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Topics

I Combining the efforts of program refinement as supported by
Event B and program verification as supported by the Spec#
programming system.

I Proposing an architecture Integrated Development Framework,
which induces a methodology and which improves the usability of
formal verification tools for the specification, the construction and
the verification of correct sequential algorithms.

I In this paper : we focus on the transformation of the final concrete
specification into an executable algorithm :

1. transforming an Event B specification into a recursive algorithm
2. transforming from that recursive program to an iterative version of

the same program.
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LORIA Université de Lorraine NUI Maynooth 4 / 37



Topics

I Combining the efforts of program refinement as supported by
Event B and program verification as supported by the Spec#
programming system.

I Proposing an architecture Integrated Development Framework,
which induces a methodology and which improves the usability of
formal verification tools for the specification, the construction and
the verification of correct sequential algorithms.

I In this paper : we focus on the transformation of the final concrete
specification into an executable algorithm :

1. transforming an Event B specification into a recursive algorithm
2. transforming from that recursive program to an iterative version of

the same program.
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Event B Modelling

any t where G (t, x) then x : |(R(x , x ′, t)) end

(t is a local parameter and the event actions establish x : |(R(x , x ′, t)))
(∃ t · (G (t, x) ∧ R(x , x ′, t)))

MACHINE specquare
SEES square0
VARIABLES

r
INVARIANTS

inv1 : r ∈ N
EVENTS
EVENT INITIALISATION

begin
act1 : r := 0

end
EVENT square computing

begin
act1 : r := n ∗ n

end
END

CONTEXT square0
CONSTANTS

n
AXIOMS

axm1 : n ∈ N
END

I square0 is a context defining properties of a
natural number n

I specsquare is a machine with an event
square computing computing the square
function for n and assigning the value to r .

I The SEES clause related the context and the
machine.
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LORIA Université de Lorraine NUI Maynooth 13 / 37



Event B Modelling

any t where G (t, x) then x : |(R(x , x ′, t)) end

(t is a local parameter and the event actions establish x : |(R(x , x ′, t)))
(∃ t · (G (t, x) ∧ R(x , x ′, t)))

MACHINE specquare
SEES square0
VARIABLES

r
INVARIANTS

inv1 : r ∈ N
EVENTS
EVENT INITIALISATION

begin
act1 : r := 0

end
EVENT square computing

begin
act1 : r := n ∗ n

end
END

CONTEXT square0
CONSTANTS

n
AXIOMS

axm1 : n ∈ N
END

I square0 is a context defining properties of a
natural number n

I specsquare is a machine with an event
square computing computing the square
function for n and assigning the value to r .

I The SEES clause related the context and the
machine.
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Spec#

I The Spec# programming language extends C# 2.0 through a rich
assertion language that allows the specification of objects through
class invariants, field annotations, and method specifications.

I The Spec# compiler statically enforces non-null types, emits
run-time checks for method contracts and invariants and records the
contracts as metadata for consumption by downstream tools.

I The Spec# static program verifier (SscBoogie) : generates logical
verification conditions from a Spec# program uses an automatic
reasoning engine (Z3) to analyse the verification conditions proving
the correctness of the program or finding errors.
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Spec# Specification : Sorting an Array

public static void sortArray(int[] !st, int[] !pi)

requires st != pi && st.Length == pi.Length;

requires forall{int i in (0:st.Length); st[i] == pi[i]};

modifies st[*];

ensures forall{int j in (1:st.Length);(st[j-1] <= st[j])};

ensures forall{int w in (0:st.Length);

(count{int v in (0:st.Length);st[v] == pi[w]}

== count{int u in (0:st.Length); pi[u] == pi[w]})};
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Integrated Development Framework

pre/post

(Spec# contract)
PREPOST
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CONTEXT

(Event B context)
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Integrated Development Framework

I The Event B machine PREPOST contains events, which have
the same contract as that expressed in the original pre/post
contract. This machine SEES the Event B CONTEXT, which
expresses static information about the machine.

I The Event B machine PROCESS refines PREPOST generating
a concrete specification that satisfies the contract. This machine
SEES the Event B context CONTROL, which adds control
information for the new machine.

I The labelled actions REFINES, SEES and EXTENDS, are
supported by the RODIN platform and are checked completely
using the proof assistant provided by RODIN.

I Transformation of an Event B machine into a concrete recursive
algorithm (represented by the arrow labelled generating-algorithm).

I Transformation of this recursive algorithm into its equivalent
partially annotated and iterative algorithm (represented by the arrow
labelled removing recursion).
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Implementing Event B models

Our integrated development framework for implementing abstract
Event B models brings together the strengths of the refinement based
approaches and verification based approaches to software development :

1. Splitting the abstract specification to be solved into its component
specifications.

2. Refining these specifications into a concrete model using Event B
and the RODIN platform.

3. Transforming the concrete model into recursive and iterative
algorithms that can be directly implemented as real source code.

4. Verifying the iterative algorithm in the automatic program
verification environment of Spec#.
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Specifying the binary search problem

PROCEDURE binsearch(t, val, lo, hi, ok, result)

PRE


t ∈ 0..t.Length −→ N
∀k.k ∈ lo..hi − 1⇒ t(k) ≤ t(k + 1)
val ∈ N
l, h ∈ 0..t.Length
lo ≤ hi


POST

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi ⇒ t(i) 6= val

)
The two possible resulting calls to the procedure
binsearch(t, val , lo, hi ; ok, result) :

I EVENT find is binsearch(t, val , lo, hi ; ok, result) with ok = TRUE

I EVENT fail is binsearch(t, val , lo, hi ; ok, result) : with ok = FALSE
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Events find and fail

EVENT find
any j
where

grd1 : j ∈ lo .. hi
grd2 : t(j) = val

then
act1 : ok := TRUE
act2 : i := j

end

EVENT fail
when

grd1 : ∀k ·k ∈ lo .. hi ⇒ t(k) 6= val
then

act1 : ok := FALSE
END

I The two events form the machine called binsearch1 (which
corresponds to the PREPOST machine).

I The machine is refined to obtain binsearch2 (which corresponds to
PROCESS).

I This refined machine contains a new control variable, l , which
simulates how the binary search is achieved.
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Refinement for Computation

1.

 l = start
lo = hi

t(lo) = val

 m1−→

 l = end
lo = hi

ok = TRUE ∧ result = lo


2.

 l = start
lo = hi

t(lo) 6= val

 m2−→

 l = end
lo = hi

ok = FALSE


3.

(
l = start
lo < hi

)
split−→

 l = middle
lo < hi

mi = (lo + hi)/2



4.


l = middle
lo < hi

mi = (lo + hi)/2
val < t(mi)

 rec(lo,mi−1,val,ok,result)−→

(
l = end

ok = TRUE ∧ t(result) = val

)
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Case 1 :Basic Events

EVENT e
when

` = `1

g`1,`2
(x)

then
` := `2

x := f`1,`2
(x)

end1

I If the event e is a basic event controlling the
state of the variable x , guarded by g`1,`2 (x)
and modified by the assignment x := f`1,`2

where f is a function, the event e takes the
form below.

I the function f`1,`2 is implementable.

I If the event e labels the link `1
e−→ `2 then

the statement act`2 is defined as
when g`1,`2 (x) then x := f`1,`2 (x).
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Case 2 : Recursive Call of the Procedure

EVENT rec%PROC(h(x),y)%P(y)
any y
when

` = `1

g`1,`2
(x, y)

then
` := `2

x := f`1,`2
(x, y)

end1

I The definition of the event e is not
executable and the translation is driven
by instances of the control variable ` in
the guard (as ` = `1) and in the
assignment (` := `2).

I The statement act`2 is therefore
defined as : PROC(h(x), y).

I The choice of the event name is the
responsibility of the writer of the
Event B models, who must identify
the case corresponding to a recursive
call.
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Case 3 : Non Recursive Call

EVENT call%APROC(h(x),y)%P(y)
any y
when

` = `1

g`1,`2
(x, y)

then
` := `2

x := f`1,`2
(x, y)

end1

I the event e can be transformed into a
call of another procedure.

I The call is expressed by an event e,
which we name
call%APROC(h(x), y)%P(y) and the
statement act`2 is defined as
APROC(h(x), y).

I APROC is defined or to be defined in
another framework.
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Problems with the recursive algorithm

I Correct by construction according to the Event B side

I Limits of the Spec# tools with verifying recursive program

I Transforming recursive algorithms into iterative algorithm

I Applying the Spec# tools
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Transforming the recursive algorithm into an iterative one

Theorem
The transformation is sound with respect to the pre and post
specification.

procedure APROC(x ; var y)
precondition P(x)
postcondition Q(x, y)
begin
local variables z
if C(x) then

y := g(x);
else

z := h(x, z);
if D(x, z) then

y := f (x, z)
elseif E(x, z) then

APROC(f1(x), y)
else

APROC(f2(x), y)
endif

end

procedure BPROC(x ; var y)
precondition P(x)
postcondition Q(x, y)
begin
local variables z
while not C(x) ∧ not D(x, z) do

z := h(x, z);
if E(x, z) then

x := f1(x);
else

x := f2(x);
endif

enddo
if C(x) then

y := g(x);
elseif D(x, z) then

y := f (x, z);
elseif E(x, z) then

y := f1(x);
else

y := f2(x);
endif

end
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PROCEDURE binsearch(t,val,lo,hi,ok,result)
procedure binsearch(t, val, lo, hi, ok, result)

precondition

 t ∈ 0..t.Length −→ N
∀k.k ∈ lo..hi − 1⇒ t(k) ≤ t(k + 1)
val ∈ N ∧ lo, hi ∈ 0..t.Length ∧ lo ≤ hi


postcondition

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi ⇒ t(i) 6= val

)
begin

while not

 lo = hi ∧ t(lo) = val
∨ lo = hi ∧ t(lo) 6= val
∨ lo < hi ∧ mi = (lo + hi)/2 ∧ t(mi) = val

 do

mi := (lo + hi)/2;

middle :


 mi = (lo + hi)/2

val < t(mi)⇒ ∀k.k ∈ mi..hi ⇒ t(k) 6= val
val > t(mi)⇒ ∀k.k ∈ lo..mi ⇒ t(k) 6= val


if mi + 1 ≤ hi ∧ val > t(mi) then

lo := mi + 1
elseif lo ≤ mi − 1 ∧ val < t(mi) then

hi := mi − 1
enddo

if lo = hi ∧ t(lo) = val then
result := lo; ok := true

elseif lo = hi ∧ t(lo) 6= val then
ok := false

elseif lo < hi ∧ t(mi) = val then
result := mi ; ok := true

else ok := false
endif
end
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Interpreting the algorithms within Spec#
I This is almost a one-to-one mapping : returning a value of −1 when

our iterative algorithm sets OK to false and returning the index
where the value is found when our iterative algorithm sets OK to
true.

I The algorithm verified as correct, in less than 2 seconds using the
Spec# programming system (version 2011-10-03).

I No user interaction is required in the verification as all assertions
required (preconditions, postconditions and loop invariants) have
been generated as part of the refinement and transformation of the
initial abstract specification into the final iterative algorithm.

I Prior to formalising our transformation rules, our initial attempt at
writing this iterative C# program contained an error.

I This error in the loop body, was due to our omission to check that
the values of mi + 1 and mi − 1 were within the array bounds before
narrowing the search space.

I This error was immediately detected by the Spec# programming
system. The automatic verification of the final program is available
online at http://www.rise4fun.com/SpecSharp/psP4.

LORIA Université de Lorraine NUI Maynooth 37 / 37

http://www.rise4fun.com/SpecSharp/psP4


Conclusion

I Our integrated development framework indicates where our
transformations are used for producing a program that is
correct-by-construction.

I The translation of the PROCESS machine into a recursive algorithm
is straightforward and removes the control variable used to relate
events when generating the code.

I Our experience shows that our approach assists students in
developing and understanding the tasks of software specification and
verification.

I It also makes different forms of formal software development more
accessible to the Software Engineers, helping them to build correct
and reliable software systems.

I Future work will include the development of adequate plugins, which
will integrate and facilitate the co-operation between Spec# tools
and Rodin tools.
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