.

Regeneration of the whole Dot specification is not made.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Driving 14

Example: a Result of the Driving Algorithm

As a rule, any interpreter Int of a given language 𝐿 has the following

structure:

Int(p,d) {

initialization;

while (computations do not finished)

{ STEP; }

return (resulting state);

}

The driving is a meta-extension of the 𝐿-machine step. Given a

parameterized function stack, the driving produces the tree of all

possible computation of this input stack.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Driving 15

A screenshot of a first call result of the driving algorithm.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Driving 16

The results of the first and second steps of the tracer.

The red references given in the left upper angles of the windows

provide possibility to enlarge the represented graph.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Driving 17

The result of the first driving call given in a large-scale representation.

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Demonstration: fab.ref 18

The specialization task

<Fab #e.x>

The program

Fab {

’a’ e.S = ’b’ <Fab e.S>;

s.1 e.S = s.1 <Fab e.S>;

= ;

}

tracing

VPT’13: Andrei P. Nemytykh



Graphical Tracing of Supercompilation Demonstration: mesi.ref 19

Verification of the MESI cache coherence protocol

<Mesi (#e.actions) (Invalid I #e.i) (Modified ) (Shared ) (Exclusive )>

The program

The MESI cache coherence protocol program model.

tracing

⇑

VPT’13: Andrei P. Nemytykh



20

Thank you!

VPT’13: Andrei P. Nemytykh


