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Abstract

A supercompileris a program which can perform a deep transforma-
tion of programs using a principle which is similar to partial evaluation,
and can be referred to as metacomputation. Supercompilers that have
been in existence up to now (see [12], [13]) were not self-applicable: this
1s a more difficult problem than self-application of a partial evaluator,
because of the more intricate logic of supercompilation. In the present
paper we describe the first self-applicable model of a supercompiler
and present some tests. Three features distinguish it from the previ-
ous models and make self-application possible: (1) The input language
is a subset of Refal which we refer to as flat Refal. (2) The process of
driving 1s performed as a transformation of pattern-matching graphs.
(3) Metasystem jumps are implemented, which allows the supercom-
piler to avoid interpretation whenever direct computation is possible.
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1 Introduction

Self-applicability of a program transformer is well known to lead to new
possibilities, such as automatic creation of compilers from interpreters (see
[2], [10], [1], [3]). Self-applicability of a partial evaluator was first achieved in
[3]. A supercompileris a program which can perform a deep transformation
of programs using a principle which is similar to partial evaluation, and is
referred to as metacomputation. Supercompilers that have been in existence
up to now (see [12], [13]) were not self-applicable: this is a more difficult
problem than self-application of a partial eveluator, because of the more
intricate logic of supercompilation. !

In the present paper we describe the first fully self-applicable model of
a supercompiler. We concentrate on the three features of this model which

distinguish it from the previous models and make self-application possible.

e The input language is simplified to a subset of Refal which we refer to
as flat Refal (Sec.2).

e The process of driving (see [11],[13]), which plays the key role in the
construction of the transformed program, is performed as a transfor-
mation of flat pattern-matching graphs which preserves their functional
meaning.

e Metasystem jumps, as described in [15], are implemented (Sec.4). This
feature allows the supercompiler to avoid interpretation whenever a
direct computation is possible.

In Sec.5 the results of the testing of the new supercompiler are discussed.

2 Flat Refal

For the purpose of program transformation, it makes sense to have object
programs written in a maximally simplified programming language, into
which programs written in a more convenient language can be automatically
translated. The supercompiler described here uses flat Refal as the language
of object programs. Flat Refal is used in two forms different in syntax: the
sentential form, which is convenient for the human user, and the pattern-
matching graph form, which is actually transformed in the supercompiler.

!Some steps in this direction, though, were reported in [8].



symbol ::= symbolic-name — number — ¢ character ’

expression ::= [] — term expression

] ==

term ::= symbol — variable — ( expression )
variable ::= s.index — e.index

index ::= number — symbolic-name
function-def ::= fn-name { sentences }
fn-name ::= symbolic-name

sentences ::= sentence — sentence sentences
sentence 1= left-side = right-side ;
left-side ::= rigid-pattern

right-side ::= expression — function-call
function-call ::= < fn-name expression >
program ::= sentence — sentence program

Table 1: The syntax of flat Refal

Flat Refal is the lowest level in the hierarchy of the existing versions
of Refal which, historically, started from the basic version and was then
extended up as extended Refal and down as sirict and now flat Refal. We
wrote the programs constituting the supercompiler in extended Refal. For
self-application we first translate the supercompiler from extended Refal into
strict Refal; this translation can be fully automatic, but in our tests it was
partly manual. Then the text in strict Refal is automatically converted into
flat Refal: first in the sentential form (for debugging), and then, finally, in
the graph form, in which it becomes an object program for the higher level
supercompiler.

Definition of basic, strict and extended Refal can be found in [11], [13],
[14]. A brief description of flat Refal follows.

The syntax of flat Refal is given in Table 1. The fundamental data struc-
ture of Refal, the expression, is more general than the list or s-expression
used in Lisp, Prolog, and many functional languages. It allows concatena-
tion as one of the two basic constructions; the other construction is enclosure
in parentheses, which makes it possible to represent trees. An expression
may be empty, in which case it is represented either by the metasymbol [],
or just by an empty space. A string of characters can be represented using
only one pair of quotes: ‘abc’.

The two types of variables in Refal correspond to the two basic syntactic



types: s-variables, such as s.1 or s.x, take exactly one symbol as its value;
e-variables, as e.2, can have any expression as its value.

Definition:

(1) An object expression is an expression which includes neither variables,
nor function calls.

(2) A rigid pattern is an expression such that (a) none of its subexpressions
has the form Fie.iyFse.ioF3, where Fy etc. are arbitrary expressions, and
(b) no e-variable appears in the pattern twice. O

The semantics of Refal is based on pattern-matching. We denote the
matching of an object expression F,, the argument of the matching, to a
rigid pattern P as F, : P. This is an operation the result of which is either
a substitution for the variables in P which transforms P into FE,, in which
case matching succeeds, and the substitution is referred to as its resolution,
or a statement that there is no such substitution (matching fails). A pattern
can be seen as a set of object expressions. Therefore, we write £, € P if the
matching F, : P is successful.

It can be easily proved (see [11]) that a matching £ : P, where P is a
rigid pattern, has no more than one resolution.

Refal sentences are rewrite rules. The sentences are tried in the order
they are written, and the first applicable sentence is used. The right-hand
side of every Refal rule in the flat version of the language is either an expres-
sion or a single function call; nested function calls are not allowed. (Strict
Refal, like flat Refal, requires that the left-hand sides be rigid patterns, but it
allows any combinations of expressions and function calls in the right-hand
sides. In flat Refal, information exchange takes place only through vari-
ables, not through the values taken by function calls. This is an iterative,
not recursive, style of programming.

We do not require, though, that the user writes programs in flat Refal; as
mentioned above, programs can be written in strict Refal and automatically
converted into a flat form. The idea of the translation algorithm is to add to
each function one more argument which maintains a representation of the
stack of deferred function calls. When the right side of a sentence in the
original (not flat) program contains nested calls, the function call which is
to be evaluated first is left in the right side of the sentence; all other calls
are reworked into stack elements and added to the first argument in the
required order. If the right side is passive, a special function Pop is called,
which pops the stack appropriately. We shall not go into details of the
algorithm, but only consider, as an example, a simple strict Refal program,



and its ‘flattening’.
Let function Fab be defined by:

Fab {
‘a’e.1l = ‘D’}<Fab e.1>;
s.2 e.1 = 8.2 <Fab e.1>;
= ; }
In a given string of symbols it replaces every letter ‘a’ by ‘b’. This program
is not in flat Refal, because the recursive right sides are not pure function
calls: there is an invisible function which adds ‘b’ or s.2 in front of the
recursive call of Fab. We treat function Fab as if its definition were:
Fab {
‘a’e.1 = <Concatenate ‘b’<Fab e.1>>;
s.2 e.1 = <Concatenate s.2 <Fab e.1>>;
=)
Concatenate { e.1 = e.1 }

The translation of this definition into the flat Refal is:
Fab {
(e.St) ‘a’ e.1 = <Fab (e.St (Pop 2)) e.1>;
(e.8t) 5.2 e.1 = <Fab (e.St (Pop 3(s5.2))) e.1>;
(e.St) = <Pop (e.St)>; }

Pop {
(e.St (Pop 2)) e.XXX0 = <Pop (e.St) ‘b’ e.XXX0 >;

(e.St (Pop 3(s8.2))) e.XXX1 = <Pop (e.St) s.2 e.XXX1 >;
() e.XXX0 = e.XXX0; }

The initial call of Fab is now <Fab () e.1> (not just <Fab e.1>, as be-
fore), where the empty content of parentheses stands for the initially empty
stack.

If the first symbol of the argument e.1 starts with ‘a’, the first sentence
of Fab works. It adds the stack element (Pop 2) to the current stack e.St.
In this element, Pop is the name of the function to be called next (formally,
this should have been Concatenate, but it has an immediate passive out-
come, hence Pop is called). The symbol 2 is just a case number. Since there
are no variables in the deferred function call, no more information is needed
than the function name. This is not so in the second sentence, where the
element to go to the stack is (Pop 3(s.2)). Here 3 is, again, a case number,
but the value of the variable s.2 is also remembered.



When the argument e.1 becomes empty, function Pop is called which
starts undoing the stack. The variables of the form e.XXXn stand for the
value of the latest call. Looking at the first sentence of Pop we see that
(Pop 2) is taken from the stack, then ‘b’ added on the left, and the function
calls itself recursively. The second sentence works analogously. The stack
having been exhausted, the value of the initial function call is returned.

We see that this translation simulates, in an iterative manner, the work
of a recursive definition.

iJFrom the view-point of supercompilation, the difference between strict
and flat Refal is not so salient as when we compare the respective program-
ming styles. With strict Refal, configurations of the Refal machine include
deferred funciton calls, which are, in the previous supercompilers, repre-
sented by a stack. With flat Refal, configurations are flat, but the first
argument may represent the same stack with which the strict-Refal super-
compiler is working. The advantage of our present approach is that the
stack is not a separate structure, but just one of the parameters. It can be
treated as other parameters, which is causes considerable simplification. On
the other hand, if we want to treat the stack as a separate structure, we
still can do it in the flat setting, by giving a special treatment to the first
argument.

3 Pattern-matching graphs

Below we briefly describe the most important features of a form of flat Refal
programs which we refer to as (flat) pattern-matching graphs. A program
in flat Refal is automatically converted into a pattern-matching graph.

In our definition of the pattern matching F, : P the left side F, was
supposed to be an object expression (no variables). Now we generalize this
concept by allowing pattern-matching pairs where the left side F is, an
arbitrary expression. The variables in F are supposed to be bound, i.e.
have definite values (object expressions). The the execution ofgeneralized
pattern-matching consists of two steps: first we substitute for the bound
variables in F their values, which results in some object expression FE,;
then we execute the matching F, : P, where the left side is now an object
expression. As a result of a successful matching, the free variables in the
pattern P get certain values (object expressions again). If there are no
variables in the pattern and the matching is successful, as in a:a, the result
is denoted as I(the identity operation); if matching fails, the result is denoted



as Z(impossible operation).

Definition:

(1) A contraction is a pattern matching v : P, where v is a variable and P
is a rigid pattern; we shall denote this contraction as v = P.

(2) An assignment is a pattern matching F : v, where F is an expression
and v a variable; we shall denote this assignment as E < v.

(3) The list of n Refal expressions FEy, Es, ..., F, is the expression:

(4) A warlist is a list of free variables where no variable appears twice. One
varlist, Vi, is a subset of another, V3, if every variable from Vj is also in V5.
Two varlists are equal (but not necessarily identical) if each is a subset of the
other. The list of all variables that enter a pattern F is denoted as var(F).
(5) A list contraction is a pattern matching V' : P, where V is a varlist of
n variables and P is a rigid list of the same number of pattern expressions.
We shall denote this contraction as V = P.

(6) A list assignment is a pattern matching F : V, where V is a varlist
of n variables and F is an arbitrary list of the same number of pattern
expressions. We shall denote this assignment as £ & V. O

We shall often skip the word “list” referring to contractions and assign-
ments when it is clear from the context whether the operation involves one
variable or a list of variables.

Our notation of contractions and assignments may seem unusual, but it is
quite logical and convenient. It is derived from the following two principles.
(1) On the left side we have bound (old, defined) variables; on the right side
free (new, to be defined) variables. (2) When the operation is understood
as a substitution, the arrow is directed from the variable to its replacement.

To discuss the tests reported in the present paper, we only need to under-
stand contractions and assignments, and have a general idea of the syntax
of graphs.

A pattern-matching graph is a tree which represents possible computa-
tion paths. We write it in a syntax similar to that of arithmetic expressions.
Terms in a sum are walks of the graph which have a common starting node.
Concatenation in terms represents sequential execution of the basic opera-
tions, while addition (branching) defines various possible cases. Decisions
as to which of the paths is to be taken are governed by contractions and
restrictions, the latter being, essentially, negative contractions. Due to the



use of restrictions, different branches starting at the same node can be pro-
cessed independently. This is not so in the case of the sentential form of
Refal, where only those cases come to each given sentence which failed at
all preceding sentences.

The function call to be computed is given as a graph of the form:

value-list < var-list; fa(F)

where fn(F') stands for the graph defining the function F. The final result
of computation is assigned to the special "external world” variable e.out.

4 Metasystem jumps

In self-application of the supercompiler we have a three-level hierarchy of
functions: fo, f1, fo where fy is some function, f; and f, the supercompiler.
In this hierarchy a function f, at the level n is transformed by a function
fn+1 at the level n 4 1, which is, thereby, a metasystem with respect to f,.
Creation of each new level is a metasystem transition, or MSY for short.

In [15] a system was developed which makes it possible to automatically
change the level at which the computation is done: we call this metasystem
jumps. Thus, whenever f,y; is to evaluate (partially) f,, control is first
passed to f, for a direct evaluation, as far as possible. When no step can be
made because of unknown values of variables, control is passed back to f,41
for driving. Examples in [15] show that metasystem jumping may result in
a speed-up factor of more than 20.

The system developed in [15] was used in the present work. We refer the
reader to that paper for details, introducing only the notation used there,
since we need it for discussion of tests.

The domain of a function defined in Refal is a set of object expressions.
Refal programs, however, may use most general Refal expressions, including
evaluation brackets and free variables. Hence we cannot directly write Refal
programs which manipulate Refal programs. To do this we must map the
set of general Refal expressions on the set of object expressions and use the
images of “hot” objects, i.e. free variables and evaluation brackets, instead
of these objects themselves.

We call this mapping a metacode, and denote the metacode transforma-
tion of F as u{F}; if F is, syntactically, one Refal term, the curly brackets
can be dropped. Obviously, metacoding must have a unique inverse trans-
formation, demetacoding, so it must be injective.
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Table 2: The metacode

We used, in the terminology of [15] an internal metacode defined by
Table 2, where S is any symbol, and ¢ the index of a variable.

In the hierarchy fo, fi, fo the function f; has a metacoded call of fy
as its argument; f; has the metacoded call of f; as its argument. We use
MST schemes for a clear representation of such hierarchies 2. An MST
scheme is built according to the rule: whenever a subexpression has the
form Eyu{Fs}FEs, the metacoded part is moved one level down and replaced
by dots on the main level:

FEy ... FEs3
El,u{Eg}Eg g E2

The parts of the overall Refal expression which belong to different meta-
system levels are put on different lines. Refal expressions on the bottom
level are written the same way as if they were on the top level; metacoding
is implicit and is indicated by putting them one line down. To convert an
MST scheme into an executable Refal expression, we must metacode each
level as many times as long is its distance from the top.

In addition, we can move up some variables in an MST scheme, leaving in
the old place a bullet o. If a variable t.i (type ¢, index ¢) is raised by h levels
— the number referred to as its elevation — then the meaning of the bullet-
variable pair is u”~"{<Dn”t.i>}, where Dn (read ‘Down’) is a Refal function
which performs the metacode transformation on object expressions. Thus a
bullet-variable pair can be seen as a variable metacoded n — h times, but the

2This notation was first used by one of the present authors (VT) in lectures at the
University of Copenhagen in 1985. Ever since, its various versions were used in seminars
on Refal and metacomputation in Moscow and New York. In a published form it first
appeared in [5].



possible values of this variable are only such that they an object expression
h times. In particular, if an input variable is of an elevation h, its desired
value must be metacoded h times before the beginning of computation. (See
more about elevated variables in [15]).

Moving variables up radically changes the way the expression represented
by the scheme will be executed. To read an MST scheme correctly, the
following rule of two levels can be used:

The variables on the top level are free. They are the arguments of the func-
tion represented by the MST scheme as a whole; some specific values must
be substituted for them before computation. The variables on the next level
down are the variables of the function whose definition (the program for it)
results from the computation on the top level.

As an example, consider the well-known problem of compilation. Let
<L program,data> be a Refal interpreter of some language L. Let P be a
program in L. Using the supercompiler we can translate P into an efficient
program in Refal by partial evaluation according to the MST scheme:

<SCP v >
<L P ,e.data>

Now suppose we want a function which would accept any arbitrary pro-
gram, not just P. If we simply put the variable program instead of P:

SCP vt >
<L e.program, e.data>

we will not get what we want. Here the variables for data and for program
are on the same level and are treated in the same way. Using the rule of
two levels we see that the result will be a function of two variables: this is,
again, an interpreter. No partial evaluation takes place, because the value of
e.program remains unknown. If we want partial evaluation, we must raise
the variable e.program to the level of Scp:

<Scp ...e.program.......... >
<L ° , e.data>

Now the rule of two levels tells us that a specific program will be asked
by this function as the value of the argument e.program. Then partial
evaluation will take place, returning a program for a function of the variable
e.data. It is, of course, a translation of e.program. The function defined
by this MST scheme may further be subject to a transformation by another
partial evaluator. It will then produce an efficient compiler for L.

10



It should be noted that in the calls of function transformers such as Scp
there is, implicitly, one more argument, which is not shown in our MST
schemes: the definition (program for) all function calls on the object level.

5 Testing

Our system is still under debugging, but we can, already, show a few interest-
ing tests. We have tested our supercompiler on several “classical” for partial
evaluation problems, such as string pattern-matching and compilation, but
here we are concerned only with self-application and similar problems.

51 Test 1

Before attempting self-application, we ran a few tests which demonstrate “al-
most self-application”: a three-level scheme where Scp transforms a metain-
terpreter applied to some program. One of the simplest tests is:
<S¢cp .o >
<Int ... e.x >
<Fab e >

Here Fab is a simple function which changes every ‘a’ to ‘b’. Its definition
in flat Refal is:
Fab { e.1 = <Fabl () e.1> }
Fabl {
(e.1) ‘a’e.2 = <Fabl (e.1‘D?) e.2>;
(e.1) 8.3 e.2 = <Fabl (e.1 5.3) e.2>;
(e.1) = e.1; }

Function Int is an interpreter of flat Refal. The argument & of Fab
is elevated by one level to become free for Int and bound for Scp. The
call of Int, by its definition, computes <Fab x> with an arbitrary z by
interpretation of the program for Fab. This function is equivalent to Fab but
works much slower. Transforming it by Scp returns an equivalent program,
which is, as it should be expected, an exact copy of the original program for
Fab, except for the names of variables.

5.2 Test2

The supercompiler Scp at the top level of the MST-schemes in self-application
is denoted as Scp2. It was written in extended Refal; its volume: 302 sen-

11



tences. It was manually translated into strict Refal; the volume became 347
sentences. Then it was automatically translated into a flat form (499 sen-
tences), which then was used as Scp1, to which Scp was applied. Thus, Scp1
and Scp2 represent the same algorithm written in two versions of Refal. We
could use Scp1l in the place of Scp2 to have ”very strict” self-application,
but we used Scp2 for the convenience of testing.

In Test 2 the scheme of self-application was:

<Scp2 ..ol >
<Scpl ....... >
<Fab e.1>

This is a correctness check. All work is done by Scpl, with Scp2 as a
simple supervisor. We see from the rule of two levels that Scp1 is a function
of no variables (a constant) whose value is the definition of a function of
e.1 which is equivalent to Fab. The supercompiler on the level 2, Scp2, has
no free variables on either top, or the next level; it transforms a function
(namely, Scp1), which is a constant. The output of Scp2 is not the same
as the output of Scpl, because they are on different metasystem levels. If
Scp1l is the constant const, then Scp2 outputs the metacode of a program
(in the graph form) which outputs const, i.e. u{const-e.out}.

The actual output of the supercompiler is, however, a bit more complex.
The program produced by the supercompiler can be seen as the expression:

(Define def(f1)...def(f.))(Call Giy,)

which combines a list of the definitions of new functions f; and the initial
function call to compute GG;,. The function definition is of the form:

def(fi) = mu<Config>=Fni: u{Prog;}

where < C'onfig > is a recurrent configuration in terms of the initial pro-
gram, Fni is the symbolic name of the corresponding new function f;, and
Prog; the program for it.

The output of the 2nd-level supercompiler Scp2 is a metacoded program
which we shall denote as p{Prog2}. In Test 2 it is this:

u{Prog2} = (Define ) (Call u{u{Progl} & e.out})

This program simply outputs the metacoded program Progl:

u{Progl} = (Define u<Fabi(e.23)e.24>=Fnl:u{Prog0})
(Call pu{((e.1)&(e.23)(e.24)fn(Fn1)})

12



Program Progl is the result of supercompilation by Scp1 of the call <Fab e.1>;
therefore it must be equivalent to it. Progl defines one recursive function
Fn1 which is the supercompiled function call <Fab1(e.23)e.24>. The vari-
ables of this configuration become the variables of the definition of Prog0.
Therefore, the initial call is a call of Fnl after the necessary assignments to
the variables (e.23) (e.24). The program Prog0 is the program for Fn1; it
results from supercompilation of Fabi, and it is identical to it, except for the
different names of variables. This is exactly what one should have expected.

5.3 Test 3
The MST scheme in this test is:
<Sep2 .o >
<Scpl ... 8.2 .... >

<Fab e e.1>

Here the argument of Fab is 8.2 e.1, i.e. it starts with some symbol
s.2. We have raised s.2 to become a free variable in the call of Scpl.
According to the Rule of two levels, the result of Scp2 must be a function
of s.2. The actual output is:

Prog2 = (Define )(Call u{Progl})

where Prog; is the initial graph, which we present in the sentential form for
readability:
Progl {
‘a’ = (Define pu<Fabl (‘b’)e.1>=Fnil: pProg0l)
(Call u{()(e.1)&(e.23)(e.24); fu(Fn1)));
(Define pu<Fabl (s.2)e.1>=Fn2: uProg02)
(Call p{()(e.1)&(e.23)(e.24); fu(Fn2)});

s.2

}

We see that Progl, indeed, depends on s.2 and includes two cases where
its value is “a’, or any value distinct from ‘a’. In both cases the structure
of the value is similar to that in the preceding test. The difference is that
partial evaluation took place with respect to s.2. Look at the recurrent calls
of Fab1: it is already within the parentheses which enclose the ready part of
the string, changed to ‘b’ if it was ‘a’. The programs Prog01 and Prog02
for Fn1l and Fn2, respectively, are:

13



Fnl {
(e.23) ‘a’e.24 = <Fnl (e.23‘b’) e.24>;
(e.23) 8.25 e.24 = <Fn1 (e.23 s8.25) e.24>;
(e.23) = ‘b’e.23; }

Fn2 {
(e.37) ‘a’e.38 = <Fn2 (e.37‘b’) e.38>;
(e.37) 8.39 .38 = <Fn2 (e.37 5.39) e.38>;
(e.37) = u=1{s.2} e.37; }

These programs are the same as the initial program for Fabl, except
that they are modified because of the partial evaluation which took place.
Functions Fn1 and Fn2 depend on e.1 alone; 5.2 has already been processed
and is kept in the first argument of Fabl. When the string is exhausted and
the output is done, s.2 must be added at the beginning of the string resulting
from processing e.1, converted to ‘b’ in Fnl, or left unchanged in Fn2.

The variable s.2 enters the program P, in the negative degree of meta-
code. This is the result of the variable s.2 being elevated. Recall that the
meaning of a variable elevated by h levels and metacoded n — 1 times is
p " {iDn”s.2;}. In our case h = 1, and n = 2. When p{Progl} which
is yielded by Prog2 is demetacoded, the metacode level from 1 becomes 0,
but the elevation & remains 1, which means that the value of 5.2 is a meta-
coded (once) symbol. When it is substituted by Progl in u{Prog01} and
u{Prog02}, we have a correct — all on the level 1 — program. When it is
demetacoded as a whole the result will be a correct working program (level
0); the value of 5.2 will be demetacoded together with the rest of the pro-
gram. However, if we want to write down the demetacoded program for Fn2
for an arbitrary s.2, we must insert in the proper place the demetacoded
symbol which is the value of s.2. This is exactly what p={s.2} means.

It should be noted that with our metacode, symbols do not change under
metacoding or demetacoding. Yet it would be an error to put s.2 instead
of u='{s.2}, because s.2 is not a free variable in the definition of Fn2.
The sentence which results from such a replacement would be syntactically
faulty: the right side of the sentence would include a variable which does
not enter the left side.

5.4 Test 4
The MST scheme is:

14



<Fab ..e..>

Here we have elevated the whole argument e.1. Because of this, Scp1 is
not transforming the program for Fab. It has no bound variables, therefore
the call of Fab is a constantfor it. What is going on is this. Scp1l gets a value
E of e.1 at input, computes the value E/ =<Fab E>, and then outputs a
program which outputs the constant E’. As for Scp2, it outputs a program
which is equivalent to Scpl, i.e. it does the same thing, but much more
efficiently; ideally, as efficient as the function Fab itself outputs is value.

The actual result of supercompilation is:

Prog2 =(Define u<Conf>=Fnl: u{Progl})
(Call pu{((e.1)&(e.59)(e.60); fn(Fn1)})

Here Conf is one of the configurations in the supercompilation of Scpl
by Scp2. It is big and hardly manageable by a human user. When Scp2
works on Scp1 it finds recurrent configurations, which become new recursive
functions. C'onf is such (and the only) configuration. The only thing about
it that is easy to establish is that it includes two free variables: e.59 and
e.60.

The program Progl is:

Fnl {
(e.B59) ‘a’e.60 = <Fnl (e.59‘b’) e.60>;
(e.B9) 58.72 .60 = <Fn1 (e.59 5.72) e.60>;
(e.59) = (Define )(Call e.59 & pufe.out});
e.59 = (Define ) (Call Z); }

Since the variable e.1 has the elevation 1, its intended value must be
metacoded before the computation by Scpl. This remains true also for
Scp2, because it produces a program which faithfully follows the input-
output requirements for Scpi.

At the first glance it may seem that the assignment in the third sentence
of Fnl has an error: the output variable e.out is metacoded, while e.59
is not. But e.59 is, like e.1 elevated; indeed, it is the result of processing
e.60, and the initial value assigned to €.60 is e.1. Function Fnl outputs
a metacoded program. When it is demetacoded, p{e.out} becomes e.out,
and the value of e.59 is demetacoded. So, the result is as it should be.

Function Fnl mimicks the recursive function Fabi, except that it has
one more sentence: the fourth. This also is a consequence of the fact that
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Scpl works in metacode. Fab1l is defined in expectation that its second
subargument is always a string of symbols. If it starts with a parenthesis, the
Refal machine fails (comes to an abnormal stop); the value of the function
in this case is not defined. But when Scp1 works in metacode and discovers
a parenthesis it does not fail. In our language of graphs there is a special
operation for this situation: Z. This is our way to say in metacode that the
original function causes failure. So, if none of the first three sentences of
Fnl works, then the fourth sentence assigns Z as the output value.

It is interesting to compare Tests 3 and 4 with regard to the level at
which recursion loops are closing. The Define part of the output consists
of those configurations which were found recurrent. In Test 3 the function
transformed by Scp2 depends on a symbol variable only; there is no recur-
sion on this argument (see the MST scheme). Therefore, the Define part
of the output is empty. The function transformed by Scpl, on the contrary,
depends on an e-variable, thus on this level we have two recurrent configura-
tions Fnl and Fn2, in the Define part. In Test 4 Scp2 works on a recursive
function of an e-variable, hence the appearance of recurrent configurations
is inevitable.

5.5 Test 5

The next two tests demonstrate another use of a supercompiler: in a com-
bination with a non-standard interpreters of the object language. Our lan-
guage, flat Refal, does not allow us to make lazy evaluation. To amend this,
we have written in flat Refal a lazy interpreter Lazy-Int of a full functional
language (strict Refal). Given a program in strict Refal, we interpret it by
Lazy-Int and supercompile this process by Scp according to the following
MST-scheme:
KSCP i >
<Lazy-Int .. (e.1)... >
<Fbc <Fab e >>

The program which is implicit in the call of Lazy-Int defines two func-
tions: Fab and Fbc. Function Fab was defined in Sec. 2 as an example of a
non-flat recursive function:

Fab {

‘a’e.1l = ‘D’}<Fab e.1>;

s.2 e.l1 =5.2 <Fab e.1>;
_’}
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It replaces every ‘a’ by ‘b’. Function Fbc is defined analogously and re-
places every ‘b’ by ‘c’. The lazy interpreter works on the composition of
these two functions. The expectation was that after supercompilation we
should have a flat one-loop program which converts both ‘a’ and ‘b’ into
‘e
And indeed, the resulting program is exactly as expected:
Fac {
O =;
(e.1 ) = <F1C1 O(e.1)> ; }

FiC1 {
(e.25 )(fa’e.26 ) <F1C1 (e.25 ‘c’)(e.26 )> ;
(.25 )(‘b’e.26 ) <F1C1 (e.25 ‘c’)(e.26 )> ;
(e.25 )(8.29 .26 ) = <Fi1C1 (e.25 58.29 )(e.26 )> ;
(.26 )() = .25 ; }

It transforms a two-pass program into an equivalent one-pass program.

5.6 Test 6

In this test we use the supercompiler in a combination with an even less
standard interpreter: an inverse interpreter Inv-Int which executes a func-
tion definition (in a form of a graph) from its ends to its beginnings, and
computes the value of the input when an output is given. Inv-Int stops
after finding the first solution and is relatively simple, because we have put
rather strong constraints on its input — a program to invert. They are:

e The program must be in flat Refal.

e The right side of each sentence, or the argument of a function call in
the right side, must be a rigid pattern.

o All variables of the left side of a sentence must be met also in the right
side.

The MST-scheme in Test 6 was:
KECP i >

<Inv-Int .......... (e.1)... >

The interpreter Inv-Int expects a configuration which depends on the
input variable e.x, and the output value assigned to the free variable e.1.
Implicit in the call is the program which defines the function Rev:

17



Rev { e.x = <Revl (e.x) ()>; }

Revl { (5.1 e.x) (e.y) = <Revl (e.x) (5.1 e.y)>;
O (ey) = e.¥; }

The interpreter finds a value of e.x such that

<Rev e.x> = e.1

and gives it out as its value.

Function Rev reverses its argument. Since its reversal is itself, the best
we can expect from the supercompiler is that it returns a function definition
identical to the above program for Rev. And it does so.

We can see this result as a proof that Rev™! =Rev, and therefore, a proof
that <Rev<Rev<e.1>> is the identical function. It shoud be noted that this
double reverse configuration cannot be reduced by direct supercompilation
to the identical function — even such a function that passes through the
string symbol by symbol, without changing them.

5.7 Conclusion

What we have shown in these tests is the hard core of the supercompiler
system. For specific applications, special front and back ends can be added.
For instance, the system requires that the value of an elevated variable
be metacoded at input and demetacoded at output. Clearly, this can be
included into the system, and the end user need not know anything about
this. MST-schemes can also be formed for a wide class of problems without
bothering the user with such details.

Our tests show that a supercompiler can be self-applicable. The im-
portant thing here is not, of course, just to apply it to itself and obtain
some target program; this program must be a good, efficient program. We
gave examples of such non-trivial transformations. A big program (Scp)
is applied to a big program (Scp itself or a non-standard interpreter) and
produces a small residue, which is the desired solution to the problem. Sure
enough, the zero-level programs in these tests are still small, not big, but
we believe that this is a matter of some technical details: eliminating bugs
and fine-tuning some of the algortihms, such as generalization. Writing su-
percompilers, like writing compilers, is a technology. 1t develops slowly but
surely, by accumulating small discoveries and improvements.
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