
Metacomputation� MST plus SCP

Valentin F� Turchin

The City College of New York

First of all� I want to thank the organizers of this seminar for inviting me
to review the history and the present state of the work on supercompilation
and metasystem transitions� I believe that these two notions should be of pri�
mary importance for the seminar� because they indicate the lines of further
development and generalization of the two key notions most familiar to the
participants� supercompilation is a development and generalization of par�
tial evaluation� while metasystem transition is the same for self�application�
For myself� however� the order of appearance of these keywords was oppo�
site� I started from the general concept of metasystem transition �MST for
short�� and my consequent work in computer science has been an application
and concretization of this basic idea�

� History

Consider a system S of any kind� Suppose that there is a way to make some
number of copies of it� possibly with variations� Suppose that these systems
are united into a new system S� which has the systems of the S type as
its subsystems� and includes also an additional mechanism which somehow
examines� controls� modi�es and reproduces the S�subsystems� Then we
call S� a metasystem with respect to S� and the creation of S � a metasystem
transition� As a result of consecutive metasystem transitions a multilevel
hierarchy of control arises� which exhibitss complicated forms of behavior�

In my book The Phenomenon of Science� a Cybernetic Approach to
Evolution� ��	
 I have interpreted the major steps in biological and cultural
evolution� including the emergence of the thinking human being� as nothing
else but metasystem transitions on a large scale� Even though my Ph�D�
was in theoretical physics� I was so excited about my new cybernetic ideas
that I shifted from physics to computer science and left the atomic center
in Obninsk for the Institute for Applied Mathematics in Moscow�

�

An extra�scienti�c factor came into play in the late ��
�s� I became an
active member of the human rights movement� My book was written about
����� but it could not be published in the Soviet Union solely because of
the author�s name� It took seven years to smuggle it to the West and have
it published in the English language�

The �rst step towards MST in computers was to design an appropriate
algorithmic language� I called the �rst version of such a language meta�
algorithmic� ���
� since it was supposed to serve as a metalanguage for de�n�
ing semantics of algoritmic languages� Then I simpil�ed it into what was
named REFAL �for REcursive Functions Algorithmic Language�� Refal was
conceived as the universal language of metasystem hierarchies� which is� on
one hand� simple enough� so that the machine that executes programs in
this language �the Refal machine� could become an object of theoretical
analysis � and� on the other hand� is rich enough to serve as a program�
ming language for writing real�life algorithms� unlike such purely theoretical
languages as the language of the Turing machine or Markov�s normal algo�
rithms �the latter� by the way� was one of the sources of Refal�� Even to
this day Refal remains� in my �biassed� no doubt� view the most successful
compromise between these two requirements�

An e�cient interpreter for Refal was �rst made in ��
	 ���
� At that
time Refal was very di�erent from other languages� being a purely functional
language with built�in pattern�matching� Now� after quite a few functional
languages similar to Refal have appeared� I need only to summarize its
distinctive features� in order to make it familiar�

The most distinctive feature of Refal is its data domain� Unlike other
functional languages which use lists �skewed binary trees� � for symbol ma�
nipulation� Refal uses expressions� which can be seen as trees with arbitrary
�un�xed� arity of nodes� and are de�ned formally as�

term ��� symbol j �expression� j �function expression�
expression ��� empty j term expression

Variables in Refal have their intrinsic types shown by a pre�x� thus s�i�
where i is the index �name� stands for an arbitrary symbol� t�i an arbitrary
term� and e�i an arbitrary expression� e�g� s��� t��� e�x� In the case of
an expression variable� the pre�x may be dropped� x is the same as e�x�

We use angular brackets to form function calls� �f x�� A program in
Refal is a sequence of sentences �replacement rules� which are tried in the

�They �rst appeared in Lisp� so I often refer to lists as Lisp�s data domain

�

order they are written� Here is an example of a function f which traverses
its argument from left to right and replaces every �a� by �b��

�f �a�� � �b��f x�

�f s�� x� � s�� �f x�

�f � �

By the year ���� I was lucky to have gathered a circle of young peo�
ple� the Refal group� which met regularly� survived my emigration and is
still alive and well� As in any informal group� some people went� new peo�
ple came� I am deeply thankful to all of them� and especially to those
most active and persistent� Sergei Romanenko �the �rst to have come��
Nikolai Kondratiev� Elena Travkina� Andrei Klimov� Arkadi Klimov� Viktor
Kistlerov� Igor Shchenkov� Sergei Abramov� Alexei Vedenov� Ruten Gurin�
Leonid Provorov� Andrei Nemytykh� Vika Pinchuk� I will always remember
Alexander Romanenko who died before his time in �����

Together with a smaller group at the Moscow Engineering and Physics
Institute �Stanislav Florentsev� Alexander Krasovsky� Vladimir Khoroshevsky�
we made Refal compilers for the most popular machines in the Soviet Union�
and Refal became pretty well known in that part of the world� It is not my
intention to focus on Refal �a bibliography on the development and use
of Refal compiled a few years ago includes about ��� items�� but I want
to mention two further outgrowths of Refal� The language FLAC for al�
gebraic manipulation developed by V�Kistlerov ���
� ��
� and Refal Plus by
S�Romanenko and R�Gurin ��

� which is a kind of logical closure of the ideas
on which Refal is based� In may later work I used the extended version of
Refal named Refal��� ���
� which is operational under DOS and UNIX�

The next conceptual station after �xing the language was driving ��

�
���
� Suppose we have the call �f �a�x� of the function f above� Obviously�
it can be replaced by �b��f x�� because this is what the Refal machine
will do in one step of function evaluation� Partial evaluation took place�
which is a simple case of driving� Now take the call �f x� where partial
evaluator has nothing to do� Driving� however� is still possible� because it
is simulation of one step of computation in any circumstances� When you
see equivalent transformation of programs as the use of some equations�
our partial evaluation is the use of the equation �f�a�x� ��b��f x�� and
this makes perfect sense� But� given the call �f x�� there is no equation in
sight which would improve the program� Driving is a product of cybernetic
thinking� We create a metamachine� and the �rst thing it must be able to do
with the Refal machine is to simulate its behavior� Thus� the metamachine

�

drives the Refal machine� forcing it to do somehting for which it was not
originally prepared� make computation over expressions with free variables�
In our case driving will produce the graph�

	�
�f x� x��a�x� 	�
�b��f x�

 x�s���x� 	�
 s�� �f x�

 x�	
� 	

where the original call is the root node labeled by 	�
� and there are three
edges� separated by
� which lead to three resulting expressions� according to
the three sentences in the de�nition of f� By e � p we denote the operation
of matching expression e to pattern p� a pattern is a special kind of an
expression �referred to as rigid�� which guarantees the uniqueness of the
operation� 	
 stands for an empty expression for readability�

�From driving I came to supercompilation �SCP for short�� Let me
brie�y describe this technique of program transformation leaving aside many
details and variations�

A supercompiler is an upgrade of a driver� When a new active �i�e�
representing a function call� node C appears in driving� the supercompiler
examines its ancestors and with regard to each ancestor C� takes one of the
three decisions�

�� Reduce C to C � with a substitution� this can be done only if C � C��

�� Generalize C and C�� i�e� �nd such Cg that C � Cg and C� � Cg�
then erase the driving subtree which starts at C�� reduce C� to Cg and
go on driving Cg�

�� Do nothing on C� �the nodes C and C� are �far from each other���
and examine the next ancestor� If there are no more ancestors� go on
driving C�

Supercompilation ends when the graph becomes self�su�cient� i�e� for
every active node shows how to make a transition to the next node which
corresponds to at least one step of the Refal machine� This graph is a
program for computation of the function call represented by the initial node�

Note the di�erence between the principle of supercompilation and the
usual idea of program transformation� where the program is changed step by
step by applying some equivalences� In supercompilation we never change
the original program� We regard it as a sort of �laws of nature� and con�
struct a model of a computation process governed by these laws� When the

�

model becomes self�su�cient� we simply throw away the unchanged original
program�

When we discussed supercompilation in the seminars of the Refal group�
I always stressed my belief that metasystem transition is important in itself�
If it has been the key at all stages of biological and technical evolution� how
can we hope to create really intelligent machines without the use of this prin�
ciple� We should develop techniques of dealing with repeated metasystem
transitions� applications are bound to emerge�

The �rst con�rmation of this belief came when I �gured out that super�
compilation of an interpreter is compilation� and supercompilation of the
supercompiler that does compilation �second MST� yields a compiled �e��
cient� compiler� Moreover� making the third MST we can obtain a compiled
compiler generator� I was very excited about my discovery� and told Andrei
Ershov about it� Ershov at that time worked on partial evaluation � the
�rst MST � but he did not know about the second MST� and he also got
excited�� Neither he� nor I knew at that time that Yoshi Futamura �	
 made
this discovery a few years before me� Andrei saw a reference to Yoshi�s pa�
per� but could not get the journal� In his big paper �

 he referred to my
result as �Turchin�s theorem of double driving��

That was in ���
� Since ���� I had been jobless� home�searched and
periodically interrogated by the KGB� Meanwile a book on Refal and its
implementation was written by several members of the Refal group� includ�
ing myself� ��
� My friends managed to get permission for publishing it as a
technical material of the institue where I worked before being �red � on the
condition that I will not be in the list of authors� To meet this requirement
they decided not to include the list of authors at all� The book was pub�
lished anonymously� But I smuggled into it a page or so about my results
on automatic production of compilers�

I emigrated in ����� and it took some time to take roots in the new
environment� a process which can never be fully successful� For a year and
a half I stayed at the Courant Institute of NYU and used this time to write
a ��� pages report ���
� where I summarized the ideas and results of the
past years and also sketched some new ideas to turn to them later� Then I
got a position at the City College of the City University of New York�

I wrote the �rst supercompiler �SCP��� in ��	��	� ���
 with the help
of Bob Nirenberg and my son Dimitri in carrying over the implementation
of Refal from Russia to the US and upgrading it� �From the examples in

�Ershov describes our meeting in detail in ���

�

���
 one could see that supercompilation includes� but is much stronger as
a transformation technique than partial evaluation �which takes place auto�
matically in driving�� The examples in ���
 included program specializaiton�
but when I tried self�application ��nd MST�� I met a dozen of technical
di�culties�

Partial evaluation is simpler then supercompilation� so automatic gener�
ation of a compiler from an interpreter was �rst achieved by self�application
of a partial evaluater ��nd and �rd MST�� This was done by Neil Jones and
co�workers at DIKU� Copenhagen� ���
� ��

� ��	
� ���
� and was an important
step forward and a great success� Self�applicable partial evaluation became
an established �eld of research� Of the members of the Moscow Refal group�
Sergei Romanenko and Andrei Klimov contributed to this �eld� ���
� ���
�
���
� but I decided to concentrate on further development of techniques of
supercompilation� and wrote a stronger an better supercompiler� SCP���

The fall semester of ��	� I spent at DIKU in Copenhagen invited by
Neil Jones� This was a very important visit for me� I got a chance to
discuss in detail my ideas on MST and SCP with Neil and other people at
DIKU� Among other things� these discussions helped me to �nalize and have
published my paper on supercompilation ���
� Since then I visited DIKU on
several occasions and always had useful discussions and enjoyed the friendly
atmosphere there�

In ��		�	� Robert Gl�uck� then at the Vienna Technical University� joined
the MST�SCP Project� He spent a year and a half at the City College work�
ing with me on its various aspects� We managed to achieve self�application
of SCP�� in some simple cases� but it became clear that a thorough overhaul
of the supercompiler is needed� After returning to Europe Robert went to
Copenhagen� He carried over the techniques of metacoding and doing MSTs�
which was originally developed for the Refal supercompiler� to partial eval�
uation and list�based languages� In the early work on partial evaluation by
N�Jones with co�workers ���
 it was stated that in order to achieve good
results in self�application� a preliminary binding time analysis ��o��line��
was necessary� However� Robert showed ����
� that with a correct use of
metacoding� partial evaluation is self�applicable without any binding time
analysis� �on line��

Little by little� more people got involved in the work on MST�SCP ideas�
including some members of the Moscow Refal group� Andrei Klimov started
active work in this �eld and found a mate in Robert Gl�uck ���� ��� ��
�
Alexander Romanenko started work on function inversion ���� �	
� Sergei
Abramov did an excellent and potentially very important work� ��
 on pro�

gram testing on the basis of driving with a neighborhood �see Sec������ and
wrote a monograph on metacomputation other than supercompilation� ��
�

Neil Jones ���
 gave a thorough theoretical analysis of driving as com�
pared to partial evaluation� More papers on supercompilation have appeared
recently from DIKU� ���� ��� ��� ��� ��
� The role of Robert Gl�uk in that�
as one can see from the references� has been of primary importance�

Morten S rensen wrote a Master thesis on supercompilaiton� ���
� Its ti�
tle� Turchin�s Supercompiler Revisited� which pleased me very much because
it symbolized the emerging interest to my work� Then he made a suggestion
that the Higman�Kruskal theorem on homeomorphic embedding be used as
the criterion for generalization in supercompilation� ���
� which probably will
be judged as one of the most important contributions to the SCP techniques
during the last few years� I discuss it in more detail in Sec�����

In ���� I decided to restrict Refal as the object language of SCP to its
�at subset where the right side of a sentence cannot inlcude nested function
calls� it is either a passive expression� or a single function call� The purpose�
of course� was to simplify the supercomiler� for self�application to become
possible� I started writing such a supercompiler� SCP��� In September
���� Andrei Nemytykh from the Programming Systems Institute �Perslavl�
Russia�� came to CCNY for an academic year under a grant from the Na�
tional Research Council� Working together� we have made SCP��� at long
last� self�applicable� That was in the spring of ����� ���� �

� Returning to
Russia� Andrei continued the work on SCP�� with Vika Pinchuk� I do not
speak more on this because SCP�� with some examples of its performance
is presented in a separate paper at this symposium�

In the summer of ���� Yoshi Futamura invited me to spend a month in
Tokyo to discuss supercompilation in relation to his concept of generalized
partial computation� ��� ��
� There are common aspects� indeed� In both
approaches the information about the states of a computing machine goes
beyond listing the values of some variables� The main di�erence is that
Yoshi relies on some unspeci�ed theorem proving� while my point is to do
everthing by supercompilation� including theorem proving�

In July ����� invited by Jos!e Meseguer� I spent a pleasant week at Stan�
ford Research Institute in California explaining and discussing the details of
SCP and MST� Jos!e and his graduate student Manuel Clavel are working on
re�ective logics and languages in the frame of Meseguer�s theory of general
logics ���
� ���
� Their goal is to extend the techniques of supercompilation
to their systems in order to improve their e�ciency� and I know that Manuel
has already made some progress along this path�

�

My review of events and ideas concerning MST and SCP is� no doubt�
incomplete� and so is my bibliography� I ask for forgiveness in advance�

In Sec�� I discuss a few important aspects of supercompilation� In Sec��
I give an outline of a few ideas which have not yet been properly translated
into computer programs� My exposition is very informal and sketchy� I try
to have it done through a few simple examples� The �eld of MST"SCP has
its own formalism� which I� obviously� cannot systematically present here�
Yet I hope that ther reader unfamiliar with it will still be able to �gure out
what it all is about� without being going into formal details�

A word on terminology� In ��	� I suggested metacomputation as an um�
brella term covering all computation which includes at least one metasystem
transition� By this de�nition� partial evaluation is also a variety of meta�
computation� and the term could be used for identifying such meetings as
this seminar� However� partial evaluation people have been in no hurry to
use it� In contrast� it is readily used by people in the �eld I denote in this
paper as MST plus SCP �sounds barbarian� of course�� Thus� for the time
being� at least�

metacomputation �MST " SCP

� Aspects of supercompilation

��� Pattern�matching Graphs

I will reveal a small secret� Our supercompilers do not actually use Refal as
the language of object programs� they use the language of pattern�matching
graphs� also referred to as Refal graphs� The program in Refal to be su�
percompiled is �rst automatically translated into the graph form� and the
output of the SCP is also a Refal graph�

Algebraically� a pattern�matching graph is a sum of products of three
varieties of the operation of pattern�matching� with a product implying se�
quential� and a sum parallel� execution� A contraction is a pattern matching
v � p� where v is a variable and p is a rigid pattern� we shall denote this
contraction as v

c
� p� An assignment is a pattern matching e � v� where e

is an expression and v a variable� we shall denote this assignment as e
a
� v�

This notation may seem unusual �especially that of an assignment�� but
it is logical and quite convenient� It is derived from the following two prin�
ciples� ��� On the left side we have bound �old� de�ned� variables� on the
right side free �new� to be de�ned� variables� ��� When the operation is

	

understood as a substitution� the arrow is directed from the variable to its
replacement�

Examples� x
c
�s�� x�a� is a contraction for x� If the value of x is

�koshka�� after the execution of this contraction x becomes �oshk�� and a
new variable s�� becomes de�ned and having the value �k�� If x is �kot�
the result is the impossible operation Z�failure of matching�� Further� this
contraction can be decomposed into a product of elementary contractions�

�x
c
�s�� x�a�� � �x

c
�s�� x��x

c
�x s����s��

c
��a��

The third operation used in Refal graphs is a restriction �� G�� where G
is a sum of contractions� It is evaluated either to Z� if at least one contraction
in G is successful� or to the identity operation I�do nothing�� An example�

��b�
a
�s��� �� �s��

c
��a��
�s��

c
��b��� � Z

I developed a set of relations of equivalency for the algebra of pattern�
matching operations� and the programming of SCP�� was based on it� but�
unfortunately� this theory is not yet published� the initial stages of the theory
can be found in ���
�

The most important equation is the clash between an assignment and a
contraction for the same variable� which is resolved in a matching�

�e
a
� v��v

c
� p� � e � p

Thus the example above can be seen as the equation�

��koshka�
a
�x� �x

c
�s�� x �a�� � ��oshk�

a
�x� ��k�

a
�s���

Here is an example of resolution which includes the contraction of a
bound variable�

��kot�s��
a
�x� �x

c
�x�a�� � �s��

c
��a�� ��kot�

a
�x�

To give an example of a function de�nition in the graph form� here is the
graph for the iterative program of changing each �a� to �b�� where nodes
	n
 correspond to con�gurations of the Refal machine�

	�
 �	

a
� y� 	�

	�
 �x
c
� s�� x� f �s��

c
��a�� ��b�y

a
� y� 	�

�� s��
c
��a�� �s�� y

a
� y� 	�
 g

�x
c
� 	
� 	

a
� out

�

With Refal graphs� driving is an application of the commutation re�
lations for pattern�matching operations� A walk in the normal form� in
which it appears in function de�nitions and represents one step of the Refal
machine� has the structure CRA� where the letters stand for Contraction�
Restriction and Assignment� respectively� A walk representing two steps is
C�R�A�C�R�A�� Resolving the clash A�C� and then adjusting contractions
and restrictions according to commutation relations� we return the walk to
the normal form� we have made one step of driving�

��� Generalization

Generalization is one of the central problems of supercompilation� It breaks
down naturally in two parts� ��� a decision to generalize the current con�
�guration C with some of its predecessors C� trying to reduce C to it� we
need a #whistle� to warn us that if we do not try reduction� we may end
up with in�nite driving� and ��� the generalization proper� t�e� de�ning a
con�guration Cgen such that both C and C� are its subsets� A good gener�
alization algorithm must �nd a balance between two extreme cases� a too
willing generalization� which makes the resulting program interpretive and
leaves it unoptimized� and a generalization postponed for too long so that
the supercompilation process never ends�

In ���
 I de�ned an algorithm of whistling for lazy supercompilation of
nested function calls� and proved its termination� This algorithm was im�
plemented in SCP�� and worked very well� but only within its domain of
applicability� It gave nothing for generalization of �at con�gurations� i�e�
ones without nested function calls� In SCP�� and SCP�� we used several
empirically found algorithms of generalizing �at expressions� but no termi�
nation theorems were proven�

An important step forward was initiated by Morten S rensen who sug�
gested that the Higman�Kruskal theorem about homeomorphic embedding
�HK for short� should be used to de�ne a whistle for supercompilation which
is of proven termination� This was done in ���
�

The data domain in ���
 is the set of functional terms with �xed arity
of each functional symbol� This kind of data is su�cient for the languages�
such as Lisp and Prolog� which operate on binary trees referred to as lists�
But the data structure of Refal does not belong to this category� It allows
concatenation of terms� which can be seen as the use of a functional symbol
of arbitrary arity �a varyadic symbol�� Fortunately� the Higman�Kruskal
theorem allows variadic symbols� When I learned this� I de�ned a whistle

��

for supercompilation in Refal along the line of ���
�
I will brie�y outline the concept of embedding following the work by

Dershowitz ��
�
Let a �nite set F of functional symbols be given� Consider the set T �F �

of all functional terms f�t�� � � � � tn� with functional symbols f � F � Some
symbols may be of arity n � �� they are constants� and we shall write them
without parentheses� f for f��� Some of the symbols may be varyadic�
di�erent n in di�erent calls�

De�nition� The homeomorphic embedding relation � on a set T �F � of
terms is de�ned recursively as follows�

t � g�t�� t�� � � � � tn�� f�s�� s�� � � � � sm� � s

if either

t � si for some i � �� � � � � m

or

f � g and tj � sij for all j � �� � � � � n

where � � i� � i� � � � � � in � m� �

Note that in the second rule f and g must be identical� but their calls may
have di�erent number of terms� n � m� some of the terms in f may be
ignored�

Theorem � �Higman�Kruskal� If F is a �nite set of function symbols�
then any in�nite sequence t�� t�� � � � of terms in the set T �F � of terms over
F contains two terms tj and tk � where j � k� such that tj � tk � �

To use HK� we map the set of all Refal terms TR onto the domain of
functional terms T �F � over some set F of functional symbols�

De�nition� The set F is S�fse� ss� fpar� ffung� where S is the set of Refal
symbols� it is �nite because only those symbol that enter the program can
appear in computation� Symbols from S� as well as the two special symbols
se and ss� are of arity �� while the other two symbols are varyadic� The
mapping Mrt � TR � T �F � is recursively de�ned by�

��

Mrt�s�i
 � ss
Mrt�e�i
 � se
Mrt�s
 � s

Mrt��e�
 � fpar�Mrt�e
�
Mrt��s e�
 � ffun�Mrt�s
Mrt�e
�
Mrt�t e
 � Mrt�t
 Mrt�e

Mrt�
 �empty

where s stands for any Refal symbol� t term� and e expression� �

In Refal the most general data structure is that of expressions� not terms�
But it is easy to reduce a relation on expressions to a relation on terms�

e� �R e� � �e���R �e��

We de�ne the homeomorphic embedding relation �R on Refal terms as
the mapping of the relation ��

t� �R t� if and only if Mrt�t�
�Mrt�t�

Rewriting the de�nition of � in terms of Refal� we have�

De�nition� The homeomorphic embedding relation �R on the set TR holds
if either term is embedded in term�

t �R �e�t
�e�� ���

where t �R t� and ei for i � �� � are some expressions� or expression is
embedded in expression�

�t� t� � � � tn��R �e� t
�

� e� t
�

� � � �en t
�

n en��� ���

where ti �R t�i for i � �� � � � � n� and any of the expressions ei may be empty�
�

This de�nition translates into the algorithm in Refal given in Table ��

This algorithm was not yet tested in the computer� but I believe it will
work well�

I discovered� with some surprize� that the embedding relation on Refal
expresions leads to a whistle di�erent from that derived from the embedding
relation on Lisp�s lists� even though these two kinds of symbolic objects
may look identical� I cannot go into detail here �see ���
 for that�� Just an
example and a few words�

��

� �Emb t� t�� results in T if t��R t��
� and in F otherwise�

Emb feX � �Dec eX �Embk � eX�� g

� Decide if the second case must be considered

Dec f eX T � T�

eX F � F�

eX � � �Embk � eX� g

Embk f

sN s� s� � T�

sN t� s� � F�

sN ���e�� � T�

� t� �� � ��

� t� �� � F�

� t� �t� e��� �Emb t� t���

f T � T�

F � �Embk � t� �e��� g�
� �t� e���t��s e��s�� �Emb t� t��s��

fT � �Embk � �e���e��s���

F � �Embk � �t� e���e��s�� g�

g

Table �� The Refal program for the embedding relation �R�

Consider this relation�

�a b c�� �a p�b c�q�

If it is understood as a relation between Refal expressions �R� it does not
hold� But if we see it as a relation between lists� it does hold� Moreover� the
algorithm for Refal expressions above is linear with the size of expressions�
while the corresponding recursive algorithm for lists is exponential �it can be
converted� though� into a quadratic iterative algoritm�� I must also notice
that we can have the Refal whistle working in the Lisp environment by
exploiting a one�to�one mapping between these two domains�

A few words about generalization proper� With a given whistle algo�
rithm� various algorithms of the generalization proper may be used� For a
whistle algorithm all variables of a given type �s or e� are the same� while
for generalization proper this is not so� of course� Still the the embedding

��

relation which caused the whistle may serve as a starting point for general�
ization� In particular� if the relation ti�R t

�

i in the case expression imbedded
in expression happens� for some i� to be an equality� we can leave it as a
common part in generalization� For example� the embedding�

a b c �R p a b c q r

leads to the generalization�

gen�a b c� p a b c q r
 � x�a b c x�

where x� and x� are some e�variables�
This method� though� works only for Refal�s data� not for Lisp�s� With

lists as the basic data structures� generalization can preserve only that com�
mon substructure which is on the left� but not on the right side� Even
though a list� such as �a b c�� looks like a string� it is� in fact� a binary tree
which in the Refal representation is

�a�b�c nil���

We can generalize it with a list which extends it on the right side� without
loosing the common part�

gen��a�b�cnil���� �a�b�c�pnil���� � �a�b�c x����

but if the extension is on the left� the most speci�c generalization is a free
variable� The common part is lost�

gen��a�b�cnil���� �p�a�b�cnil����
 � x�

Unfortunately� when a program works by iterations �as opposed to pro�
grams where data is passed from the value of one function to the argument
of another� it is exactly on the left side that the lists are growing� Because of
this� a supercompiler working with lists may not perform partial evaluation
in cases where Refal supercompiler easily does it�

��� Theorem proving

Using formal logic is not the only way to prove theorems in computers� es�
pecially those of primary interest for computer scientists� Metacomputation
provides an alternative method of automated theorem proving� We face here
two di�erent paradigms�

��

In the axioms�and�logic paradigm of mathematics we deal with things
which are completely unde�ned� true abstractions� We can know about these
things only as much as we can extract from the axioms we have chosen to
assume� Mathematical objects � as long as the mathematician is faithful to
the proclaimed axioms�and�logic paradigm� which very often is not the case �
do not really exist� The meaning of the statement that certain mathematical
objects exist is simply that the manipulation of the symbols representing
these objects in accordance with the rules of logic and the axioms does not
lead to a contradiction�

In contrast� when we are doing computer science we deal with well de�
�ned �nite cybernetic systems� such as Turing machines or computers� and
with computational processes in these systems�

Compare the treatment of the primary theoretical objects of all exact
sciences � natural numbers � in the axiomatic and cybernetic paradigms�
In axiomatic arithmetics� numbers are abstract entities operations on which
meet requirements codi�ed in a certain number of axioms� In particular� the
operation of addition " is de�ned by two axioms�

x " � � x
x " y� � �x" y��

where x� is the function #next number� applied to x� To prove a proposition
one must construct� according to well�known rules� a demonstration� which
is a sequence of propositions�

In the cybernetic paradigm natural numbers are chains of some pieces
of matter called symbols� and functions are machines which know how to
handle symbols� The Refal program for " is�

�
 x����� � x

�
 x�y���� � �
 x�y����

Another function we want to compute is the predicate of equality�

�� �������� � T

�� ����y���� � F

�� x�������� � F

�� x����y���� � �� x�y�

The strong side of the axioms�and�logic method is its wide applicability�
A theory may be developed about objects �such as those of geometry or
set theory� which are not easy to represent by symbolic expressions� Also�
the same theorem can be used with di�erent interpretations� Group theory

��

is usually adduced as an example� However� in computer science it is ex�
actly the world of symbolic expressions and processes that we are primarily
interested in� For this world the cybernetic paradigm is pretty natural�

The obvious advantage of the cybernetic paradigm is the completely
mechanized way to perform computations� To prove that �"� � �� we only
have to compute the truth�value of the proposition�

�� �
 ���������������������

When we give this job to the Refal machine� the results is a �nite computa�
tion process� It ends with T� which proves the statement�

This has been a proposition without quanti�cation� Can general propo�
sitions be proven by computation�

Not directly� But they can be proven by metacomputation� For any
tautology of the propositional calculus metacomputation is straightforward
and guarnateed to give the desired proof� De�ne logical connectives NOT�
AND� etc��

�NOT T� � F

�NOT F� � T

and the others in the same manner� To prove de Morgan�s law ��p 	 q�

��p � �q�� form the con�guration�

	�
 �EQU �NOT �AND p�q�� � �OR �NOT p���NOT q���

It includes two free variables p and q� but all the functions involved are not
recursive� so the simple driving gives the �nite result�

	�
� �p
c
� F��q

c
� F� T

 �p
c
� F��q

c
� T� T

 �p
c
� T��q

c
� F� T

 �p
c
� T��q

c
� T� T

Now we only have to recognize that all exit con�gurations in this graoh
are T� hence the con�guration 	�
 can be replaced by T� This amounts to
the desired proof�

Let us take a simple example from arithmetics where the proof requires
the use of mathematical induction� Consider the following statement�

�x �� " x � x� ���

�

Let us see how this theorem is proven by a supercompiler� The transla�
tion of the statement into the cybernetic paradigm is as follows� The initial
con�guration�

	�
� �� �
 ����x�� x�

evaluated by the Refal machine with any value substituted for x results in
T� so we expect from the supercompiler that it will equivalently transform
	�
 into just T�

The supercompiler that makes this job uses the outside�in �lazy� driving�
It attempts to drive the call of �� but the nested call of
 is a hindrance�
thus it switches to driving the latter� Two contractions are produced in ac�
cordance with the de�nition of
� x

c
���� and x

c
�x���� With the �rst con�

traction the computation is straightforward and leads to T� With the second
contraction the machine makes a step in the computation of �
 ����x�����
which produces the con�guration�

	�
� �� �
 ����x����� x����

The process returns to the outermost call and makes� in a unique way�
one step according to the de�nition of �� The result is the same as 	�
�
Thus we have this transition graph�

	�
 x
c
� ���� T

 x
c
� x���� 	�

The supercompiler easily recognizes such a graph as transformable to just
T� since the only exit con�guration is T� this is the form which mathematical
induction takes in metacomputation� The theorem is proven� �We set aside
the problem of termination� In our case it is secured by the fact that all
functions involved are total��

The associativity of addition is also easily provable in this way� How�
ever� to prove the commutativity of addition requires more sophisticated
techniques� which I shall discuss in Sec� ����

��� Metasystem hierarchies and jumps

Consider metasystem hierarchies of computing machines� After we have
chosen a universal all�level programming language� such as Refal� a hierarchy
of computing machines becomes a hierarchy of programs� We want to write
functions which are de�ned on de�nitions of other functions�

In every programming language we distinguish the objects which are
manipulated� from certain special details� variables and function calls� which

��

e �feg

���� ����
	
 	

s s
s�i ��s�i�
e�i ��e�i�

�e� �����feg�
�e� �����feg�

e�e� �fe�g�fe�g

Table �� The metacode

represent sets of objects and computation processes and cannot be directly
treated as objects� Let the set of objects be Sob and the set of variables
and function calls Svf � To write a program which manipulates programs�
we must map the set of all elements of programs� i�e� Sob � Svf � on the set
of objects Sob� We call this mapping a metacode� and denote the metacode
transformation of e as �feg�

� � Sob � Svf � Sob

Obviously� metacoding must have a unique inverse transformation� demeta�
coding� so it must be injective�

��e�� e�� e�
� e� � �fe�g
� �fe�g

For convenience of reading metacoded expressions we require that �fe�e�g
� �fe�g�fe�g� Also� it is desirable that the image of an object expres�
sion be as close to the expression itself as possible� It would be nice� of
course� to leave all object expressions unaltered under the metacode� but
this is� unfortunately� impossible� because it contradicts to the requirement
of injectivity�

One convenient metacode for Refal� which is used in the latest imple�
mentation of this language is de�ned by Table �� where s is any symbol� and
i the index of a variable�

Consecutive metacoding creates a hierarchy of MST domains�

S� � S� � S� � � �

where S� � Sob � Svf � and Sk � �fSk��g� for k � ��

�	

Compare two function calls� �F� �F� x�� and �F� �f�F� x�g�� The
�rst call is a functional composition� �F� x� is computed and its value is
taken as argument in the computation of F�� In the second call there is
no evaluation of �F� x�� but the metacode of this expression is turned over
for the computation of F�� If the metacode of Table � is used� we have�
�F� ����F���ex����� This is an MST hierarchy of two levels� function F�

is supposed to manipulate F� �its representation� to be precise�� If this ma�
nipulation is semantic in nature� i�e� based on the de�nition of F�� as it is in
all interesting cases� then the machine F� must have access to the de�nition
of F�� In order not to encumber our notation� we shall always assume that
whenever a metamachine F� manipulates a machine F�� it incorporates the
de�nition of F�� so we need not indicate this in each case�

We use MST schemes for a clear and metacode�invarient representation
of metasystem hierarchies� An MST scheme is built according to the rule�
whenever a subexpression has the form E��fE�gE�� the metacoded part is
moved one level down and replaced by dots on the main level�

E��fE�gE� ����
E� ��� E�

E�

This rule can be applied any number of times�
Refal expressions on the lower level are written the same way as if they
were on the upper level� metacoding is implicit and is indicated by putting
them one line down� To convert an MST scheme into an equivalent Refal
expression� we must metacode each level as many times as long is its distance
from the top�

MST schemes allow us to represent very clearly certain operations on
variables which are necessary for correct construction and use of metasys�
tem hierarchies� We shall show this using as an example the well�known
procedure of converting an interpreter for some language into a compiler
by partial evaluation �see �	
� ���
� ���
�� Let L be an interpreter for some
language L written in Refal and used in the format �L e�prog�e�data��

Let PE be a partial evaluator for Refal written in Refal and having Refal
as the target language� i�e� producing a Refal program at the output� We
apply PE to the call of L where some program P is substituted for e�prog�
while e�data remains free� This call is �L P�e�data�� We metacode it and
submit to the partial evaluator�

�PE �������������� �

�L P �e�data�

��

In this MST scheme the call of L� which is submitted for partial eval�
uation� is a function of data only� since the value of e�prog is �xed at a
speci�c expression P � After PE performs all operations which can be per�
formed because the program P is known� it outputs a residual program
which is nothing but the translation of the program P into Refal� Function
PE has worked as a compiler�

Now suppose we want a function which would accept an arbitrary pro�
gram� not just P � If we simply put the variable program instead of P �

�PE ������������������� �

�L e�prog� e�data�

we will not get what we want� Here the variables for data and for program
are on the same level and are treated in the same way� No partial evaluation
takes place� because the value of e�prog remains unknown to PE� Even
though e�prog is an argument of L� its value must be provided on the level
of PE� so that when L is running �being driven by PE�� the program is �xed�
We represent this situation by raising e�prog to the top level� and leaving
the bullet � in the place where this variable originated on the bottom level�

�PE �� e�prog ���������� �

�L � �e�data�

We shall call the variables like e�prog elevated� For such a variable�
the de�nition level� at which its name is placed� is di�erent from the usage
level� where the bullet is found� and the di�erence h between the two is the
variable�s elevation� The value assigned to a variable on the de�nition level
enters the con�guration after being metacoded h times�

Even though e�prog is used by L� it is not free for it� It is free on the
level of the partial evaluation function PE� to run PE we must �rst substitute
some speci�c program for e�prog� Hence L always receives a �xed program�
The result of PE will be a transformed �partially evaluated� function L� which
depends only on the variable e�data and is a translation from L into Refal�

The translation� however� is made directly by PE� which can work with
any de�nition of L �hidden in the function name L� as we agreed above��
We can specialize PE by partially evaluating itself by itself according to the
MST scheme�

�PE ������������������������� �

�PE �� e�prog ��������� �

�L � �e�data�

This scheme is the scheme of generation of a compiler from L� The

��

program which it produces is a compiler� it has a program at input and a
function of data at output�

The rule of two levels helps read MST schemes� The variables on the top
level are free� Those on the next level are bound� they run over their domains
as� e�g�� integration variables� or the variables in a function de�nition� Any
top part can be chopped o� from the rest of the scheme� hence every level
can be interpreted as if it were the top�

It often happens that a program transformer must transform a function
call which� in fact� can be simply evaluated� The argument may include no
free variables or yet uncomputed function calls or� if there are some� they
may not be consulted at any stage of evaluation� Even more frequent is a
situation where such independence of unknown data holds for a part of the
evaluation process� even though not for the whole length of it�

Consider our two�level scheme of compilation� The interpreter L operates
on a known program andunknown data� On some stretches of computation
L will work on the program� but without consulting the data� An obvious
example is the parsing of the program� Further� if the language L includes
GO TO statements with jumps to a label� then it may be necessary to
examine a big piece of program in search of the needed label� The work
of the function PE in this part of computation will be nothing else but
simulation of the work of L� which� of course� will take much more time than
a direct run of the function L�

In ���
 we describe a supercompiler which makes automatic jumps from
one level to another in order to avoid doing on the level n in the interpre�
tation mode what can be done on the level n � � by direct computation�
Before driving a con�guration� the supercompiler passes control one level
down by demetacoding the con�guration and starting the execution of it� If
it is possible to bring the computation to the end� the result is metacoded
and control returns to the upper level� If at a certain stage of execution
its continuation becomes impossible because of unknown values of variables�
the con�guration of the latest stage preceding the current is metacoded and
controll passes to the top level for driving�

To make this system work� it was necessary to modify the implementa�
tion of Refal by adding a feature which was called a freezer� see ���
� In
tests we could see that the use of metasystem jumping can lead to a very
considerable speedups� sometimes by a factor of more than twenty�

��

��� Refal vs� Lisp

As mentioned above� the major di�erence between Refal and Lisp� as well as
other languages working with lists� is the data domain� Refal expressions are
strings of terms which can be processed both left to right� and right to left�
They are trees with an arbitrary and un�xed arity� Lisp�s list is a special
kind of a Refal expression� There are several reasons why I stubbornly use
Refal �beyond the main reason� which I am trying to conseal� I invented it��

�� I hope that sooner or later the methods of metacomputation will be used
on the industrial scale for automatic development of big and fast programs�
The e�cinecy of algorithms is� as we very well know� tightly bound to data
structure� I cannot imagine that practical programmers will agree to aban�
don such an important data structure as string� Limiting ourselves to lists�
we throw overboard a huge pile of e�cient algorithms�

�� As we saw above� Refal expressions allow such generalizations which are
inexpressible in lists� This makes supercompilation easier and more e�cient�
Our data structures are� essentially� models of reality� More sophisticated
data structures allow us to express more subtle features of the medium�
A language based on graphs would have the same advantage over Refal as
Refal has over Lisp�

�� When we create a metamachine for examining and controlling the opera�
tion of the object machine� we often want to trace its steps in both forward�
and backward directions� Histories of computation are naturally represented
by strings of states� In Sec���� I show how supercompilation can be enhanced
by switching from con�gurations of the computing machine to histories of
computation by it� Moreover� backward movement is part of the concept of
supercompilation� It can be avoided� but not without paying some price �
in conceptual simplicity� if not in anything else� Languages we use not only
help express somehting we are doing� they suggest what we might do further�
It is not an accident that the concept of supercompilation �rst appeared in
the context of such a language as Refal�

� Functional languages using lists are good for programming in recursive
style� but poor when the algorithms are iterative� Meanwhile� we often face
the situation where a recursive algorithm is clear and elegant� but ine�cient�
so that we have to transform it into an iterative form� In Lisp even a simple
traversal without inverting the list is impossible when we do it iteratively�
Refal is equally at ease with both recursive and iterative programming� �

��

The use of lists� though� is not without its own advantages� As a data
structure for analysis and manipulation� lists are simpler than Refal ex�
pressions� though in my view� the di�erence is not signi�cant� Another
advantage is the simple fact that people in computer science research have
accustomed to this domain� and the languages based on it are widely used�
One balances these two sets of advantages according to one�s priorities�

� Still to come

��� Walk grammars

Now I will show how to make one more � and� maybe� most promising �
metasystem transition in program transformation� ���� ��
�

As discussed in Sec����� one step of the Refal machine is represented
in the pattern�matching graph as a normal walk C�R�A�� For driving we
combine two steps by concatenating two normal walks� C�R�A�C�R�A�� and
normalize them into one walk again� We can postpone driving and combine
any number of elementary walks into unnormalized walks of arbitrary length�
Such walks will represent possible �but not necessarily feasible� histories of
computation without performing the computation itself�

Take the graph

	�
 �	

a
� y� 	�

	�
 �x
c
� s�� x� f �s��

c
��a�� ��b�y

a
� y� 	�

�� s��
c
��a�� �s�� y

a
� y� 	�
 g

�x
c
� 	
� 	

a
� out

from Sec����� Denote the one�step walks in the graph as follows�

w� � �	

a
� y�

w� � �x
c
� s�� x� �s��

c
��a�� ��b�y

a
� y�

w� � �x
c
� s�� x� �� s��

c
��a�� �s�� y

a
� y�

w� � �x
c
� 	
� 	

a
� out

Now the set of all terminated walks �histories of completed computation� is
described by the regular grammar�

	�
 � w� 	�

	�
 � w� 	�

	�
 � w� 	�

	�
 � w�

or by the regular expression w��w� " w��
�w��

��

It is easy to see that for an arbitrary Refal program the set of all walks is
de�ned by a context�free grammar� while if we restrict ourselves to �at Refal
�no nested calls� the walk grammar becomes regular� hence the whole set is
represented by a regular expression� which is a great advantage of the �at
version� We shall work with a generalization of regular expressions� where
the number of iterations is denoted by a variable� so that such walk�sets as
wnwn are permitted�

Walk�sets are an alternative form of a program� We can de�ne an in�
terpreter Int which executes such programs� and transform Int calls by the
supercompiler� an MST to the three�level hierarchy� Scp� Int� Program�
But what do we achieve by this MST� Well� if Int does just driving� i�e�
processes the walks in the strict order from left to right� we have achieved
nothing� But we can create a clever interpreter which uses equivalency rela�
tions on the set of walks� It could unwind iterative loops both from the left�
and from the right� i�e� use the relation Wn�� � W Wn or Wn�� � WnW
in order to achieve reduction in supercompilation� It could also reorder op�
erations in walks using commutation relations and do other transformations�
In ���
 I show that with this technique we can make transformations which
could not be done by direct supercompilation� such as function inversion
and the merging of consecutive iterative loops�

The Scp� Int technique can be very e�ectively used for graph cleaning�
Suppose we �nished supercompilation and have the resulting �at graph G�
It does no mean that all exit nodes �expressions for output� are actually
feasible� For each node in G we can write a regular expression for the set of
all walks which lead to this node� Using the Scp�Int method we may discover
that some walk�sets are reduced to Z� then these nodes can be eliminated�

As an example� let us return to the proof of commutativity of addition�
which we have found more di�cult to prove than the other theorems in
Sec����� The proof requires a considerable analysis of the graph resulting
from straightforward supercompilation� I will only sketch the proof�

The con�guration to compute is

	�
 �� �
 x�y�� �
 y�x��

In the process of supercompilation� 	�
 is generalized� and reduced to
the generalization�

	�
 �x
a
� $x��y

a
� $y� 	�
 �� �
 $x�y�� �
 $y�x��

The graph for 	�
 has �� exits� Four of them are T� eleven are F� To
prove the theorem� the walks which lead to each of the eleven F ends must

��

be proven unfeasible� As an example� I will do it for one of the walks� which
is neither the least nor the most di�cult�

w � �x
a
�$x��y

a
�$y��y

c
�y����n�x

c
�x����n�y

c
�y�����x

c
�����

�$y
c
�$y�����$y

c
�$y����m�y

c
�y����m�$y

c
������y

c
�y����

Using commutation relations we reduce it to the form�

w � �x
a
�$x� �x

c
�x����n �x

c
�����

�y
a
�$y� �$y

c
�$y����p �$y

c
����� �y

c
�y����q

where we have introduced new variables p� q� which show the total number
of iterations in the walk� Their relation to the loop variables m�n� namely
p � m" � and q � n"m" �� will be treated as a restriction on p� q�

The unfeasibility of w results from the second line� i�e� y�part of it� so
we ignore the �rst line �x�part�� The call of the interpreter takes the form�

�Int �y
a
�$y� �$y

c
�$y����p �$y

c
����� �y

c
�y����q�

This is a function of p and q� Unwinding the p�loop means breaking it into
a resursive call and the base�

W p � �p
c
� p" �� WW p " �p

c
� �� 	

and analogously for the q�loop�
Thus� driving produces branches to four cases�

	�
 �Int w� �p
c
� p
���q

c
� q
�� 	�

 �p
c
� p
���q

c
����� 	�

 �p
c
������q

c
� q
�� 	�

 �p
c
������q

c
����� 	�

Let us consider the walk transformation in 	�
� This is the case when
recursion takes place in both p�loop� and q�loop�

�y
a
�$y��$y

c
�$y�����$y

c
�$y����p $y

c
����� �y

c
�y�����y

c
�y����q

Resolving the clash on $y� we have�

�y
a
�$y� �$y

c
�$y���� � �y�$y���� � �y

c
�y���� �y

a
�$y� �y���

a
�y�

Now the assignment �y���
a
�y� travels to the right and clashes with con�

traction �y
c
�y���� to produce nothing� The contraction �y

c
�y���� is taken

from the argument of Int and becomes a contraction on the input variable
y �I cannot go here into formal details�� The result is that 	�
 becomes
identical to 	�
� a reduction �folding��

��

It is easy to check� that con�gurations 	�
 and 	�
 are unfeasible� Con�
�guration 	�
 is an exit from the loop where p and q are decreased by one
in every cycle� If we denote the number of cycles as N � the restriction on
p� q becomes�

p"N � m" �� q "N � n"m" �

When p � q � �� we have the restriction m " � � n"m" �� which cannot
be satis�ed because n � �� The graph for 	�
 becomes a loop without exits�

	�
 �Int w� �p
c
� p
�� �q

c
� q
�� 	�

This completes the proof of unfeasibility of the chosen walk� The other
ten walks are handled analogously�

��� Alternating quanti�ers

The logical formula for commutativity of addition is universally quanti�ed
over x and y� Now we want to �nd out how the computational paradigm
tackles the cases of existential quanti�cation and� especially� those where �
and � alternate� As is well known� a sequence of identical quanti�ers can be
reduced to one by operating on tuples of variables� but there is no similar
reduction when quanti�ers alternate� We shall see that each putting of � in
front of �� or vice versa� requires� computationally� a metasystem transition�

Let All be a function which uses a supercompiler to prove universally
quanti�ed statements� as in the above examples� If the supercompiler comes
with a graph where no branch ends with F� it outputs T� otherwise it outputs
Z� Thus

�All ��P x�� �

�
T� �xP �x� is proven
Z� no information

To introduce existential quanti�cation we de�ne the function Exs which
constructs by driving the potentially in�nite tree of con�gurations using the
breadth��rst principle� If it �nds that some branch ends with T� it outputd
T� Otherwise it works in�nitely � or� realistically� till it is stopped�

�Exs ��P x�� �

�
T� �xP �x� is proven
is stopped� no information

As always in Refal� a variable x may be an n�tuple �x��� � ��xn�� If all of
them take part in the driving implied in �All ��P x�� or �Exs ��P x���
they are all appropreately quanti�ed� e�g� computing

�

�All ����������� �

�P x� y� z�

is proving �x�y�zP �x� y� z�� We can �x the value of one variable� say x� by
raising it to the top level �see Sec������

�All ���x ������� �

�P �� y� z�

This computation requires some value of x be given� and for this value
it tries to prove �y�zP �x� y� z��

We can consider this function as a predicate depending on x and quantify
it existentially by submitting it to function Exs�

�Exs ������������������������ �

�All ���x ������� �

�P �� y� z�

This is the metacomputation formula �MST scheme� for �x�y�zP �x� y� z��
In a similar manner we establish that the logical formula �x�y�zP �x� y� z�
is represented by�

�All ������������������������ �

�Exs ����� x ����������� �

�All �� � y ����� �

�P �� �� z�

Following these lines it is easy to construct an MST scheme for every
logical formula� after it has been reduced to the prenex form�

As an example� consider the theorem� there exists no maximal natural
number� ��x�yLess�y� x�� Here the function Less is de�ned as follows�

�Less x����y���� � �Less x�y�

�Less x�������� � F

�Less ����y���� � T

�Less �������� � F

To prove the theorem� we �rst reduce the proposition to the prenex
normal form� �x�yLess�x� y�� �we have used the equivalence �L�y� x� �
L�x� y��� then we form the corresponding MST scheme�

�All ���������������� �

�Exs ����� x �� �

�Less �� y�

Supercompilation of this simple con�guration can be done manually�
and I did this� I wrote a specialized version of Exs which does driving

��

in the expectation that the only function called is Less� Then I did the
supercompilation implied in All� and the result was T� which proves the
theorem�

��� Neighborhood analysis

Consider a function which looks for the �rst �a� in the string and returns T
if it is found� otherwise it returns F�

�fa �a�x� � T

�fa s�� x� � �fa x�

�fa 	
� � 	

Consider the computation of �fa �kasha���

�� �fa �kasha��

�� �fa �asha��

�� T

One may notice that there is a part of the argument� namely �sha��
which did not take part in computation� It could be replaced by any ex�
pression� and the computation� as well as its �nal result� would not change
a bit� One might guess that this kind of information about computational
processes may be of interest for di�erent purposes� such as debugging and
testing programs� A variation of driving� driving with neighborhood� ���
�
provides a general method for representing and extracting such information�

We de�ne a neighborhood as the structure �a�p� where p is a pattern
and a is a list of assignments for all variables in p� such that the result of
substitution a�p is a ground expression �i�e� one without variables� referred
to as the center of the neighborhood� Driving with neighborhood is a com�
bination of computation and driving� In computation the argument is a
ground expression� and it de�nes the path of computation� which sentence
is used at each step� In driving the argument is an arbitrary expression�
and we analyze all possible for it computation paths� Driving with a neigh�
borhood we drive its pattern� but consider only one path� namely the one
taken by the neighborhood�s center� At each step the center is the same as
if the initial function call were directly evaluated� The free variables in the
pattern �which may be loosely called neighborhood� represent the part of
information which was not� up to the current stage� used in computation�

Consider this driving�

�	

�� ��kasha�
a
�y� y �fa y� y

c
��k�y

�� ��asha�
a
�y� �k�y �fa y� y

c
��a�y

�� ��sha�
a
�y� �ka�y T

In the initial neighborhood �column �� the pattern has the maximal ex�
tension� anything� a free variable �y�� the assignment makes the center
�kasha�� In column � is the call to compute the pattern� By driving under
the de�nition of fa� we �nd that the contraction in column � is necessary
in order to take the path the center will take �the second sentence of the
de�nition�� Modifying the neighborhood by this contraction� we have the
next stage neighborhood in line �� Proceeding further in this manner� we
complete the computation of the initial call � it is T � and get the representa�
tion of the argument as a neighborhood with the pattern �ka�y� which tells
us that together with our argument� any argument which matches �ka�y

will lead to the same result of computation�
Sergei Abramov found a way to use neighborhood analysis for program

testing� ��� �
� This may seem strange� because the neighborhoods give us
information about unused parts of arguments� data� not about the program�
But Abramov makes a metasystem transition� driving with neighborhood
is applied not to program P working on data D� but to program Int which
is em an interpreter of the language in which P is written and works on
the pair �P�D�� Now the program becomes data� Fixing some input D � a
test for P � we can� by neighborhood analysis� determine what parts of the
program were used� and hence tested�in this run� and which parts were not�

On this basis Abramov built an elegant theory of program testing� which
usues the principle� choose each next test so as to check those features
of the program which have not yet been tested� Abramov gives a precise
mathematical de�nition to this intuitive principle and provides the necessary
theorems and algorithms�

� Conclusion

Supercompilation and partial evaluation belong to the same kind of program
transformation� which we refer to as metacomputation� Supercompilation
includes� but goes far beyond� partial evaluation� It may cause a deep trans�
formation of a program� especially when combined with various metasystem
transitions� Potential applications of driving� supercompilation� and other
forms of metacomputation are numerous and include function inversion� pro�
gram testing and theorem proving� Especially intriguing is the possibility

��

of repeated metasystem transitions from processing a function to process�
ing the sets of possible computation histories � walks in the graph of this
function as shown in Sec�����

The boundaries of what is possible to do with supercompilation are not
yet known� I would say that while supercompilation is� certainly� not suf�
�cient for successful program transformation� it is� in a sense� necessary
because this concept is a computer implementation of the general principle
of human knowledge� which is a search for such generalized states in terms of
which we can construct a self�su�cient model of a system� One consequence
of this nature of supercompilation is its universality� No special conditions
or restrictions are set beyond the fact that we deal with a computing sys�
tem� In my view� it is natural to �nd what can be done by supercompilation
before trying more complicated approaches� This is what I mean by saying
that supercompilation is necessary�

Even though the principle of metacomputation is simple� its translation
into working machines may be far from being simple� This is not unusual�
The basic principles of �ying are also simple� but an airplane consists of
many thousands of details� and it has taken many years of work by many
people� in order to develop air technology to the stage when the wonderful
machines of today become possible� Metacomputation and� in particular�
supercompilation are now at the technological stage of the brothers Wright�
Let us hope that a steady process of technological improvement of super�
compilers can be started� and that it will produce software tools to be widely
used in computer science and industry�

Acknowledgment� To avoid repetition of what I have said in the History
section� let me simply express my deep gratitude to all those who worked
with me or appreciated my work�

References

��
 S�M�Abramov� Metacomputation and program testing� in� �st Interna�
tional Workshop on Automated and Algorithmic Debugging� Linkoping�
Sweden� pp��������� �����

��
 S�M�Abramov� Metavychisleniya i ikh Prilozhenija �Metacomputation
and its Computations� in Russian� Nauka� Moscow� �����

��

��
 Bazisnyi Refal i yego realizatsiya na vychislitel�nykh mashinakh� �Basic
Refal and its implementation on computers� in Russian�� GOSSTROY
SSSR� TsnIPIASS� Moscow� �����

��
 S�V�Chmutov� E�A�Gaydar� I�M�Ignatovich� V�F�Kozadoy�
A�P�Nemytykh� V�A�Pinchuk� Implementation of the symbol analytic
transformations language FLAC� DISCO���� LNCS vol� ���� p���
�
�����

��
 Dershowitz�N� Termination in rewriting� Journal of Symbolic Compu�
tation� �� pp�
����
� ��	��

�

 Ershov� A�P� On the essence of compilation� Programmirovanie �������
��� ���� �in Russian�� See translation in� E�J�Neuhold� ed�� Formal
description of Programming Concepts pp �������� North�Holland� ���	�

��
 Opening Key�note Speech� in� D�Bjorner�A�P�Ershov and N�D�Jones�
ed� Partial Evaluation and Mixed Computation� North�Holland� pp�����
�	�� ��		�

�	
 Futamura� Y�� Partial evaluation of computation process � an approach
to compiler compiler� Systems� Computers� Controls� ���� pp�������
�����

��
 Futamura Y�� Nogi K� Generalized Partial Evaluation� in� Bjorner D��
Ershov A�P�� Jones N�D� �eds�� Partial Evaluation and Mixed Com�
putation� Proceedings of the IFIP TC� Workshop� pp��������� North�
Holland Publishing Co�� ��		�

���
 Futamura� Y��Nogi� K�� Takano� A� Essence of generalized partial eval�
uation� Theoretical Computer Science� ��� pp�
����� �����

���
 Gl�uck� R�� Towards multiple self�application� Proceedings of the Sym�
posium on Partial Evaluation and Semantics�Based Program Manipu�
lation �Yale University�� ACM Press� ����� pp���������

���
 R�Gl�uck and J�J rgensen� Generating transformers for deforestation
and supercompilation� in� B� LeCharlier ed� Static Analysis� Proceed�
ings� Namur� Belgium� ����� LNCS� vol�	
�� pp�������	� Springer�
�����

��

���
 R�Gl�uck and A�V�Klimov� Occam�s razor in metacomputation� the no�
tion of a perfect process tree� in� P�Cousot� M�Falaschi� G�File� and
Rauzy� ed� Static Analysis� LNCS vol���� pp��������� Springer �����

���
 R�Gl�uck and A�V�Klimov� Metacomputation as a tool for foramal lin�
guistic modelling� in� R�Trapple� ed� Cybernetic and Systems �	
 vol��
pp���
������� SIngapore� ����

���
 R�Gl�uck and A�V�Klimov� Metasystem transition schemes in computer
science and mathematics� World�s Future� the Journal of General Evo�
lution� vol���� pp��������� �����

��

 R�F�Gurin and S�A�Romanenko The Programming Language Refal Plus
�in Russian�� Intertekh� Moscow� �����

���
 Jones N�D�� Sestoft P�� Sondergaard H�� An Experiment in Partial Eval�
uation� The Generation of a Compiler Generator� In� Jouannaud J��P�
�Ed�� Rewriting Techniques and Applications� Dijon� France� LNCS ����
pp��������� Springer� ��	��

��	
 Jones� N�D� Automatic program specialization� a re�examination from
basic principles� in� D�Bjorner�A�P�Ershov and N�D�Jones� ed� Partial
Evaluation and Mixed Computation� North�Holland� pp������	�� ��		�

���
 Jones� N� D�� Sestoft� P�� S ndergaard� Mix� a self�applicable partial
evaluator for experiments in compiler generation� in� Lisp and Symbolic
computation ����� ��	�� pp������

���
 N�D�Jones� The essence of program transformation by partial evaluation
and driving� in� N�D�Jones� M�Hagiya� and M�Sato ed� Logic� Language
and Computation� LNCS vol����� pp���
����� Springer� �����

���
 Kistlerov V�L�� Printsipy postroeniya yazyka algebraicheskikh vy�
chislenii FLAC �The de�ning principles of the language for algebraic
computations FLAC� Institut Problem Upravleniya� Moscow ��	� �in
Russian��

���
 Klimov A�V� and Romanenko S�A� A Meta�evaluator for the language
Refal� Basic Concepts and Examples �in Russian�� Preprint �� Keldysh
Institute for Applied Mathematics� Moscow� USSR� ��	��

���
 Jos!e Meseguer� General logics� in� H��D� Ebbinghaus et al ed� Logic
Colloquium���� pp��������� North�Holland� ��	��

��

���
 Jos!e Meseguer and Manuel Clavel� Axiomatizing re�ective logics and
languages� submitted for publication�

���
 Olunin V�Yu�� Turchin V�F�� FlorentsevS�N�� A Refal interpreter� in�
Trudy ��oi Vses
 Konf
 po Programmirovaniyu� Kiev� ��
	 �in Russian�

��

 P�Sestoft� The structure of a self�applicable partial evaluator� in�
H�Ganzinger and N�D�Jones� ed� Programs as Data Objects �Copen�
hagen� �	���� LNCS� vol����� pp���
���
� Springer� ��	
�

���
 The generation of inverse functions in Refal� in� D�Bjorner�A�P�Ershov
and N�D�Jones� ed� Partial Evaluation and Mixed Computation� North�
Holland� pp��������� ��		�

��	
 Inversion and metacomputation� in� Proceedings of the Symposium on
Partial Evaluation and Semantics�Based Program Manipulation �Yale
University�� pp������� ACM Press� �����

���
 Romanenko� S�A� A compiler generator produced by a self�applicable
specializer can have a surprisingly natural and understandable struc�
ture� in� D�Bjorner�A�P�Ershov and N�D�Jones� ed� Partial Evaluation
and Mixed Computation� North�Holland� pp������
��� ��		�

���
 Romanenko S�A� Arity raiser and its use in program specialization� in�
Jones N�D� ed�� ESOP���� LNCS� vol����� pp������
�� �����

���
 M�H�S rensen� Turchin�s Supercompiler Revisited� Master�s thesis�
Dept� of Computer Science� University of Copenhagen� �����

���
 M�H�S rensen� R�Gl�uck� An algorithm of generalization in positive su�
percompilation� in� J�W�Lloyd ed�� International Logic Programming
Symposium� MIT Press� ����� to appear�

���
 M�H�S rensen� R�Gl�uck and N�D�Jones� Towards unifying deforesta�
tion� supercompilation� partial evaluation and generalized partial evalu�
ation� in� D�Sannella ed�� Programming Languages and Systems� LNCS�
vol��		� pp��	������ Springer� �����

���
 M�H�S rensen� R�Gl�uck and N�D�Jones� A positive supercompiler� Sub�
mitted to Journal of Functional Programming� �����

���
 Metajazyk dlja formal�nogo opisanija algoritmicjeskikh jazykov �A met�
alanguage for formal description of algorithnic languages� in Russian��
in� Cifrovaja Tekhnika i Programmirovanie� pp���
����� Moscow ��

�

��

��

 Turchin V�F� Programmirovanie na yazyke Refal �Programming in Re�
fal� in Russian�� Preprints Nos� ��� ��� ��� �	� �� of the Institute for
Applied Mathematics� AN SSSR� �����

���
 Turchin� V�F�� Equivalent transformations of recursive functions de�ned
in Refal� In� Teoriya Yazykov I Metody Postroeniya Sistem Program�
mirovaniya �Proceedings of the Symposium�� Kiev�Alushta �USSR��
pp������� ���� �in Russian��

��	
 Turchin V�F� The Phenomenon of Science� Columbia University Press�
New York� ����

���
 Turchin� V�F� The Language Refal� the Theory of Compilation and
Metasystem Analysis� Courant Computer Science Report %��� New
York University� ��	��

���
 Turchin� V�F�� Nirenberg� R�M�� Turchin� D�V� Experiments with a
supercompiler� In� ACM Symposium on Lisp and Functional Program�
ming� ACM� New York� pp� ������ ��	��

���
 Turchin� V�F� The concept of a supercompiler� ACM Transactions on
Programming Languages and Systems� �� pp��������� ��	
�

���
 Turchin� V�F� The algorithm of generalization in the supercompiler�
In� Bjorner D�� Ershov A�P�� Jones N�D� Eds� Partial Evaluation and
Mixed Computation� Proceedings of the IFIP TC� Workshop� pp� ����
���� North�Holland Publishing Co�� ��		�

���
 Turchin V�� Refal��� Programming Guide and Reference Manual� New
England Publishing Co�� ��	��

���
 Turchin V�F�� Program Transformation with Metasystem Transitions�
J
 of Functional Programming� ���� �	������ �����

���
 Turchin V�� Nemytykh� A� Metavariables� Their implementation and
use in Program Transformation� CCNY Technical Report CSc TR����
���� �����

��

 Turchin V�� Nemytykh� A� A Self�applicable Supercompiler CCNY
Technical Report CSc TR�������� �����

���
 Turchin� V�F� On Generalization of Lists and Strings in Supercompila�
tion� CCNY Technical Report� ���
�

��

