
On Some Refinement of Higman Embedding in
Regular Approximations of Loops

Antonina Nepeivoda

Program System Institute of RAS
Pereslavl–Zalessky

Abstract. The paper studies an intransitive binary relation R given on
words in traces generated by prefix-rewriting systems. R was introduced
in 1988 by V.F. Turchin for regular approximation of semantics trees of
programs. The relation satisfies the main property of quasi-orders: any
infinite trace Φ1, Φ2, . . . contains two words Φi, Φj s.t. (Φi, Φj) ∈ R and
i < j. We give a new simple constructive proof of the main property and
estimate maximal length of a track with no pairs satisfying the relation. It
is shown that on tracks generated by prefix-rewriting systems Higman’s
embedding can be expressed and studied through Turchin’s embedding.

Keywords: Higman’s lemma, prefix rewriting, almost well relation, com-
putational complexity, termination, supercompilation

1 Introduction

Definition 1 A transitive and reflexive relation R ⊂ Υ ×Υ is a well quasi-order
(wqo) iff every sequence {An}, ∀n(An ∈ Υ), s.t. ∀i, j(i < j ⇒ (Ai, Aj) /∈ R) is
finite. The sequence {An} that posesses the property ∀i, j(i < j ⇒ (Ai, Aj) /∈ R)
is called a bad sequence.

One of the most well-studied wqos is Higman–Kruskal embedding on terms.
Now we only define the Higman relation; Kruskal relation generalizes the Higman
embedding to trees instead of sequences.

Definition 2 Given two words in an alphabet Υ , A = a1a2 . . . am, B = b1b2 . . . bn,
A is embedded in B in the sense of Higman relation (A E B) iff A is a subse-
quence of B. This relation is also called a scattered subword relation.

The Higman–Kruskal relation is a well quasi-order. This was established by
Higman [4] (for sequences) and Kruskal [6] (for trees). This embedding is popular
in program transformations for finding loop approximations in computations
[9], [3]; it is combined with either additional annotations (e.g. in [5]) or other
wqos (e.g. in [1]) to construct more precise approximation techniques. But since
unexistence of infinite bad sequences is only essential for these needs, transitivity
can be omitted (as in Turchin’s relation which is used in [8]).

2 A Refinement of Higman Embedding in Loop Approximation

Definition 3 A reflexive relation R ⊂ Υ × Υ is an almost well relation iff for
any {An}, ∀n(An ∈ Υ), s.t. ∀i, j(i < j ⇒ (Ai, Aj) /∈ R) is finite. We also call
the sequence {An} with the property ∀i, j(i < j ⇒ (Ai, Aj) /∈ R) a bad sequence.

This wqo property is independent of the sequence {An}: it may have an
arbitrary nature. However, program transformations always operate with terms
having some structure restrictions. We consider a special class of the sequences
— sequences generated by a prefix rewriting system.

Definition 4 Consider a tuple 〈Υ,R, Γ0〉, where Υ is an alphabet, Γ0 ∈ Υ+ is an
initial word and R ⊂ Υ+ → Υ ∗ is a set of rewrite rules. If the rules R : Rl → Rr

can be only applied to words of the form RlΦ (which begin with the prefix Rl) and
generate the word RrΦ then the tuple 〈Υ,R, Γ0〉 is a prefix rewriting grammar.

If length of left-hand side Rl of every rule R : Rl → Rr is 1 (only the first
letter of a word can be rewritten by the rule) then the prefix-rewriting grammar
is called an alphabetic prefix rewriting grammar.

We call a track of a prefix rewriting grammar G = 〈Υ,R, Γ0〉 a sequence
{Φi}n

i=1, s.t. Φ1 = Γ0 and ∀i(i < n ⇒ ∃R(R : Rl → Rr & R ∈ R & Φi = RlΘ &
Φi+1 = RrΘ).

Example 1 Consider the following prefix rewriting grammar G = 〈{a, b}, {R1 :
a → bb,R2 : aa → b,R3 : b → aa}, aabab〉. Then the rule R3 cannot be applied
to aabaab, for it does not begin by b; either R1 or R2 can be applied — the only
correct results of the applications are bbbaab and bbaab respectively.

The prefix rewriting grammars are convenient to express stack operations
and can be represented as stack automata [2]. V. F. Turchin used the similar
notion of function stack transformations and introduced his relation for building
a regular approximation of semantics trees of programs in the terms of changes
in computational tracks [11]. To formalize these notions we use an approach
presented in [8].

Definition 5 Consider a track {Φi}n
i=1 of a prefix rewriting grammar G =

〈Υ,R, Γ0〉. Let us mark all the letters of the words Φi in subsripts by time indexes
(natural numbers enclosed in brackets) as follows. The i-th letter of Φ1 is marked
by |Γ0| − i, where |Γ0| is the length of Γ0; if the largest number that is used as
a time index in the track segment {Φi}k

i=1 (k < n) is M and Φk+1 is generated
from Φk by the rule R : Rl → Rr then the i-th letter of Φk+1 (i ≤ |Rr| where
|Rr| is the length of Rr) is marked by the time index M + |Rr| − i + 1. Time
indexes of all other letters in Φk+1 remain the same as in Φk, since these letters
are unchanged by R.

We call this notation time-indexing and a track generated by G with the
time-indexing notation is called a computation.

Example 2 Consider the following prefix rewriting grammar GF (Λ is the empty
word).

A Refinement of Higman Embedding in Loop Approximation 3

R1 : f → Λ R3 : m → Λ R5 : a → Λ
R2 : f → fm R4 : m → ma R6 : a → a

Let the initial word Γ0 be fa. The first segment of a computation can look as
follows.

Γ0 : f(1)a(0)

R2 ��

Γ2 : f(5)m(4)m(2)a(0)

R1 ��

Γ4 : m(7)a(6)m(2)a(0)

Γ1 : f(3)m(2)a(0)

R2
33ggggggggggggg

Γ3 : m(4)m(2)a(0)

R4
33gggggggggggggg

We use Greek capitals (Γ , Δ, Θ, Ψ , Φ) to denote words with time indexes (in
this paper such words are also called moments). Additionally we assume that a
word that is denoted by a greater index appears in a track after a word denoted
with a lesser one. E.g. the moment Ψ1 precedes (not necessarily immediately)
Ψ2.

The length of Δ is denoted as |Δ|. Δ[k] denotes the k-th letter of Δ; Φ ≈
Ψ ⇔ |Φ| = |Ψ | & ∀i(i ≥ 1 & i ≤ |Φ| ⇒ (Φ[i] = a(n) & Ψ [i] = b(m) ⇒ a = b)).

Now we are ready to define the Turchin relation Γ � Δ.

Definition 6 Γ � Δ ⇔ Γ = ΦΘ0 & Δ = Φ′ΨΘ0 & Φ′ ≈ Φ.

In Example 2 there are four Turchin pairs: Γ0 � Γ1, Γ0 � Γ2, Γ1 � Γ2, and
at last Γ3 � Γ4.

Our contributions are the following:

1. We show almost-wellness of the Turchin relation on time-indexed tracks of
alphabetic prefix rewriting grammars in a finite alphabet. Thus we prove
Turchin’s theorem [11] in abstract terms 1. From this proof we extract an
upper bound of a bad sequence length for a grammar.

2. We prove that the bound of a bad sequence length is exact and construct a
class of grammars in which this upper bound is achieved.

3. We construct a well-quasiorder that is a subset of Turchin’s relation and
generalize Turchin’s theorem for a wider class of prefix rewriting systems.

4. From the upper bound for Turchin’s embedding we construct this bound for
Higman’s embedding on prefix-rewriting grammar generated word sequences.

2 Turchin’s Theorem

Let Υ be a finite alphabet and G = 〈Υ,R, Γ0〉, R ⊂ Υ → Υ ∗ an alphabetic prefix
rewriting grammar. Δ[|Δ|] — denoted as Δ[last] for better readability — is the
last letter of Δ; Δ− — Δ without the first letter.

Note that the grammar structure guarantees that if Φ precedes Ψ in a com-
putation and ∀j(Φ[i] 6= Ψ [j]) then a word of length no more than |Φ| − i + 1

1 The proof is independent from programming language features and order of compu-
tations.

4 A Refinement of Higman Embedding in Loop Approximation

appears somewhere between Φ and Ψ . Indeed, to get rid of Φ[i] it is necessary to
get the word Φ[i]Φ[i + 1] . . . Φ[last].

A rule R : a → Rr with the non-empty right-hand side is called non-erasing
(NE-rule); the length of the right-hand side is called the length of the rule and
is denoted |R|. The result of application of R to Δ is written as R(Δ[1])Δ−.

Proposition 1 If R is an NE-rule, R(Θ0[1])Θ−
0 precedes R(Θ1[1])Θ−

1 and ∃i(Θ−
1 [i] =

Θ−
0 [1]), then R(Θ0[1])Θ−

0 � R(Θ1[1])Θ−
1 .

Proof. After applying R to Θ0, all of the successor words have the form Ψ [1]Ψ−Θ−
0

(because Θ−
0 [1] is preserved). Application of R to any of these words generates

R(Ψ [1])Ψ−Θ−
0 , and R(Θ0[1])Θ−

0 � R(Ψ [1])Ψ−Θ−
0 .

Lemma 1 The maximum length of a word in a bad sequence is no more than

|Γ0| +
∑

(|Ri| − 1)

where Γ0 is the initial word, and
∑

(|Ri| − 1) runs through all NE-rules Ri.

Proof. To reuse (without quitting a bad sequence) any NE-rule R after its ap-
plication to Θ0 it is necessary to shorten a word down to the length |Θ0| − 1 or
less. So the word total length decreases at least by 1, and its maximum cannot
exceed the length of a word that is generated by applying all NE-rules exactly
once (with no shortenings).

So Turchin’s theorem becomes proven in a very simple way.

Proposition 2 (Turchin’s theorem) For every alphabetic prefix rewriting gram-
mar G in a finite alphabet, computation generated by it does not contain infinite
bad sequences (with respect to �).

Proof. Due to finiteness of Υ and existence of the upper bound of a word length
in an bad sequence, there exist only a finite number of equivalence classes (with
respect to ≈) of words that can appear in a bad sequence. When the length of a
bad sequence exceeds the number of these classes, some two words in it fall into
one class (and form a Turchin pair).

This proof is not only very simple but also is helpful in getting a first very
rough upper bound for the maximum length of an bad sequence. It does not
exceed the quantity of different words in Υ with the length bounded by |Γ0| +∑

(|Ri|−1). Let us denote the number of letters in Υ as card(Υ). If card(Υ) > 1
then the upper bound is

CMax = card(Υ)|Γ0|+
∑

(|Ri|−1)

This upper bound is sure rough, and, what is more, says nothing about
when long bad sequences can appear and how to generalize the result in terms
of arbitrary (i.e. not only alphabetic) prefix rewriting grammars. Little efforts
allow to come closer to answers on these questions. And first of all, we must get
rid of grammars’ occasional features that can imply an unwanted bad sequence
termination.

A Refinement of Higman Embedding in Loop Approximation 5

3 Annotated Prefix Rewriting Grammars

In this section we consider only grammars from a class G that has two properties.
First, if two right-hand sides of rules contain the same letter, then they coincide
(∃i, j(Rr[i] ≈ R′

r[j]) ⇒ i = j & |R| = |R′| & ∀i(i < |R| ⇒ Rr[i] ≈ R′
r[i])).

Second, every letter from a left-hand side can be rewritten into any of right-
hand sides.

The class G is a class of grammars that have ability to generate the longest
bad sequences. Absence of coincidences in the different right-hand sides of rules
forbids occasional terminations of bad sequences; extension by new rules allows
to choose the least-terminating rule.

Definition 7 A prefix rewriting grammar G, s.t. RG : Υ → Υ ∗ is annotated or
G-grammar iff

1. every two rules either have the same right-hand side or have no common
letters in the right-hand sides;

2. for every rule Ra : a → Rr and b ∈ Υ the rule Rb : b → Rr is in RG.

Lemma 2 Every alphabetic prefix rewriting grammar G can be converted to a
G-grammar G′ so that every bad sequence generated by G after the conversion
is also a bad sequence generated by G′.

Proof. Let us perform these two steps of transformation.

1. Replace every Rr[i] in every right-hand side Rr by the pair (a, 2r ∗ 3i−1),
where r is the number of the rule in RG. All the letters in the initial word
should be marked with r = 0.

2. Combine all the transformed right-hand sides with all left-hand sides of the
form (a, 2x ∗3y), where x is not greater than the number of rules in RG, y is
not greater than the length of the longest right-hand side. To do this step,
add to every pair a1 → Φ and a2 → Ψ the pair a1 → Ψ and a2 → Φ while
this action results with new rules.

Let the initial grammar G generate a bad sequence by means of a sequence
of rules {Ri}n

i=1. Let transform every Ri into the set {R′
i,j} and Γ0 to Γ ′

0 using
the algorithm above and then apply the sequence {R′

i,j} to Γ ′
0. Every two words

in the generated track are incomparable because their projections on the first
elements of the pairs (a, 2r ∗ 3i−1) are incomparable.

Example 3 Let us convert the grammar GF into a G-grammar.

G′
F:

R0 : x → f1a3 R2 : x → m4a12 R4 : x → Λ
R1 : x → f2m6 R3 : x → a8

x denotes an arbitrary letter from Υ .
The first segment of the computation done in Example 2 after the conversion

looks like

6 A Refinement of Higman Embedding in Loop Approximation

Γ0 : f1
(1)a

3
(0)

R1 ��

Γ2 : f2
(5)m

6
(4)m

6
(2)a

3
(0)

R4 ��

Γ4 : m4
(7)a

12
(6)m

6
(2)a

3
(0)

Γ1 : f2
(3)m

6
(2)a

3
(0)

R1
44hhhhhhhhhhhh

Γ3 : m6
(4)m

6
(2)a

3
(0)

R2
33ggggggggggggg

The length of the bad sequence beginning from Γ0 now is 2, because the initial
f2 now differs from the f1 generated by R1 (so Γ0 6� Γ1).

The described operation of transforming a grammar into the G-type is idem-
potent: implemented repeatedly, it results with a G-grammar that is equivalent
up to renaming with the first generated G-grammar. The number of the rules
in the annotated grammar G′ is greater than the number of the rules in G at
most by

∑
|Ri| times.

In respect to G-grammars’ properties, expressions denoting rules (R, R′ etc.)
are also used in these grammars to denote only the right-hand parts of rules (or
equivalence classes of rules up to the left-hand sides).

4 Estimating the Maximal Length of an bad sequence

Now we formulate the main theorem of the paper.

Theorem 1 If the length of the right-hand side of every G-grammar rule is no
more than k (k > 1), and there are N rules in the grammar, and the initial word
is Γ0, then the maximal length of a bad sequence is

C ′
Max = |Γ0| ∗

kN − 1
k − 1

.

The remainder of this section is a proof of the Theorem 1. To do this, we
describe features of Turchin pairs in G-grammar generated computations. For
the sake of this description we introduce an auxiliary notion of rule cancellation.

Let R be a NE-rule applied to Δ[1]. R(Δ[1]) is canceled in Δ2 iff Δ2[1] =
Δ−

1 [1] ∨ ∀i, j(Δ2[i] 6= Δ−
1 [1]). Saying informally, R become canceled in such Δ2

that neither the letters generated by the R application nor descendants of these
letters occur in Δ2. E.g. in Example 2 neither the first nor the second application
of R2 are not canceled in Γ4: though Γ4 contains no children of the second use
of R2, it contains a result of their transformation (m(7)a(6) is a descendant of
m(4)).

We know that applying a NE-rule without its cancellation results in a Turchin
pair (Section 2). It turns out that all G-grammar-generated bad sequences end
by Turchin pairs of this sort (or Λ).

Theorem 2 In G-grammars any bad sequence ends either by Λ or by a pair of
the form R(a)Θ0, R(b)ΨΘ0, where R is a NE-rule.

A Refinement of Higman Embedding in Loop Approximation 7

Proof. Let us consider a pair Φ1Θ0, Φ2ΨΘ0 such that Φ1Θ0 � Φ2ΨΘ0, (Φ1 ≈ Φ2),
and the track segment before Φ2ΨΘ0 is a bad sequence. According to the prop-
erties of the class G, Φ1[1] and Φ2[1] must be generated by the different appli-
cations of the same NE-rule R : x → Rr, and if Φ1[1] ≈ Rr[i], then necessarily
Φ2[1] ≈ Rr[i]. Let us denote the prefix Rr[1](x+i−2)Rr[2](x + i − 3)...Rr[i − 1](x)

by R(i−1) and turn back to the two applications of R. The result of the for-
mer must be of the form R

(i−1)
(k1)

Φ1Θ0, the result of the latter — of the form

R
(i−1)
(k2)

Φ2ΨΘ0 (k1 and k2 are the time indices). They form a Turchin pair so co-
incide with Φ1Θ0 and Φ2ΨΘ0 (which are, under our assumption, the first Turchin
pair).

So we have proved Φ1 = R(Φ′
1[1])Φ′−

1 , Φ2 = R(Φ′
2[1])Φ′−

2 (Φ′−
1 ≈ Φ′−

2). Let
Φ′−

1 be not empty. Then ∃R′, j(Φ′
1[2] ≈ R′

r[j] & Φ′
2[2] ≈ R′

r[j]), and Φ′
1[2] 6=

Φ′
2[2]. Let us denote the prefix R′

r[1](x+j−2)R
′
r[2](x+j−3)...R

′
r[j − 1](x) by R

′(j−1)
(x)

and turn back to R′ applications that generate Φ′
1[2] and Φ′

2[2]. They look like
R

′(j−1)
(l1)

Φ′−
1 Θ0 and R

′(j−1)
(l2)

Φ′−
2 ΨΘ0 and form the Turchin pair. This contradicts

the choice of Φ1Θ0 and Φ2ΨΘ0.
Hence Φ1Θ0 = R(Φ′

1[1])Θ0 and Φ2ΨΘ0 = R(Φ′
2[1])ΨΘ0.

Let us prove that Turchin pairs that end G-grammar bad sequences can
appear only through reusing a NE-rule without its cancellation.

Proposition 3 If Φ1 and Φ2form the first Turchin pair in a G-grammar com-
putation then both Φ2[1] and Φ1[1] coincide up to the time indices with some
Rr[1], and the application of the corresponding R : x → Rr that generates Φ1 is
not canceled in Φ2.

Proof. Let R be canceled somewhere between the two applications of R to gener-
ate Φ1 and Φ2. Let Φ1 = R(Θ0[1])Θ−

0 , Φ2 = R(Ψ [1])Ψ−Θ−
0 . In the segment from

Φ1 to Φ2 there is the moment Θ−
0 . This implies that Θ−

0 [1] is to be transformed
and cannot be in R(Ψ [1])Ψ−Θ−

0 . Contradiction.

Now it is possible to present a strategy of building the maximal bad sequence
by a G-grammar and to estimate the length of this bad sequence.

An application of a rule R1 is called worse than an application of R2 iff it
allows to construct a longer maximal bad sequence.

Lemma 3 If some NE-rule is canceled (or never used) then its application to
Θ0 is worse than shortening of Θ0 (applying the rule of the form x → Λ).

Proof. Let R be a NE-rule that is canceled or never used. No word in the track
segment from R(Θ0[1])Θ−

0 to Θ−
0 (the cancellation of R(Θ0[1])) can terminate

the bad sequence with a word after Θ−
0 . The proof is by contradiction. Let a

Turchin pair exist on this segment. Let the first member of the Turchin pair
be R′(a)Θ1, and the second — R′(b)ΨΘ1. Θ−

0 [1] remains unchanged until R
cancellation, therefore cannot occur in R′(a). So Θ−

0 [1] occurs in Θ1, but then
the word R′(b)ΨΘ1 cannot contain it, because Θ−

0 [1] is erased after the moment
Θ−

0 . So a shortening cannot be worse than an application of an unused R.

8 A Refinement of Higman Embedding in Loop Approximation

Therefore the worst strategy of building bad sequences by a G-grammar is
to apply NE-rules until each of them is used exactly once, and then to shorten
until a first cancellation (and so on). Thus all the maximal bad sequences that
retain a suffix Θ0 must end by the word Θ0.

Using this strategy we can find the maximal bad sequence length by induc-
tion.

Theorem 3 If NE-rules are applied in an order R0, R1, ..., RN to the initial
word of the length 1, the maximal length of a bad sequence is

C ′
Max = 1 + |R0| ∗ (1 + |R1| ∗ (... ∗ (1 + |RN |)...))

Proof. If only one unused (or canceled) NE-rule remains at a moment Θ0 then
the length of the bad sequence segment that starts by Θ0 and ends by Θ−

0 is
|R| + 1 (one application of R and |R| shortenings).

Suppose we know how to find the maximal bad sequence length in the
case of N unused (or canceled) rules. Let N + 1 unused (or canceled) NE-
rules remain. Application of an arbitrary R to Θ0 results in R(Θ0[1])Θ−

0 . Let
us build the maximal bad sequence segment starting from R(Θ0[1])Θ−

0 that
preserves R(Θ0[1])−Θ−

0 (the length of this bad sequence segment is known un-
der the assumption and is denoted by C(N)). This segment ends by the word
R(Θ0[1])−Θ−

0 . Again let us build the maximal bad sequence segment from this
moment that preserves R(Θ0[1])−−Θ−

0 , and so on, until the computation reaches
the moment Θ−

0 . Every letter in the right-hand side of R generates C(N) words
in the bad sequence, and the application of R generates one more additional
word. So the total increment is 1 + |R| ∗ C(N). If all the rules are of the same
length, the upper bound from Theorem 1 is exact in the class G.

If the initial Γ0 is not of the length 1 then CMax must be multiplied by
|Γ0|. CMax reaches the maximum if the rules in the sequence R0, R1, ..., RN are
ordered by non-increasing length. Thus the algorithm of building the longest bad
sequence by G-grammars can be formulated.

1. While unused (or canceled) NE-rules remain, apply the longest of them.
2. Shorten until a first cancellation.

Note that the sum runs over all distinct right-hand sides: if several rules of
the form a1 → Rr, ... , an → Rr exist, the length of Rr is counted only once
in CMax. This prevents an exponential growth of the bad sequence length when
converting to a G-grammar.

Example 4 Let us estimate the maximal length of an bad sequence in the G-
grammar G′

F (Example 2). The length of the initial word is 2, the length of the
two NE-rules — R1 and R2 — is also 2, and the length of the last rule is 1. So
the maximal bad sequence length is 2 ∗ (1 + 2 ∗ (1 + 2 ∗ (1 + 1))) = 22.

Now let us build the bad sequence explicitly. For readability we rename the
same letters with different superscripts to the different ones.

A Refinement of Higman Embedding in Loop Approximation 9

G′
F:

R0 : x → ab R2 : x → ef
R1 : x → cd R3 : x → g
R4 : x → Λ

Rules’ names in the computation are dropped.
Γ0 : a(1)b(0) Γ11 : b(0)

Γ1 : c(3)d(2)b(0) Γ12 : c(13)d(12)

Γ2 : e(5)f(4)d(2)b(0) Γ13 : e15f(14)d(12)

Γ3 : g(6)f(4)d(2)b(0) Γ14 : g16f(14)d(12)

Γ4 : f(4)d(2)b(0) Γ15 : f(14)d(12)

Γ5 : g(7)d(2)b(0) Γ16 : g(17)d(12)

Γ6 : d(2)b(0) Γ17 : d(12)

Γ7 : e(9)f(8)b(0) Γ18 : e(19)f(18)

Γ8 : g(10)f(8)b(0) Γ19 : g(20)f(18)

Γ9 : f(8)b(0) Γ20 : f(18)
Γ10 : g(11)b(0) Γ21 : g(21)

Application of any rule R1–R4 to Γ21 results with a Turchin pair.

If the alphabet Υ contains at least two letters, the upper bound provided by
Theorem 1 is more exact than the upper bound from Section 2 (extracted from
the proof of Turchin’s theorem). Truly, let all NE-rules be of the length k and
their quantity be N . Then the former bound CMax can be written as

CMax = |Υ ||Γ0|+
∑

(|Ri|−1) = card(Υ)|Γ0|∗card(Υ)(k−1)∗N = card(Υ)|Γ0|∗(card(Υ)k−1)
N

.

If card(Υ) ≥ 2 then |Γ0| < card(Υ)|Γ0| and k ≤ card(Υ)k−1.

5 Further Properties of Turchin’s Relation

To be applicable in program transformation, Turchin’s relation must have a
transitive almost well subset, which allows to construct almost well intersections
of it with other almost well relations. It seems reasonable to apply the Infinite
Ramsey Theorem to get a proof of this fact but there are some subtle points
that emerge from the fact that we do not operate with all sequences but only
with grammar-generated ones.

Example 5 Suppose we have an arbitrary track and colour all the pairs 〈Φ, Ψ〉
such that Φ precedes Ψ in two colors. All the pairs such that Ψ � Φ are coloured
green and all others are coloured red. By the Infinite Ramsey Theorem there
exists an infinite set such that all the pairs it contains are of the same color [12].
If the color is red, it may seem that the contradiction with Turchin theorem is
achieved, but consider the following sequence. On every i-th step all letters are
erased and the word of i a-s followed by a single b is put down. No two words
in this sequence form a Turchin pair. If we replace the immediate erasing of i

10 A Refinement of Higman Embedding in Loop Approximation

letters by i erasings of a single letter and do the same with the non-erasing rules
then we receive a correct prefix grammar-generated track

Γ0 : a(2)b(1)c(0) Γ7 : b(3)c(0)

Γ1 : b(1)c(0) Γ8 : c(0)

Γ2 : c(0) Γ9 : b(6)c(0)

Γ3 : b(3)c(0) Γ10 : a(7)b(6)c(0)

Γ4 : a(4)b(3)c(0) Γ11 : a(8)a(7)b(6)c(0)

Γ5 : a(5)a(4)b(3)c(0) Γ12 : a(9)a(8)a(7)b(6)c(0)

Γ6 : a(4)b(3)c(0)
The infinite subsequence Γ0, Γ5, Γ12, Γ21, . . . contains only red coloured

pairs. Hovewer, there is a couple of infinite subsequences that contain only green
coloured pairs. But the existence of the sequence Γ0, Γ5, Γ12, Γ21, . . . shows that
we cannot get the proof of their existence without considering grammar features.

Theorem 4 The relation � is not a well quasi-order, but it contains a quasi-
order that is well on all time-indexed tracks of alphabetic prefix-rewriting gram-
mars.

Proof. 1. To show the intransitivity consider the following grammar.

GABC:
R1 : a → Λ R3 : d → Λ R5 : f → ad
R2 : a → ad R4 : b → fbe

Let us compute from abc.

Γ0 : a(2)b(1)c(0)

R2 ��

Γ2 : d(3)b(1)c(0)

R3 ��

Γ4 : f(7)b(6)e(5)c(0)

R5 ��
Γ1 : a(4)d(3)b(1)c(0)

R1
33hhhhhhhhhhhh
Γ3 : b(1)c(0)

R4
33ggggggggggggg

Γ5 : a(9)d(8)b(6)e(5)c(0)

Γ0 � Γ1 and Γ1 � Γ5, but Γ0 6� Γ5.
2. Let us consider all infinite computations {Φi}∞i=1 s.t. ∃N ∀i ∃j(i < j & |Φj | ≤

N). Since the alphabet Υ is finite, there is only finite number of equivalence
classes Q s.t. ∀i, j(Φi ∈ Q & Φj ∈ Q ⇔ |Φi| ≤ N & Φi ≈ Φj). At least
one of these classes contains infinite number of elements. Let us denote this
class by {Φ′

i}. If for some i, j, k Φ′
i[k] 6= Φ′

j [k] then the moments when Φ′
i[k]

and Φ′
j [k] are generated (they are generated by the same NE-rule R) must

form a Turchin pair. Thus, there is an infinite sequence of words of the form
R(a)Φ. Any two words from this sequence form a Turchin pair.
All other sequences satisfy a condition ∀N ∃iN ∀j(j > iN ⇒ |Φj | > N). For
every N let us choose the first iN such that ∀j(j < iN ⇒ ∃k(k ≥ j & |Φk| <
N)). Therefore |ΦiN−1| < N and |ΦiN

| ≥ N , and ΦiN
is generated from its

predecessor by a NE-rule R, |R| ≥ 2: ΦiN
= R(ΦiN−1)Φ

−
iN−1. Φ−

iN−1 is never
changed, since |ΦiN−1| < N . All of the elements of {ΦiN

}∞i=1 begin with the
right-hand side of some NE-rule. Due to the finiteness of the number of the
rules there is an infinite subsequence of |ΦiN−1| < N , such that all elements
of the subsequence begin with the right-hand side of the same rule. Any two
words from this subsequence form a Turchin pair.

A Refinement of Higman Embedding in Loop Approximation 11

Set T of all the pairs from the constructed infinite sequences is a wqo that
is a subset of the Turchin relation.

Note that if (Φ, Ψ) ∈ T then both Φ and Ψ are generated directly by the
some NE-rule. So if the Turchin condition is not checked after shortenings, it
has no influence on almost wellness of the relation (or of its direct products
with other almost well relations). This allows to extend Turchin’s theorem on
arbitrary prefix rewriting grammars with finite prefix lengths.

Theorem 5 Turchin’s relation is almost well on all time-indexed sequences of
words generated by finite prefix rewriting grammars.

Proof. Consider an application of a rule a1a2 . . . an → b1b2 . . . bm. It can be
replaced by applications of the rules a1 → Λ, . . ., an−1 → Λ, an → b1b2 . . . bm.
If all immediate moments after shortenings are ignored by the Turchin relation,
then the modified sequence of words contains an bad sequence if and only if the
initial sequence contains.

Turchin’s theorem not only guarantees that Turchin pairs exist in every infi-
nite computation but also implies that these pairs can be found in exponential
time. In the case of Higman’s pairs the upper bound is given by hyper Ack-
ermann function even if a length of a word in computation on an i-th step is
bounded by |Γ0| + i ∗ k (k is a constant) [10] (for threshold results see [13]).
Why does this complexity gap appear? Grammar features play a key role here.
Without the grammar restrictions, Turchin pairs may not occur in an infinite
computation even with a constant growth of word length (as it can be seen in
the red subsequence from Example 5).

On the other hand, the Higman condition on computations imposed by G-
grammars also appears to have exponential upper bound. The longest Higman
bad sequence cannot be longer than the longest Turchin bad sequence because
the latter relation is a subset of the former (up to time indexes). But in Turchin
bad sequences constructed by the maximal bad sequence algorithm no Higman
pairs appear, hence the maximal Higman bad sequence length is exactly the
same as the maximal Turchin bad sequence length in the G-style computations.
What is more, not only the worst-case sequence lengths but every bad sequence
lengths (in the same G-style computation) for these two embeddings are equal.

Theorem 6 A first Higman pair found in a G-grammar computation is the
Turchin pair.

Proof. Suppose that two elements Φ1 and Φ2 such that Φ1 E Φ2 are of the
forms A1A2...AnΘ0 and B1A

′
1B2A

′
2...BnA′

nBn+1Θ0 respectively, and ∀i(i ≥ 1 &
i ≤ n ⇒ Ai ≡S A′

i). If we turn back to the moments when Ai[1] and A′
i[1] were

generated by R : x → Rr, we receive words of the form R
(i−1)
(k1)

AiAi+1...AnΘ0 and

R
(i−1)
(k2)

A′
iBi+1...BnAnBn+1Θ0 (R(i−1)

(kj)
denotes the prefix Rr[1](kj+i−2)...Rr[i −

1](kj)). They form a Higman pair so i = 1 = n, or it contradicts the fact that
Φ1 and Φ2 is the first generated Higman pair. But if i = 1 = n then Φ1 = A1Θ0

and Φ2 = A′
1Bn+1Θ0, so Φ1 � Φ2.

12 A Refinement of Higman Embedding in Loop Approximation

Thus the intersection of Higman and Turchin conditions also has the expo-
nential upper bound on prefix-rewriting grammar generated computations.

6 Conclusion and further work

The considered relation was initially presented by V. F. Turchin for finding loop
approximations on configurations of function stacks in semantics trees paths. In
general the relation remained unstudied. Now we have shown that this relation
posesses the same properties as the Higman relation on prefix-rewriting grammar
generated tracks, but is more “powerful” than Higman relation in the sense of
admitting longer bad sequences. Now it is clear that Turchin’s embedding is a
safe and universal refinement for finding regular loop approximations in program
analysis. The relation allows to observe not only a structure of computational
states but also their histories. It is easy to be checked and can be applied to
estimate lengths of bad sequences for other almost well embeddings on grammar-
generated sequences.

Although Turchin’s relation can be considered asa refinement for Higman
relation, it is not clear yet if there exists an analogue of Turchin’s relation for
trees instead of sequences that is almost well on tracks of some practical class of
rewriting systems. It would be interesting to consider this question as well.

Acknowledgments. The author is very grateful to A.P. Nemytykh who en-
couraged and directed the study and whose comments helped to significantly
improve the text.

References

1. Albert, E., Gallagher, J., Gomez-Zamalla, M., Puebla, G.: Type-based Homeo-
morphic Embedding for Online Termination. In Journal of Information Processing
Letters. Vol. 109(15) (2009), pp. 879–886.

2. Caucal, D.: On the Regular Structure of Prefix Rewriting. Theoretical Computer
Science, vol. 106 (1992), pp. 61–86.

3. Bolingbroke, M. C., P. Jones, S.L., Vytiniotis, D.: Termination combinators forever.
In Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Haskell 2011,
Tokyo, Japan, pp. 23–34.

4. Higman, G.: Ordering by divisibility in abstract algebras. In Bulletin of London
Math. Soc. Vol. 3(2) (1952), pp. 326–336.

5. Klyuchnikov, I., Romanenko, S. Proving the equivalence of higher-order terms
by means of supercompilation. In Perspectives of Systems Informatics, LNCS,
vol. 5947 (2010), pp. 193–205.

6. Kruskal, J. B.: Well-quasi ordering, the tree theorem, and Vazsonyi?s conjecture.
In Transactions of the American Mathematical Society, 95 (1960), pp. 210–225.

7. Nash-Williams, C.St.J.A.: On well-quasi-ordering infinite trees. In Proc. Cambr.
Philos. Soc. Vol. 61(1965), pp. 697–720.

8. Nemytykh, A.P.: The SCP4 supercompiler: general structure. Moscow, 2007. 152 p.
(in Russian)

A Refinement of Higman Embedding in Loop Approximation 13

9. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercompi-
lation. In Logic Programming: Proc. of the 1995 International Symposium (1995),
pp. 465–479.

10. Touzet, H.: A Characterisation of Multiply Recursive Functions with Higman’s
Lemma. In Information and Computation. Vol. 178 (2002), pp. 534–544.

11. Turchin, V.F.: The algorithm of generalization in the supercompiler. In Partial
Evaluation and Mixed Computation (1988), pp. 341–353.

12. Veldman, W., Bezem, M.: Ramsey’s theorem and the pigeonhole principle in in-
tuitionistic mathematics. In Journal of London Mathematical Society, Vol. 47(2)
(1993), pp. 193–211.

13. Weiermann, A.: Phase transition thresholds for some Friedman-style independence
results. In Mathematical Logic Quarterly, Vol. 53 (2007), no. 1, pp. 4–18.

