
A Self�Applicable Supercompiler

Andrei P� Nemytykh

Victoria A� Pinchuk

Programming Systems Institute� Pereslavl�Zalesski� Russia

Valentin F� Turchin

The City College of New York

Abstract

A supercompiler is a program which can perform a deep transforma�
tion of programs using a principle which is similar to partial evaluation�
and can be referred to as metacomputation� Supercompilers that have
been in existence up to now �see ����� ��	�
 were not self�applicable� this
is a more di�cult problem than self�application of a partial evaluator�
because of the more intricate logic of supercompilation� In the present
paper we describe the
rst self�applicable model of a supercompiler
and present some tests� Three features distinguish it from the previ�
ous models and make self�application possible� ��
 The input language
is a subset of Refal which we refer to as �at Refal� ��
 The process of
driving is performed as a transformation of pattern�matching graphs�
�	
 Metasystem jumps are implemented� which allows the supercom�
piler to avoid interpretation whenever direct computation is possible�

Keywords� program transformation� supercompilation� metacomputa�
tion� self�applicaiton� metasystem transition� MST�schemes� metacode� Re�
fal� pattern�matching graphs�

Contact� Valentin F�Turchin� ��� Hiawatha Blvd� Oakland� N�J� ��	
��
e�mail Turchin� turcc�cunyvm�cuny�edu
e�mail Nemytykh� nemytykh�scp�botik�yaroslavl�su
e�mail Pinchuk� pinchuk�scp�botik�yaroslavl�su

�

� Introduction

Self�applicability of a program transformer is well known to lead to new
possibilities� such as automatic creation of compilers from interpreters
see
���� ����� ���� �
��� Self�applicability of a partial evaluator was �rst achieved in
�
�� A supercompiler is a program which can perform a deep transformation
of programs using a principle which is similar to partial evaluation� and is
referred to as metacomputation� Supercompilers that have been in existence
up to now
see ����� ��
�� were not self�applicable� this is a more di�cult
problem than self�application of a partial eveluator� because of the more
intricate logic of supercompilation� �

In the present paper we describe the �rst fully self�applicable model of
a supercompiler� We concentrate on the three features of this model which
distinguish it from the previous models and make self�application possible�

� The input language is simpli�ed to a subset of Refal which we refer to
as �at Refal
Sec����

� The process of driving
see �������
��� which plays the key role in the
construction of the transformed program� is performed as a transfor�
mation of �at pattern�matching graphs which preserves their functional
meaning�

� Metasystem jumps� as described in ����� are implemented
Sec�	�� This
feature allows the supercompiler to avoid interpretation whenever a
direct computation is possible�

In Sec�� the results of the testing of the new supercompiler are discussed�

� Flat Refal

For the purpose of program transformation� it makes sense to have object
programs written in a maximally simpli�ed programming language� into
which programs written in a more convenient language can be automatically
translated� The supercompiler described here uses �at Refal as the language
of object programs� Flat Refal is used in two forms di�erent in syntax� the
sentential form� which is convenient for the human user� and the pattern�
matching graph form� which is actually transformed in the supercompiler�

�Some steps in this direction� though� were reported in ����

�

symbol ��� symbolic�name � number � � character �
expression ��� �� � term expression
�� ���
term ��� symbol � variable �
 expression �
variable ��� s�index � e�index
index ��� number � symbolic�name
function�def ��� fn�name f sentences g
fn�name ��� symbolic�name
sentences ��� sentence � sentence sentences
sentence ��� left�side � right�side �

left�side ��� rigid�pattern
right�side ��� expression � function�call
function�call ��� � fn�name expression �

program ��� sentence � sentence program

Table �� The syntax of �at Refal

Flat Refal is the lowest level in the hierarchy of the existing versions
of Refal which� historically� started from the basic version and was then
extended up as extended Refal and down as strict and now �at Refal� We
wrote the programs constituting the supercompiler in extended Refal� For
self�application we �rst translate the supercompiler from extended Refal into
strict Refal� this translation can be fully automatic� but in our tests it was
partly manual� Then the text in strict Refal is automatically converted into
�at Refal� �rst in the sentential form
for debugging�� and then� �nally� in
the graph form� in which it becomes an object program for the higher level
supercompiler�

De�nition of basic� strict and extended Refal can be found in ����� ��
��
��	�� A brief description of �at Refal follows�

The syntax of �at Refal is given in Table �� The fundamental data struc�
ture of Refal� the expression� is more general than the list or s�expression
used in Lisp� Prolog� and many functional languages� It allows concatena�
tion as one of the two basic constructions� the other construction is enclosure
in parentheses� which makes it possible to represent trees� An expression
may be empty� in which case it is represented either by the metasymbol ���
or just by an empty space� A string of characters can be represented using
only one pair of quotes� �abc	�

The two types of variables in Refal correspond to the two basic syntactic

types� s�variables� such as s�
 or s�x� take exactly one symbol as its value�
e�variables� as e��� can have any expression as its value�

De�nition�

�� An object expression is an expression which includes neither variables�
nor function calls�

�� A rigid pattern is an expression such that
a� none of its subexpressions
has the form E�e�i�E�e�i�E�� where E� etc� are arbitrary expressions� and

b� no e�variable appears in the pattern twice� �

The semantics of Refal is based on pattern�matching� We denote the
matching of an object expression Eo� the argument of the matching� to a
rigid pattern P as Eo � P � This is an operation the result of which is either
a substitution for the variables in P which transforms P into Eo� in which
case matching succeeds� and the substitution is referred to as its resolution�
or a statement that there is no such substitution
matching fails�� A pattern
can be seen as a set of object expressions� Therefore� we write Eo � P if the
matching Eo � P is successful�

It can be easily proved
see ����� that a matching E � P � where P is a
rigid pattern� has no more than one resolution�

Refal sentences are rewrite rules� The sentences are tried in the order
they are written� and the �rst applicable sentence is used� The right�hand
side of every Refal rule in the �at version of the language is either an expres�
sion or a single function call� nested function calls are not allowed�
Strict
Refal� like �at Refal� requires that the left�hand sides be rigid patterns� but it
allows any combinations of expressions and function calls in the right�hand
sides� In �at Refal� information exchange takes place only through vari�
ables� not through the values taken by function calls� This is an iterative�
not recursive� style of programming�

We do not require� though� that the user writes programs in �at Refal� as
mentioned above� programs can be written in strict Refal and automatically
converted into a �at form� The idea of the translation algorithm is to add to
each function one more argument which maintains a representation of the
stack of deferred function calls� When the right side of a sentence in the
original
not �at� program contains nested calls� the function call which is
to be evaluated �rst is left in the right side of the sentence� all other calls
are reworked into stack elements and added to the �rst argument in the
required order� If the right side is passive� a special function Pop is called�
which pops the stack appropriately� We shall not go into details of the
algorithm� but only consider� as an example� a simple strict Refal program�

	

and its ��attening��
Let function Fab be de�ned by�

Fab f
�a	e�
 � �b	�Fab e�
��

s�� e�
 � s�� �Fab e�
��

� � g

In a given string of symbols it replaces every letter �a	 by �b	� This program
is not in �at Refal� because the recursive right sides are not pure function
calls� there is an invisible function which adds �b	 or s�� in front of the
recursive call of Fab� We treat function Fab as if its de�nition were�

Fab f
�a	e�
 � �Concatenate �b	�Fab e�
���

s�� e�
 � �Concatenate s�� �Fab e�
���

� � g

Concatenate f e�
 � e�
 g

The translation of this de�nition into the �at Refal is�

Fab f

�e�St
 �a	 e�
 � �Fab �e�St �Pop �

 e�
��

�e�St
 s�� e�
 � �Fab �e�St �Pop ��s��

 e�
��

�e�St
 � �Pop �e�St
�� g

Pop f
�e�St �Pop �

 e�XXX� � �Pop �e�St
 �b	 e�XXX� ��

�e�St �Pop ��s��

 e�XXX
 � �Pop �e�St
 s�� e�XXX
 ��

�
 e�XXX� � e�XXX�� g

The initial call of Fab is now �Fab �
 e�
�
not just �Fab e�
�� as be�
fore�� where the empty content of parentheses stands for the initially empty
stack�

If the �rst symbol of the argument e�
 starts with �a	� the �rst sentence
of Fab works� It adds the stack element �Pop �
 to the current stack e�St�
In this element� Pop is the name of the function to be called next
formally�
this should have been Concatenate� but it has an immediate passive out�
come� hence Pop is called�� The symbol � is just a case number� Since there
are no variables in the deferred function call� no more information is needed
than the function name� This is not so in the second sentence� where the
element to go to the stack is �Pop ��s��

� Here � is� again� a case number�
but the value of the variable s�� is also remembered�

�

When the argument e�
 becomes empty� function Pop is called which
starts undoing the stack� The variables of the form e�XXXn stand for the
value of the latest call� Looking at the �rst sentence of Pop we see that
�Pop �
 is taken from the stack� then �b	 added on the left� and the function
calls itself recursively� The second sentence works analogously� The stack
having been exhausted� the value of the initial function call is returned�

We see that this translation simulates� in an iterative manner� the work
of a recursive de�nition�

�From the view�point of supercompilation� the di�erence between strict
and �at Refal is not so salient as when we compare the respective program�
ming styles� With strict Refal� con�gurations of the Refal machine include
deferred funciton calls� which are� in the previous supercompilers� repre�
sented by a stack� With �at Refal� con�gurations are �at� but the �rst
argument may represent the same stack with which the strict�Refal super�
compiler is working� The advantage of our present approach is that the
stack is not a separate structure� but just one of the parameters� It can be
treated as other parameters� which is causes considerable simpli�cation� On
the other hand� if we want to treat the stack as a separate structure� we
still can do it in the �at setting� by giving a special treatment to the �rst
argument�

� Pattern�matching graphs

Below we brie�y describe the most important features of a form of �at Refal
programs which we refer to as
�at� pattern�matching graphs� A program
in �at Refal is automatically converted into a pattern�matching graph�

In our de�nition of the pattern matching Eo � P the left side Eo was
supposed to be an object expression
no variables�� Now we generalize this
concept by allowing pattern�matching pairs where the left side E is� an
arbitrary expression� The variables in E are supposed to be bound� i�e�
have de�nite values
object expressions�� The the execution ofgeneralized
pattern�matching consists of two steps� �rst we substitute for the bound
variables in E their values� which results in some object expression Eo�
then we execute the matching Eo � P � where the left side is now an object
expression� As a result of a successful matching� the free variables in the
pattern P get certain values
object expressions again�� If there are no
variables in the pattern and the matching is successful� as in a�a� the result
is denoted as I
the identity operation�� if matching fails� the result is denoted

�

as Z
impossible operation��

De�nition�

�� A contraction is a pattern matching v � P � where v is a variable and P

is a rigid pattern� we shall denote this contraction as v
c
� P �

�� An assignment is a pattern matching E � v� where E is an expression
and v a variable� we shall denote this assignment as E

a
� v�

� The list of n Refal expressions E�� E�� � � � � En is the expression�

E��
E�� � � �
En�

	� A varlist is a list of free variables where no variable appears twice� One
varlist� V�� is a subset of another� V�� if every variable from V� is also in V��
Two varlists are equal
but not necessarily identical� if each is a subset of the
other� The list of all variables that enter a pattern E is denoted as var
E��

�� A list contraction is a pattern matching V � P � where V is a varlist of
n variables and P is a rigid list of the same number of pattern expressions�
We shall denote this contraction as V

c
� P �

�� A list assignment is a pattern matching E � V � where V is a varlist
of n variables and E is an arbitrary list of the same number of pattern
expressions� We shall denote this assignment as E

a
� V � �

We shall often skip the word �list� referring to contractions and assign�
ments when it is clear from the context whether the operation involves one
variable or a list of variables�

Our notation of contractions and assignments may seem unusual� but it is
quite logical and convenient� It is derived from the following two principles�

�� On the left side we have bound
old� de�ned� variables� on the right side
free
new� to be de�ned� variables�
�� When the operation is understood
as a substitution� the arrow is directed from the variable to its replacement�

To discuss the tests reported in the present paper� we only need to under�
stand contractions and assignments� and have a general idea of the syntax
of graphs�

A pattern�matching graph is a tree which represents possible computa�
tion paths� We write it in a syntax similar to that of arithmetic expressions�
Terms in a sum are walks of the graph which have a common starting node�
Concatenation in terms represents sequential execution of the basic opera�
tions� while addition
branching� de�nes various possible cases� Decisions
as to which of the paths is to be taken are governed by contractions and
restrictions� the latter being� essentially� negative contractions� Due to the

�

use of restrictions� di�erent branches starting at the same node can be pro�
cessed independently� This is not so in the case of the sentential form of
Refal� where only those cases come to each given sentence which failed at
all preceding sentences�

The function call to be computed is given as a graph of the form�

value�list
a
� var�list� fn
F �

where fn
F � stands for the graph de�ning the function F � The �nal result
of computation is assigned to the special �external world� variable e�out�

� Metasystem jumps

In self�application of the supercompiler we have a three�level hierarchy of
functions� f�� f�� f� where f� is some function� f� and f� the supercompiler�
In this hierarchy a function fn at the level n is transformed by a function
fn�� at the level n� �� which is� thereby� a metasystem with respect to fn�
Creation of each new level is a metasystem transition� or MSY for short�

In ���� a system was developed which makes it possible to automatically
change the level at which the computation is done� we call this metasystem
jumps� Thus� whenever fn�� is to evaluate
partially� fn� control is �rst
passed to fn for a direct evaluation� as far as possible� When no step can be
made because of unknown values of variables� control is passed back to fn��
for driving� Examples in ���� show that metasystem jumping may result in
a speed�up factor of more than ���

The system developed in ���� was used in the present work� We refer the
reader to that paper for details� introducing only the notation used there�
since we need it for discussion of tests�

The domain of a function de�ned in Refal is a set of object expressions�
Refal programs� however� may use most general Refal expressions� including
evaluation brackets and free variables� Hence we cannot directly write Refal
programs which manipulate Refal programs� To do this we must map the
set of general Refal expressions on the set of object expressions and use the
images of �hot� objects� i�e� free variables and evaluation brackets� instead
of these objects themselves�

We call this mapping a metacode� and denote the metacode transforma�
tion of E as �fEg� if E is� syntactically� one Refal term� the curly brackets
can be dropped� Obviously� metacoding must have a unique inverse trans�
formation� demetacoding� so it must be injective�

�

E �fEg

���� ����
�� ��

S S
s�i ��s	i

e�i ��e	i

�E
 ���	�fEg

�E� ���	�fEg

E�E� �fE�g�fE�g

Table �� The metacode

We used� in the terminology of ���� an internal metacode de�ned by
Table �� where S is any symbol� and i the index of a variable�

In the hierarchy f�� f�� f� the function f� has a metacoded call of f�
as its argument� f� has the metacoded call of f� as its argument� We use
MST schemes for a clear representation of such hierarchies �� An MST
scheme is built according to the rule� whenever a subexpression has the
form E��fE�gE�� the metacoded part is moved one level down and replaced
by dots on the main level�

E��fE�gE� ����
E� ��� E�

E�

The parts of the overall Refal expression which belong to di�erent meta�
system levels are put on di�erent lines� Refal expressions on the bottom
level are written the same way as if they were on the top level� metacoding
is implicit and is indicated by putting them one line down� To convert an
MST scheme into an executable Refal expression� we must metacode each
level as many times as long is its distance from the top�

In addition� we can move up some variables in an MST scheme� leaving in
the old place a bullet �� If a variable t�i
type t� index i� is raised by h levels
 the number referred to as its elevation � then the meaning of the bullet�
variable pair is �n�hf�Dnht�i�g� where Dn
read �Down�� is a Refal function
which performs the metacode transformation on object expressions� Thus a
bullet�variable pair can be seen as a variable metacoded n�h times� but the

�This notation was �rst used by one of the present authors �VT� in lectures at the
University of Copenhagen in 	
��� Ever since� its various versions were used in seminars
on Refal and metacomputation in Moscow and New York� In a published form it �rst
appeared in ����

!

possible values of this variable are only such that they an object expression
h times� In particular� if an input variable is of an elevation h� its desired
value must be metacoded h times before the beginning of computation�
See
more about elevated variables in ������

Moving variables up radically changes the way the expression represented
by the scheme will be executed� To read an MST scheme correctly� the
following rule of two levels can be used�

The variables on the top level are free� They are the arguments of the func�
tion represented by the MST scheme as a whole� some speci�c values must
be substituted for them before computation� The variables on the next level
down are the variables of the function whose de�nition �the program for it�
results from the computation on the top level�

As an example� consider the well�known problem of compilation� Let
�L program�data� be a Refal interpreter of some language L� Let P be a
program in L� Using the supercompiler we can translate P into an e�cient
program in Refal by partial evaluation according to the MST scheme�

�Scp �����������������

�L P �e�data�

Now suppose we want a function which would accept any arbitrary pro�
gram� not just P � If we simply put the variable program instead of P �

�Scp �����������������������

�L e�program� e�data�

we will not get what we want� Here the variables for data and for program
are on the same level and are treated in the same way� Using the rule of
two levels we see that the result will be a function of two variables� this is�
again� an interpreter� No partial evaluation takes place� because the value of
e�program remains unknown� If we want partial evaluation� we must raise
the variable e�program to the level of Scp�

�Scp ���e�program�����������

�L � � e�data�

Now the rule of two levels tells us that a speci�c program will be asked
by this function as the value of the argument e�program� Then partial
evaluation will take place� returning a program for a function of the variable
e�data� It is� of course� a translation of e�program� The function de�ned
by this MST scheme may further be subject to a transformation by another
partial evaluator� It will then produce an e�cient compiler for L�

��

It should be noted that in the calls of function transformers such as Scp
there is� implicitly� one more argument� which is not shown in our MST
schemes� the de�nition
program for� all function calls on the object level�

� Testing

Our system is still under debugging� but we can� already� show a few interest�
ing tests� We have tested our supercompiler on several �classical� for partial
evaluation problems� such as string pattern�matching and compilation� but
here we are concerned only with self�application and similar problems�

��� Test �

Before attempting self�application� we ran a few tests which demonstrate �al�
most self�application�� a three�level scheme where Scp transforms a metain�
terpreter applied to some program� One of the simplest tests is�

�Scp ������������ �

�Int ��� e�x �

�Fab � �

Here Fab is a simple function which changes every �a	 to �b	� Its de�nition
in �at Refal is�

Fab f e�
 � �Fab
 �
 e�
� g

Fab
 f
�e�

 �a	e�� � �Fab
 �e�
�b	
 e����

�e�

 s�� e�� � �Fab
 �e�
 s��
 e����

�e�

 � e�
� g

Function Int is an interpreter of �at Refal� The argument x of Fab
is elevated by one level to become free for Int and bound for Scp� The
call of Int� by its de�nition� computes �Fab x� with an arbitrary x by
interpretation of the program for Fab� This function is equivalent to Fab but
works much slower� Transforming it by Scp returns an equivalent program�
which is� as it should be expected� an exact copy of the original program for
Fab� except for the names of variables�

��� Test�

The supercompiler Scp at the top level of the MST�schemes in self�application
is denoted as Scp�� It was written in extended Refal� its volume�
�� sen�

��

tences� It was manually translated into strict Refal� the volume became
	�
sentences� Then it was automatically translated into a �at form
	!! sen�
tences�� which then was used as Scp
� to which Scp was applied� Thus� Scp

and Scp� represent the same algorithm written in two versions of Refal� We
could use Scp
 in the place of Scp� to have �very strict� self�application�
but we used Scp� for the convenience of testing�

In Test � the scheme of self�application was�

�Scp� ������������� �

�Scp
 ������� �

�Fab e�
�

This is a correctness check� All work is done by Scp
� with Scp� as a
simple supervisor� We see from the rule of two levels that Scp
 is a function
of no variables
a constant� whose value is the de�nition of a function of
e�
 which is equivalent to Fab� The supercompiler on the level �� Scp�� has
no free variables on either top� or the next level� it transforms a function

namely� Scp
�� which is a constant� The output of Scp� is not the same
as the output of Scp
� because they are on di�erent metasystem levels� If
Scp
 is the constant const� then Scp� outputs the metacode of a program

in the graph form� which outputs const� i�e� �fconst

a
�e�outg�

The actual output of the supercompiler is� however� a bit more complex�
The program produced by the supercompiler can be seen as the expression�

Define def
f�� � � �def
fn��
Call Gin�

which combines a list of the de�nitions of new functions fi and the initial
function call to compute Gin� The function de�nition is of the form�

def
fi� � mu�Config� � Fni � �fProgig

where � Config � is a recurrent con�guration in terms of the initial pro�
gram� Fni is the symbolic name of the corresponding new function fi� and
Progi the program for it�

The output of the �nd�level supercompiler Scp� is a metacoded program
which we shall denote as �fProg�g� In Test � it is this�

�fProg�g � �Define
 �Call �f�fProg�g
a
� e�outg

This program simply outputs the metacoded program Prog��

�fProg�g � �Define ��Fab
�e���
e�����Fn
��fProg�g

�Call �f�
�e�

a
��e���
�e���
fn�Fn

g

��

Program Prog� is the result of supercompilation by Scp
 of the call �Fab e�
��
therefore it must be equivalent to it� Prog� de�nes one recursive function
Fn
 which is the supercompiled function call �Fab
�e���
e����� The vari�
ables of this con�guration become the variables of the de�nition of Prog��
Therefore� the initial call is a call of Fn
 after the necessary assignments to
the variables �e���
�e���
� The program Prog� is the program for Fn
� it
results from supercompilation of Fab
� and it is identical to it� except for the
di�erent names of variables� This is exactly what one should have expected�

��� Test �

The MST scheme in this test is�
�Scp� ����������������� �

�Scp
 ��� s�� ���� �

�Fab � e�
 �

Here the argument of Fab is s�� e�
� i�e� it starts with some symbol
s��� We have raised s�� to become a free variable in the call of Scp
�
According to the Rule of two levels� the result of Scp� must be a function
of s��� The actual output is�

Prog� � �Define
�Call �fProg�g

where Prog� is the initial graph� which we present in the sentential form for
readability�

Prog
 f
�a	 � �Define ��Fab
 ��b	
e�
��Fn
� �Prog��

�Call �f�
�e�

a
��e���
�e���
� fn�Fn

g
�

s�� � �Define ��Fab
 �s��
e�
��Fn�� �Prog��

�Call �f�
�e�

a
��e���
�e���
� fn�Fn�
g
�

g

We see that Prog
� indeed� depends on s�� and includes two cases where
its value is �a	� or any value distinct from �a	� In both cases the structure
of the value is similar to that in the preceding test� The di�erence is that
partial evaluation took place with respect to s��� Look at the recurrent calls
of Fab
� it is already within the parentheses which enclose the ready part of
the string� changed to �b	 if it was �a	� The programs Prog�� and Prog��
for Fn
 and Fn�� respectively� are�

�

Fn
 f
�e���
 �a	e��� � �Fn
 �e����b	
 e�����

�e���
 s��� e��� � �Fn
 �e��� s���
 e�����

�e���
 � �b	e���� g

Fn� f
�e���
 �a	e��� � �Fn� �e����b	
 e�����

�e���
 s��� e��� � �Fn� �e��� s���
 e�����

�e���
 � ���fs��g e���� g

These programs are the same as the initial program for Fab
� except
that they are modi�ed because of the partial evaluation which took place�
Functions Fn
 and Fn� depend on e�
 alone� s�� has already been processed
and is kept in the �rst argument of Fab
� When the string is exhausted and
the output is done� s��must be added at the beginning of the string resulting
from processing e�
� converted to �b	 in Fn
� or left unchanged in Fn��

The variable s�� enters the program P� in the negative degree of meta�
code� This is the result of the variable s�� being elevated� Recall that the
meaning of a variable elevated by h levels and metacoded n � � times is
�n�hf"Dnhs���g� In our case h � �� and n � �� When �fProg�g which
is yielded by Prog� is demetacoded� the metacode level from � becomes ��
but the elevation h remains �� which means that the value of s�� is a meta�
coded
once� symbol� When it is substituted by Prog� in �fProg��g and
�fProg��g� we have a correct all on the level � program� When it is
demetacoded as a whole the result will be a correct working program
level
��� the value of s�� will be demetacoded together with the rest of the pro�
gram� However� if we want to write down the demetacoded program for Fn�
for an arbitrary s��� we must insert in the proper place the demetacoded
symbol which is the value of s��� This is exactly what ���fs��g means�

It should be noted that with our metacode� symbols do not change under
metacoding or demetacoding� Yet it would be an error to put s�� instead
of ���fs��g� because s�� is not a free variable in the de�nition of Fn��
The sentence which results from such a replacement would be syntactically
faulty� the right side of the sentence would include a variable which does
not enter the left side�

��� Test �

The MST scheme is�

�	

�Scp� �����������������

�Scp
 ��� e�
����

�Fab ������

Here we have elevated the whole argument e�
� Because of this� Scp
 is
not transforming the program for Fab� It has no bound variables� therefore
the call of Fab is a constant for it� What is going on is this� Scp
 gets a value
E of e�
 at input� computes the value E� ��Fab E�� and then outputs a
program which outputs the constant E�� As for Scp�� it outputs a program
which is equivalent to Scp
� i�e� it does the same thing� but much more
e�ciently� ideally� as e�cient as the function Fab itself outputs is value�

The actual result of supercompilation is�

Prog� ��Define ��Conf��Fn
� �fProg�g

�Call �f�
�e�

a
��e���
�e���
� fn�Fn

g

Here Conf is one of the con�gurations in the supercompilation of Scp

by Scp�� It is big and hardly manageable by a human user� When Scp�

works on Scp
 it �nds recurrent con�gurations� which become new recursive
functions� Conf is such
and the only� con�guration� The only thing about
it that is easy to establish is that it includes two free variables� e��� and
e����

The program Prog� is�

Fn
 f
�e���
 �a	e��� � �Fn
 �e����b	
 e�����

�e���
 s��� e��� � �Fn
 �e��� s���
 e�����

�e���
 � �Define
�Call e���
a
� �fe�outg
�

e��� � �Define
 �Call Z
� g

Since the variable e�
 has the elevation �� its intended value must be
metacoded before the computation by Scp
� This remains true also for
Scp�� because it produces a program which faithfully follows the input�
output requirements for Scp
�

At the �rst glance it may seem that the assignment in the third sentence
of Fn
 has an error� the output variable e�out is metacoded� while e���

is not� But e��� is� like e�
 elevated� indeed� it is the result of processing
e���� and the initial value assigned to e��� is e�
� Function Fn
 outputs
a metacoded program� When it is demetacoded� �fe�outg becomes e�out�
and the value of e��� is demetacoded� So� the result is as it should be�

Function Fn
 mimicks the recursive function Fab
� except that it has
one more sentence� the fourth� This also is a consequence of the fact that

��

Scp
 works in metacode� Fab
 is de�ned in expectation that its second
subargument is always a string of symbols� If it starts with a parenthesis� the
Refal machine fails
comes to an abnormal stop�� the value of the function
in this case is not de�ned� But when Scp
 works in metacode and discovers
a parenthesis it does not fail� In our language of graphs there is a special
operation for this situation� Z� This is our way to say in metacode that the
original function causes failure� So� if none of the �rst three sentences of
Fn
 works� then the fourth sentence assigns Z as the output value�

It is interesting to compare Tests
 and 	 with regard to the level at
which recursion loops are closing� The Define part of the output consists
of those con�gurations which were found recurrent� In Test
 the function
transformed by Scp� depends on a symbol variable only� there is no recur�
sion on this argument
see the MST scheme�� Therefore� the Define part
of the output is empty� The function transformed by Scp
� on the contrary�
depends on an e�variable� thus on this level we have two recurrent con�gura�
tions Fn
 and Fn�� in the Define part� In Test 	 Scp� works on a recursive
function of an e�variable� hence the appearance of recurrent con�gurations
is inevitable�

��� Test �

The next two tests demonstrate another use of a supercompiler� in a com�
bination with a non�standard interpreters of the object language� Our lan�
guage� �at Refal� does not allow us to make lazy evaluation� To amend this�
we have written in �at Refal a lazy interpreter Lazy�Int of a full functional
language
strict Refal�� Given a program in strict Refal� we interpret it by
Lazy�Int and supercompile this process by Scp according to the following
MST�scheme�

�Scp ���������������������� �

�Lazy�Int �� �e�

��� �

�Fbc �Fab � ��

The program which is implicit in the call of Lazy�Int de�nes two func�
tions� Fab and Fbc� Function Fab was de�ned in Sec� � as an example of a
non��at recursive function�

Fab f

�a	e�
 � �b	�Fab e�
��

s�� e�
 � s�� �Fab e�
��

� � g

��

It replaces every �a	 by �b	� Function Fbc is de�ned analogously and re�
places every �b	 by �c	� The lazy interpreter works on the composition of
these two functions� The expectation was that after supercompilation we
should have a �at one�loop program which converts both �a	 and �b	 into
�c	�

And indeed� the resulting program is exactly as expected�

Fac f
�
 � �

�e�

 � �F
C
 �
�e�

� � g

F
C
 f

�e���
��a	e���
 � �F
C
 �e��� �c	
�e���
� �

�e���
��b	e���
 � �F
C
 �e��� �c	
�e���
� �

�e���
�s��� e���
 � �F
C
 �e��� s���
�e���
� �

�e���
�
 � e��� � g

It transforms a two�pass program into an equivalent one�pass program�

��� Test �

In this test we use the supercompiler in a combination with an even less
standard interpreter� an inverse interpreter Inv�Int which executes a func�
tion de�nition
in a form of a graph� from its ends to its beginnings� and
computes the value of the input when an output is given� Inv�Int stops
after �nding the �rst solution and is relatively simple� because we have put
rather strong constraints on its input a program to invert� They are�

� The program must be in �at Refal�

� The right side of each sentence� or the argument of a function call in
the right side� must be a rigid pattern�

� All variables of the left side of a sentence must be met also in the right
side�

The MST�scheme in Test � was�
�Scp ������������������������������ �

�Inv�Int ���������� �e�

��� �

�Rev e�x �

The interpreter Inv�Int expects a con�guration which depends on the
input variable e�x� and the output value assigned to the free variable e�
�
Implicit in the call is the program which de�nes the function Rev�

��

Rev f e�x � �Rev
 �e�x
 �
�� g

Rev
 f �s�
 e�x
 �e�y
 � �Rev
 �e�x
 �s�
 e�y
��

�
 �e�y
 � e�Y� g

The interpreter �nds a value of e�x such that

�Rev e�x� � e�

and gives it out as its value�
Function Rev reverses its argument� Since its reversal is itself� the best

we can expect from the supercompiler is that it returns a function de�nition
identical to the above program for Rev� And it does so�

We can see this result as a proof that Rev�� �Rev� and therefore� a proof
that �Rev�Rev�e�
�� is the identical function� It shoud be noted that this
double reverse con�guration cannot be reduced by direct supercompilation
to the identical function even such a function that passes through the
string symbol by symbol� without changing them�

��� Conclusion

What we have shown in these tests is the hard core of the supercompiler
system� For speci�c applications� special front and back ends can be added�
For instance� the system requires that the value of an elevated variable
be metacoded at input and demetacoded at output� Clearly� this can be
included into the system� and the end user need not know anything about
this� MST�schemes can also be formed for a wide class of problems without
bothering the user with such details�

Our tests show that a supercompiler can be self�applicable� The im�
portant thing here is not� of course� just to apply it to itself and obtain
some target program� this program must be a good� e�cient program� We
gave examples of such non�trivial transformations� A big program
Scp�
is applied to a big program
Scp itself or a non�standard interpreter� and
produces a small residue� which is the desired solution to the problem� Sure
enough� the zero�level programs in these tests are still small� not big� but
we believe that this is a matter of some technical details� eliminating bugs
and �ne�tuning some of the algortihms� such as generalization� Writing su�
percompilers� like writing compilers� is a technology� It develops slowly but
surely� by accumulating small discoveries and improvements�

Acknowlegements� First tests of the present supercompiler were discussed
in the summer of �!!	 in Copenhagen� Moscow and Pereslavl
Russia�� The

��

authors thanks the participants especially Sergei Abramov� Sergei Chmu�
tov� Robert Gl#uck� Neil Jones� Andrei Klimov� Arkadi Klimov� Torben Mo�
gensen� Sergei Romanenko� Morten S$rensen for useful comments�

References

��� Ershov� A�P� On the essence of compilation� In� E�J�Neuhold
ed� For�
mal Description of Programming Concepts� pp�
!��	��� North�Holland�
�!���

��� Futamura� Y�� Partial evaluation of computation process an approach
to compiler compiler� Systems� Computers� Controls� ���
�!��� pp�	��
���

�
� Jones N�� Sestoft P�� Sondergaard H�� An experiment in partial eval�
uation� the generation of a compiler generator� In� Jouannaud J��P�

Ed�� Rewriting Techniques and Applications� Dijon� France� LNCS ����
Springer� �!���

�	� Jones� Neil� The essence of program transformation by partial evalua�
tion and driving� In� Proc� of The Atlantique Worlshop on Semantics
Based Program Manipulation� N�Jones and C�Talcott Ed� Copenhagen
University� pp��
	��	�� �!!	�

��� Gl#uck� R�� Towards multiple self�application� Proceedings of the Sym�
posium on Partial Evaluation and Semantics�Based Program Manipu�
lation �Yale University�� ACM Press� �!!�� pp�
�!�
���

��� Gl#uck� R� and Klimov� And�� Occam�s razor in metacomputation� the
notion of a perfect process tree� In� Static Analysis� COusot et�al
Eds��
LNCS Vol ��	� pp�������
� Springer�Verlag �!!
�

��� Gl#uck R� and S$rensen� M�H� Partial deduction and driving are equiv�
alent� In� Symposium on Programming Language Implementation and
Logic Programming �PLILP	
��� LNCS� Springer�Verlag� �!!	�

��� Gl#uck R� and Turchin V�� Experiments with a Self�applicable Super�
compiler� CCNY Technical Report� �!�!�

�!� Turchin� V�F�� Equivalent transformations of recursive functions de�ned
in Refal� In� Teoriya Yazykov I Metody Postroeniya Sistem Program�

�!

mirovaniya
Proceedings of the Symposium�� Kiev�Alushta
USSR��
pp�
��	�� �!��
in Russian��

���� Turchin V�F��Klimov A�V� et al� Bazisnyi Refal i yego realizatsiya na
vychislitel	nykh mashinakh
Basic Refal and its implementation on com�
puters� GOSSTROY SSSR� TsNIPIASS� Moscow� �!��
in Russian��

���� Turchin� V�F� The Language Refal� the Theory of Compilation and
Metasystem Analysis� Courant Computer Science Report %��� New
York University� �!���

���� Turchin� V�F�� Nirenberg� R�M�� Turchin� D�V� Experiments with a
supercompiler� In� ACM Symposium on Lisp and Functional Program�
ming
�!���� ACM� New York� pp� 	�����

��
� Turchin� V�F� The concept of a supercompiler� ACM Transactions on
Programming Languages and Systems� �� pp��!��
��� �!���

��	� Turchin V�� Refal��� Programming Guide and Reference Manual� New
England Publishing Co�� �!�!�

���� Turchin V�� Nemytykh� A� Metavariables� Their implementation and
use in Program Transformation� CCNY Technical Report CSc TR�!��
���� �!!��

��

